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Abstract

Phonotraumatic vocal hyperfunction (PVH) is associated with chronic misuse and/or abuse

of voice that can result in lesions such as vocal fold nodules. The clinical aerodynamic

assessment of vocal function has been recently shown to differentiate between patients with

PVH and healthy controls to provide meaningful insight into pathophysiological mechanisms

associated with these disorders. However, all current clinical assessment of PVH is incom-

plete because of its inability to objectively identify the type and extent of detrimental phona-

tory function that is associated with PVH during daily voice use. The current study sought

to address this issue by incorporating, for the first time in a comprehensive ambulatory

assessment, glottal airflow parameters estimated from a neck-mounted accelerometer and

recorded to a smartphone-based voice monitor. We tested this approach on 48 patients with

vocal fold nodules and 48 matched healthy-control subjects who each wore the voice moni-

tor for a week. Seven glottal airflow features were estimated every 50 ms using an imped-

ance-based inverse filtering scheme, and seven high-order summary statistics of each

feature were computed every 5 minutes over voiced segments. Based on a univariate

hypothesis testing, eight glottal airflow summary statistics were found to be statistically dif-

ferent between patient and healthy-control groups. L1-regularized logistic regression for a

supervised classification task yielded a mean (standard deviation) area under the ROC

curve of 0.82 (0.25) and an accuracy of 0.83 (0.14). These results outperform the state-of-

the-art classification for the same classification task and provide a new avenue to improve

the assessment and treatment of hyperfunctional voice disorders.
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Introduction

Voice disorders affect approximately 6.6% of the working population in the United States [1]

and can have devastating psychological and social-economic consequences on those impacted.

The most common voice disorders are chronic or recurring conditions that are believed to be

caused by detrimental patterns of vocal behavior, referred to as vocal hyperfunction [2]. Such

behaviors are often associated with trauma-induced lesions of the vocal folds (e.g., nodules,

polyps), which we refer to as phonotraumatic vocal hyperfunction (PVH) [3]. Despite the

significance prevalence of hyperfunctional voice problems, effective prevention and clinical

management continues to be hampered by limited knowledge of the etiological and patho-

physiological mechanisms related to these disorders. For example, even though daily voice use

is often assumed to be a critical factor, the actual relationships between daily voice use and

vocal hyperfunction is not well understood.

There have been some recent attempts to better characterize hyperfunctional voice disor-

ders. In an expansion of previous work [2], it has been more definitively demonstrated that

glottal aerodynamic measures of subglottal air pressure, and glottal airflow (normalized by

sound pressure level) can be used to identify phonatory mechanisms associated with vocal

hyperfunction that are distinctly different from normal vocal function [4]. These glottal airflow

measures were obtained in the laboratory using a circumferentially vented (CV) pneumota-

chograph mask to capture oral airflow with a bandwidth of approximately 0 Hz to 1.2 kHz [5].

The oral airflow waveform was then inverse filtered (e.g., [2], [6], [7], [8]) to remove the influ-

ence of the vocal tract, and thus estimate clinically parameters of the glottal airflow waveform,

such as peak-to-peak AC flow (ACFL), open quotient (OQ), and maximum flow declination

rate (MFDR). In terms of clinically interpretability, the works of [2] and [4] provide a robust

framework for which aerodynamic measures are useful to differentiate vocal hyperfunction

from normal voice.

The aerodynamic-based differentiation between normal vocal function and pathophysio-

logical mechanisms of PVH has been further supported and elucidated in recent investigations

employing computer modeling. In particular, these studies have demonstrated that the eleva-

tion of ACFL and MFDR can be associated with the compensation that is necessary for indi-

viduals with PVH to maintain normal loudness [9], [10] in the presence of vocal fold

pathology. This compensatory behavior contributes to what has been described clinically as a

“vicious cycle” of continued concomitant increases/worsening of phonotrauma and PVH.

Such compensation presents additional challenges in attempting to identify purely etiological

factors. The present work focuses only on PVH subjects with the mentioned compensatory

behavior, and not necessarily discriminates subjects with other characteristics of vocal fold

pathologies, such as for example incomplete glottal closure. Work related to the analysis of

aerodynamic measures for normal subjects and subjects with unilateral vocal fold paralysis can

be found in [11] and [12]

Ambulatory voice monitoring technology has been developed over several decades to

investigate daily voice use. Our group has developed a smartphone-based ambulatory voice

monitor (see Fig 1) that uses an application to capture and store the high-bandwidth signal

from a light-weight accelerometer (ACC) attached to the front of the neck below the thyroid

prominence and can be comfortably worn for multiple days at a time [3], [13]. Measures typi-

cally extracted from the voice monitor recordings are based on estimates of sound pressure,

level, (SPL), fundamental frequency, and voicing duration, including cumulative vocal dose

parameters such as phonation time, cycle dose, and distance dose [14]. Univariate statistical

analysis of long-term data from individuals with PVH and matched healthy-controls have
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Fig 1. Example of VHM system. Illustration of the smartphone-based ambulatory voice monitor that uses a neck-

surface accelerometer attached to the skin halfway between the thyroid prominence and the suprasternal notch of a

female subject.

https://doi.org/10.1371/journal.pone.0209017.g001
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not shown the expected differences between overall average measures of voice use (i.e., PVH

subjects did not, on average, talk more or louder than healthy controls), which suggests that

such measures may not be directly useful clinically in helping to identify relevant aberrant

vocal behaviors [15]. However, using features derived from these measures (mostly higher-

order distribution-based statistics) in a supervised classification task demonstrated statisti-

cally significant differentiation between individuals with PVH and healthy controls, with an

area under the ROC curve (AUC) of 0.705 and F-score of 0.630 for a small dataset [16]. Anal-

ysis of a larger dataset with 102 subjects (51 patient-control pairs) resulted in an AUC of

0.739 and F-score of 0.766 [3]. While promising, these findings may not be readily translated

for clinical use because the level of performance may still not be adequate (marginal ability to

differentiate between normal and disordered subjects), and because the resulting features do

not provide direct insights into underlying pathophysiological mechanisms associated with

vocal hyperfunction—i.e. the features are based on measures extracted from the voice acous-

tic output signal which cannot provide information about the specific physiologic parame-

ters/mechanisms that produce voice (e.g. glottal volume velocity source characteristics).

Similar limitations are observed in recent deep learning approaches [17], that still lack physi-

ological and clinical relevance since they operate in sustained vowel scenarios and do not

provide additional insights for voice therapy or biofeedback. Further efforts are need to

advance ambulatory monitoring of voice with physiologically relevant features that can help

to identify vocal hyperfunction.

In this study, we investigate whether ambulatory estimates of glottal airflow parameters can

significantly differentiate between normal vocal activity and activity associated with PVH. This

is the first analysis of ambulatory estimation and assessment of aerodynamic measures using a

large group of PVH subjects. There is evidence in physical models [9] and real subjects [4] that

PVH behavior manifests by compensation of SPL by producing higher levels of ACFL than

normal voice function. Recognizing these features could improve clinical assessment of PVH

by combining the advantages of glottal airflow measures and ambulatory monitoring. To

accomplish this task, we used and extended an impedance-based inverse filtering (IBIF)

scheme to estimate the high-bandwidth glottal airflow waveform from the neck-surface ACC

signal [18].

This is the first effort to advance the IBIF algorithm into an ambulatory scenario, as the

original study [18] only used sustained vowels and laboratory conditions. Thus, some addi-

tional considerations and details for the IBIF scheme are provided for this purpose. Note that

Mehta et. al. [3] plotted the distribution of MFDR for a week for a single subject as proof of

concept that IBIF could be potentially used to extract aerodynamic features. However, no

quantitative analysis was performed for that case study.

Subglottal impedance based inverse filtering for ambulatory

monitoring of voice

In this section, the IBIF algorithm [18] is summarized but also extended and optimized for

ambulatory voice monitoring. The IBIF is a model-based scheme to estimate the glottal airflow

from neck-surface acceleration [18]. The method uses a mechano-acoustic transmission line

model to account for the acoustic propagation in the subglottal system and neck skin charac-

teristics. The scheme is illustrated in Fig 2, where the electrical equivalent circuit shows the

interconnection between the subglottal tracts above and below the location of the accelerome-

ter (sub1 and sub2, respectively) and load impedance of the skin Zskin, that also includes the

radiation load of the accelerometer sensor Zrad. The glottal airflow signal estimate ûgðtÞ to be

Vocal hyperfunction and estimated ambulatory glottal airflow measures
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obtained from the accelerometer signal _uskinðtÞ is calculated using Eq (1):

ûgðtÞ ¼ F � 1
�

_UskinðoÞ � Aacc
TskinðoÞ

� �

; ð1Þ

with

TskinðoÞ ¼
Hsub1ðoÞ � Zsub2ðoÞ � jo
Zsub2ðoÞ þ ZskinðoÞ

; ð2Þ

ZskinðoÞ ¼
1

Aacc
Rm þ joMm �

j
o
Km þ ZradðoÞ

� �

; ð3Þ

ZradðoÞ ¼
jo �Macc

Aacc
; ð4Þ

where F � 1
ð�Þ is the inverse Fourier transform, Hsub1(ω) = Usub1(ω)/Usub(ω) is the transfer

function of subglottal section sub1 (see Fig 2), Aacc the accelerometer area (cm2),Macc the

accelerometer mass (gr), and _UskinðoÞ is the acceleration signal in frequency domain. Zsub2 and

Hsub1 are calculated using an anatomically based, acoustic model of the subglottal system [18–

20]. Zrad corresponds to the radiation impedance from the accelerometer. All frequency and

time-domain expressions are sampled and processed appropriately [21].

In order to use IBIF as a signal processing tool, subject-specific parameters need to be esti-

mated. These IBIF parameters are scaling factors that adjust default values of the mechanical

impedance model of neck skin surface, length of the trachea, and accelerometer location. The

parameters are represented in a set Q = {Qi}i=1,. . .,5 for neck skin resistance Rm, massMm, and

stiffness Km, as well as length of the trachea Ltrachea and accelerometer placement Lsub1. Each of

these Q parameters is bounded to maintain physiological plausibility [18]. The magnitude

Fig 2. Representation of the subglottal system. (a) Accelerometer position and sub1 and sub2 system parts. (b) A mechano-acoustic analogy of the

subglottal system including load impedance from skin. Reproduced with permission.

https://doi.org/10.1371/journal.pone.0209017.g002
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terms in Eq (3) are the default values for each parameter [22], which are scaled for normalized

Q factor as, Rm = 2320 � Q1 in (g � s−1 � cm−2),Mm = 2.4 � Q2 in (g � cm−2), Km = 491000 � Q3 in

(dyn � cm−3), and for Zsub2(ω), Ltrachea = 10 �Q4, and Lsub1 = 5 �Q5 are in (cm). Note that default

model parameter are obtained for Q = [1, 1, 1, 1, 1] [18]. Using these subject-specific factors

will allow to filter out neck-skin and subglottal resonances, making the estimated glottal air-

flow signals comparable between subjects.

To obtain subject-specific IBIF parameters, we compare the IBIF-derived glottal airflow

waveform estimates with that from the current gold standard, namely an inverse filtered glottal

airflow signal obtained from recordings using a CV pneumotachograph mask [5]. Inverse filter-

ing in this case is a challenging task given the reduced bandwidth of the CV mask due to the air-

flow transducers (PT-2E, Glottal Enterprises) and the type of voices that will be analyzed (high-

pitched female voices exhibiting pathology). Inverse filtering of the oral airflow was performed

using a semi-automatic approach, as recently described in [4]. This approach was particularly

designed to inverse filter normal and pathological high-pitched voices from a CV mask signal.

Once we obtain an estimate of the glottal airflow from the CV mask, we run a Particle

Swarm Optimization (PSO) scheme [23], which consists in the optimization of a non-linear

continuous fitness function thorough the search of optimal “particles” (parameters) by search-

ing its best set. For this case, PSO searches the optimal Q parameters that represent the sub-

ject’s anatomical features. The fitness function in this optimization process needs to yield

robust and consistent solutions. We minimize the following normalized weighted absolute

error (NWAE) function, such that

NWAEðQÞ ¼
X3

i¼1

wi � eiðQÞ; ð5Þ

with

X3

i¼1

wi ¼ 1; 0 � wi � 1; ð6Þ

and

eiðQÞ ¼

XN� 1

n¼0
jD
ði� 1Þ

~ug � D
ði� 1Þûg j

PN� 1

n¼0
jD
ði� 1Þ

~ug j
; ð7Þ

where ~ug is the CV mask-based inverse-filtered glottal airflow signal, ûg is a time-aligned IBIF-

based glottal airflow signal, Δ(i−1) the time-derivative operator of order (i − 1), and i represents

the index of the corresponding error function ei and its weight wi. Each weighting wi was set to

0:�3. The increased order of the time-derivative operator is used to balance the energy of higher

harmonics in NWAE to avoid over-fitting in the low frequency range. Therefore, the optimiza-

tion problem is stated as:

Q̂ ¼ arg min
Q
NWAEðQÞ; subject to Q 2 D; ð8Þ

where D = {Di}i=1,. . .,5, is a set of restrictions for each parameter within the Q set that is designed

to maintain physiological plausibility [18]. To reduce the computational load of PSO, several

configurations of subglottal systems were pre-calculated (i.e., before the PSO algorithm started)

for a set of equally spaced values of tracheal length and accelerometer position. Each pre-calcu-

lated (Zsub andHsub1) transfer function was indexed and retrieved inside the PSO algorithm.

This approach substantially reduces the computational time of the optimization process.

Vocal hyperfunction and estimated ambulatory glottal airflow measures
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The time-alignment of the oral airflow and acceleration signals is as follows. A first approxi-

mation is to align using the sample cross-correlation function [21] and find the maximum

peak shifted in the neighborhood of mid-lag position [24]. To improve this initial approxima-

tion, a delay parameter d is added in the PSO algorithm by shifting the indices of signal vectors

(oral airflow and neck acceleration). Since the shifted signal (oral airflow) is delayed for only a

few samples, the search space is limited to d 2 D0 = [−d0, d0] where d0 is a small number 2 Z+.

Then, given N(� d0) samples of data, ~ug and ûg are replaced in (7) by

ûgtðnTÞ ; n 2 ½d0;N � 1 � d0�; and ð9Þ

~ugtdðnTÞ ; n 2 ½d0 þ d;N � 1 � d0 þ d�: ð10Þ

Note that ûgtðnTÞ is a trimmed version of ûgðnTÞ and ~ugtdðnTÞ is a trimmed, delayed version

of ~ugðnTÞ both with N − 2d0 samples, where T is the sampling period. An initial value for d0

was half the average glottal cycle duration.

In the case of incomplete glottal closure, coupling between the subglottal tract and vocal

tract is embedded in the resulting dipole source [25]. Therefore, the glottal flow with all the

source-filter interactions can be estimated without the need to model glottal coupling.

Methods

Experimental setup and participants

The human studies protocol used to collect the data for this study (Ambulatory monitoring of

vocal function to improve voice disorder assessment: #2011P002376) was approved by the

Institutional Review of the Partners Healthcare System—the Massachusetts General Hospital

is a founding member of this organization. Dr. Robert E. Hillman is the PI on this protocol.

Study participants were 48 pairs of adult females (total of 96 subjects) with each pair comprised

of one patient with PVH (diagnosed with vocal nodules) and one normal control subject

matched to the patient by age and occupation (see Table 1 for more details). Diagnoses were

based on a complete team evaluation by laryngologists and speech-language pathologists at

the Massachusetts General Hospital Voice Center that included (a) a complete case history,

(b) endoscopic imaging of the larynx, (c) aerodynamic and acoustic assessment of vocal func-

tion based on Mehta et. al. [26], (d) a patient-reported Voice-Related Quality of Life question-

naire, and (e) a clinician-administered Consensus Auditory-Perceptual Evaluation of Voice

Table 1. Occupations and mean age of adult females with PVH and matched-control participants analyzed (48 pairs).

Occupation No. subject pairs Age a Diagnosis CAPE-V overall b

Singer 34 21.3 (3.7) Nodules (31)

Polyp (3)

21.2 (12.6)

Teacher 5 38.9 (12.1) Nodules 33.8 (18.8)

Consultant 2 23 (1.4) Nodules (1)

Polyp (1)

22.0 (5.7)

Psychologist 1 34 (P) 30 (C) Nodules −
Recruiter 2 23.5 (0.8) Nodules 40.5 (13.4)

Marketer 1 22 (P) 25 (C) Nodules 25

Media relations 1 32 (P) 31 (C) Nodules 30

Registered nurse 1 57 (P) 58 (C) Polyp 40

aMean age and (standard deviation) are shown for pairs� 2. Otherwise, the age is shown for the phonotraumatic (P) and control (C) subject.
bMean overall severity score (0-100) and (standard deviation) are shown patients from pairs� 2. Otherwise, the patient’s score is shown.

https://doi.org/10.1371/journal.pone.0209017.t001
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assessment (CAPE-V). All patients were enrolled prior to the administration of any voice treat-

ment. Written informed consent was obtained from all subjects. All subjects were 18 years of

age or older. Due to the higher incidence of female patients with PVH than men in the overall

population [27], only women were subjects for this study. Zhukhovitskaya et. al. [28] have

shown significant differences (p< 0.0001) in the number of bilateral midfold lesions between

males and women. Moreover, the inclusion of men would create confounding variables due to

sex-specific characteristics. The matching is done to normalize for general vocal behavior dif-

ferences. For example, males and females have anatomical differences, there are voice changes

with age (for example, presbyphonia usually occurs when people gets older), and the type of

occupation is related to how much voicing is used during a typical day at work. On the other

hand, the subject-specific parameters from IBIF are normalized for each individual, so signals

can be comparable, due to differences in neck-skin and subglottal anatomy. Therefore, these

are not matched on healthy-patient pairs.

Each subject was recorded as they engaged in normal daily activities during one week using

the smartphone-based ambulatory voice monitor [3, 13]. The system employs an accelerome-

ter attached to the front of the neck below the larynx as the phonation sensor (see Fig 1). The

sampling frequency was 11,025 Hz and the average total recording time for a subject was

approximately 80 hours, as in [15] [3].

Each subject underwent a session in the laboratory to obtain a subject-specific calibration

for the IBIF algorithm. The session involved simultaneous and synchronous recordings of CV

mask-based oral airflow and neck skin acceleration in an acoustically treated room. Each sub-

ject performed a series of sustained vowels gestures (/a/ and /i/) with a constant pitch using

comfortable and loud (approximately 6 dB increase) voice. For each gesture, a bandpass filter

(60 − 1100 Hz) oral airflow vowel segment was used to perform inverse filtering with a single

notch filter constrained to unitary gain at DC [29].

Once a glottal airflow approximation is obtained from the CV mask, Q parameters are esti-

mated using the optimization scheme described in the Subglottal Impedance Based Inverse Fil-
tering for Ambulatory Monitoring of Voice section. The whole process, from estimation of

parameters to classification and statistical analysis was done with MATLAB (The MathWorks,

Inc.).

Ambulatory glottal airflow assessment

Estimates of individual Q parameters, which were assumed to be time-invariant for each sub-

ject, were applied in Eq (1). The assumption of time-invariance is due to the properties of the

neck skin, which should not change over time. Preliminary studies of the use of IBIF calibrated

for a single vowel [30] and on the variability of these calibrated parameters [31], have shown

that using a sustained vowel works well on running speech (e.g., the rainbow passage). Current

research aims to explain in more detail the estimation and variability of these parameters

under different speech conditions. _uskinðkÞ the discrete time-domain equivalent of the accelera-

tion signal _UskinðoÞ, is convolved with tskin(k) the inverse transfer function of the skin in time

domain, where its frequency domain expression is represented by Eq 2.

By taking the inverse fast Fourier transform (IFFT) with 1102 coefficients, we obtain tskin(k),

a FIR filter. We take every consecutive hour of the acceleration signal _uskinðkÞ and convolved it

with tskin(k) to obtain the estimated glottal flow signal ûgðkÞ. This signal was segmented into 50

ms non-overlapping windows. Voiced frames from the ACC signal were identified based on

the same voice activity detection algorithm used in [3], where a combination of periodicity

and spectral metrics whether a frame is voiced or unvoiced. In addition, we discarded frames

in which the absolute ratio of the RMS values of the first half divided by the second half of

Vocal hyperfunction and estimated ambulatory glottal airflow measures
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the frame was greater than a threshold (1.5); thus, frames exhibiting onsets or offsets were

removed since they typically result in incorrect inverse filtering estimates due to cycle-by-cycle

variations in the signal. As with many inverse filtering methods [32], IBIF has difficulty analyz-

ing signal with high f0 values due to the short closed phase during which vocal tract informa-

tion must be estimated (females and singers, especially, produce high-pitched phonation).

Performance of traditional glottal inverse methods could be accurate up to a f0 of 400 Hz [33].

By visual inspection, the estimation of IBIF voiced frames deteriorated around a f0 of 500 Hz.

Thus, voiced frames with f0 higher than 500 Hz were not processed by IBIF. Future research

will analyze sensitivity tests to find the range of frequencies for which the IBIF method fails.

Table 2 lists the 11 glottal airflow measures computed within each analyzed frame. Fig 3

shows an example of the estimated glottal airflow signal and its derivative for a single frame.

Since the accelerometer is an AC signal, the glottal airflow does not have a DC component. As

in previous studies [2, 4, 34], ACFL was obtained as the difference between the maximum and

minimum amplitude (peak-to-peak) within each glottal cycle. MFDR was the minimum value

of the derivative of one glottal cycle. For open and speed quotient, the closed phase in ambula-

tory settings often exhibits more fluctuations than in laboratory conditions using sustained

vowels. For robust estimations of open and speed quotient, two lines are fit from the glottal

cycle peak to median values left and right. The lines are extended until 80% of ACFL is passed.

The points of the slopes in the x-axis are the beginning and end of the open phase (see Fig

3(A)). Then open quotient is defined as the open phase divided by the period (OQ ¼ t1þt2
T0 ),

speed quotient as SQ ¼ t1
t2, and the normalized amplitude quotient (NAQ) asNAQ ¼ ACFL

MFDR�T0.

We also included 4 additional measures derived from the time-domain measures:

• Logarithmic versions of ACFL and MFDR squared: 10log10|ACFL|2 (dB) and 10log10|MFDR|2

(dB).

• SPL normalized by ACFL (dB) and MFDR (dB): SPL/(10log10|ACFL|2) and

SPL(/10log10|MFDR|2). Estimates for SPL are calculated using a linear regression equa-

tion: y =mx + b, wherem and b are the coefficients from the subject obtained from accel-

erometer amplitude (x) and corresponding acoustic SPL (y). The calibration is done daily

in the morning with a handheld microphone yielding the reference SPL [13], [35]. These

ratios have shown to be significantly different between PVH and control subjects [4].

Table 2. Frame-based glottal airflow measures estimated from the ambulatory neck-surface accelerometer signal

using impedance-based inverse filtering.

Glottal airflow measures Description Units

ACFL Peak-to-peak glottal airflow. mL/s
MFDR Negative peak of the first derivative of the glottal waveform. L/s2

Open Quotient (OQ) Ratio of the open time of the glottal vibratory cycle to the corresponding

cycle period.

−

Speed Quotient (SQ) Ratio of the opening time of the glottis to the closing time. −
H1-H2 Difference between the magnitude of the first two harmonics. dB

Harmonic Richness Factor

(HRF)

Ratio of the sum of the amplitudes of the first 8 harmonics to the

amplitude of the first harmonic.

dB

Normalized Amplitude

Quotient (NAQ)

Ratio of ACFL to MFDR divided by the glottal period. −

logMFDR 10log10|MFDR|2. dB

logACFL 10log10|ACFL|2 dB

MFDR’ Ratio of estimated SPL (dB SPL) to logMFDR. −
ACFL’ Ratio of estimated SPL (dB SPL) to logACFL. −

https://doi.org/10.1371/journal.pone.0209017.t002
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Given that many of the glottal airflow features applied for vocal hyperfunction analysis are

cycle-based [2], [4], [34] and multiple glottal cycles occur within each 50 ms frame, we com-

puted average features across all glottal cycles in each frame. The idea was to provide a more

consistent estimate of each measure, especially given the inherent fluctuations from continu-

ous speech in the ambulatory signal. Fig 4 shows the spectrum of the estimated glottal airflow,

from which spectral measures H1-H2 and harmonic richness factor (HRF) were computed.

These measures have been correlated with voice quality [36], [37].

Week-long univariate statistics for paired hypothesis testing

The purpose of the following series of tests is to find the most differentiating statistics between

the PVH group and controls. Within-subject univariate statistics were calculated for each

week-long time series data from each subject: mean, median, 5th percentile (trimmed mini-

mum), 95th percentile (trimmed maximum), standard deviation, skewness, and kurtosis.

These statistics were used for paired t-tests with 48 data points (number of subject pairs). Nor-

mality was tested with a Chi-square goodness-of-fit test, and each statistic was not significantly

different from a normal distribution with p< 0.05. The false discovery rate is described by Eq

(11), where V is the percentage of false positives (type I error) and S is the percentage of true

positives. Since the false discovery rate is an expectation, we havem possible outcomes from

the hypothesis tests.

False discovery rate ¼ E
V

V þ S

� �

ð11Þ

If we haveH1,H2,. . .Hm independent hypotheses, Benjamini-Hochberg (BH) [38] showed

that regardless of how many null hypotheses are true and regardless of the distribution of the

Fig 3. Example of ambulatory IBIF analysis. (A) Estimated glottal airflow waveform and (B) its derivative, showing how time-domain

measures were derived per glottal cycle. Measures were then averaged over all cycles to yield a single value per frame for each time-domain

measure.

https://doi.org/10.1371/journal.pone.0209017.g003
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p-values, when the null hypothesis is false, we have the following property [39]:

False discovery rate �
U þ V
m

a � a ð12Þ

where U is the proportion of true negatives. By setting α = 0.1, the procedure sorts them p-val-

ues and defines a threshold L:

L ¼ max k : Pk �
k
m
a

� �

ð13Þ

We reject all hypothesesHk for which pk� p(L), the BH rejection threshold. This procedure

will find those statistics with at most an α false discovery rate between PVH subjects and con-

trols. It is important to remember that the false discovery rate is not the same as the type I

error, but is the expected proportion of false positive features among the list of features that are

significant according to the test. An example in reference [39] (page 687) uses a false discovery

rate of 0.15, which is typical for analyses that are exploratory in nature [40]. In this case, we

find the most differentiating statistics using this test, in contrast with a Bonferroni-corrected t-

test, which yields a conservative comparison for which there is no statistically significant dif-

ference between any statistic.

Supervised classification task

Following the same procedure as Ghassemi et al. [16], each subject’s weeklong ambulatory

recording was subdivided into 5-minute windows (6000 frames, nonoverlapping). Only win-

dows exhibiting voicing were only included in the classification task; voiced windows were

defined as containing at least 0.5% voicing (30 voiced frames). We then calculated the follow-

ing univariate statistics over the voiced frames within each window for each measure in

Table I: mean, median, 5th percentile, 95th percentile, standard deviation, skewness, and

Fig 4. Spectrum of the frame in Fig 3(A).

https://doi.org/10.1371/journal.pone.0209017.g004
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kurtosis. Windows with less than 0.5% voicing were discarded due to data sparsity. Each win-

dow-based statistic was z-normalized (subtracting by the mean and dividing the result by the

standard deviation) in two ways: a) by week, across voiced windows from all subjects (PVH

and controls) and b) by day, across voiced windows within their respective days.

The full feature vector is composed of 154 features: 77 weekly and 77 daily z-score normali-

zation the features derived from the 7 window-based univariate statistics for each of the 11

frame-based glottal airflow measures in Table 2. Since we only have a small amount of training

data, we reduce feature dimensionality before training. As a first pass, forward feature selection

(FFS) [41] is applied to the full feature matrix. The procedure is a greedy search algorithm that

starts with an empty set I and iteratively selects a new feature x from the set of features not in I
that minimizes a cost function J (a quadratic discriminant analysis classifier). The feature x is

added to I, and the procedure is repeated until a threshold (10−6 in this case) of consecutive

results is achieved. E is the quadratic discriminant analysis classification error using 5-fold

cross-validation. The final reduced feature vector is composed of 55 features. It is worth men-

tioning that this subset is suboptimal since further reduction can be achieved through LASSO

selection, which is applied later on. We use these features to build both logistic regression and

support vector machine (SVM) supervised classifiers.

Logistic regression is a type of discriminative classifier that models the class-conditional

probability as:

Pðy ¼ 1jxÞ ¼
1

1þ e� xTb
ð14Þ

where x 2 Rn is the feature vector, y = 1 2 Rl is the class labeled as yi = 1 (PVH) or yi = 0 (con-

trol), and β is the vector of coefficient weights. In order to find the coefficients β, we maximize

the following penalized log-likelihood using N data points of the training set with p feature

vectors:

max
b2Rpþ1

1

N

XN

i¼1

fyi log pðxiÞ þ ð1 � yiÞlogð1 � pðxiÞÞg þ lkbk1; ð15Þ

where xi is the data point for instance i and λ is the regularization parameter for the LASSO

constraint. The L1 penalty reduces the number of features used in the model.

SVMs are commonly used machine learning tools for classification [42]. The weight vectors

w 2 Rn are optimized to create a linear L1 SVM classifier:

min
w

XN

i¼1

ðmax ð0; 1 � yiw
TxiÞÞ

2
þ Ckwk1 ð16Þ

where C is a regularization parameter similar to λ for logistic regression. The goal is to create a

sparse w that solves the L2-loss support vector classifier [43].

Fig 5 shows a flowchart of the feature extraction and classification process. We first divided

data using leave-one-out cross-validation to generate 48 datasets, each consisting of 47 training

pairs and one test pair. All windows from the 47 training pairs (94 subjects total) were then

subdivided using 5 cross-validation (1/5th validation and 4/5ths training in each fold). The val-

idation sets are used to find the best set of parameters with respect to the area under the ROC

curve (AUC) and these are selected for the model to be used in the test set. The following met-

rics are used to check the performance of the logistic model on the test pair: AUC, F-score,

accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value

(NPV). From this procedure, we test two scenarios: Classification with all the features after

selection and using subsets of those features. The latter is done by sorting the absolute Beta
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values and running L1 logistic regression again by starting with all selected features. Then we

took out the feature with lowest Beta value in magnitude and ran the classification again, and

so on. The positive Beta weights are associated with subjects with PVH, whereas the negative

weights are associated with control subjects.

Results

Week-long univariate statistics for paired hypothesis testing

Table 3 shows the first 11 features sorted from lowest to highest p-value from the paired t-tests

H1. . .H11. The BH test rejects the first 8 null hypothesesH1. . .H8, i.e., they are significantly

Fig 5. Flowchart. Feature extraction and classification process for 96 subjects.

https://doi.org/10.1371/journal.pone.0209017.g005
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different at the 95% confidence level. Minimum and median ACFL were the most discrimina-

tive statistics, with medium effect sizes (Cohen’s d [44]) of 0.59 and 0.55, respectively. In gen-

eral, statistics of the ACFL measure had the best differentiating power among all the week-

long paired t-tests. In contrast, average values for estimated SPL for subjects from the same

database were not significantly different between subjects with PVH and control subjects [15]

[3]. This result suggests that high ACFL values are potentially good indicators of subjects with

PVH, if the SPL distributions of both groups are statistically similar.

Supervised classification task

Table 4 shows a summary of the classification results for both implemented classifiers using

the multiple performance metrics. Fig 6 displays performance of the L1 logistic regression clas-

sifier for each of the 48 pairs for a subset of the performance metrics. There is a large spread of

AUC scores across the subjects with an average of 0.82. AUC scores less than 0.5 indicate that

the model places weight on positive examples versus negative ones and vice versa. The large

AUC variance, including values less than 0.5, could be explained from the labels; e.g., subjects

with PVH do not always exhibit vocal behavior typical for the pathology, whereas control sub-

jects might exhibit some vocal behavior that differs substantially from healthy vocal behavior.

Logistic regression and SVM have similar good results on all performance metrics. Since L1

regularization was used in both cases, it could be that the removal of redundant features in

every training case helped the performance. The mean (standard deviation) of the perfor-

mance metrics for both classifiers improved when compared with previous results on 51

matched-paired subjects: 0.74 (0.27) for AUC, 0.77 (0.20) for F-score, 0.74 (0.30) for sensitiv-

ity, and 0.77 (0.29) for specificity [3]. Fig 7 shows the proportion of labels classified as positive

Table 3. Top 11 week-long summary statistics (from a total of 77) sorted by p-value from the 48 paired t-tests. Statistically significant differences (�) were found by

applying the Benjamini-Hochberg method using a false discovery rate of 0.1.

Voice Use Summary Statistic Patient Group Matched-Control Group p-value Effect Size

logACFL minimum 38.5 ± 3.3 36.6 ± 2.9 0.0011� 0.59

logACFL median 49.2 ± 3.5 47.3 ± 3.7 0.0015� 0.55

ACFL minimum 90.8 ± 40.6 71.6 ± 23.5 0.0016� 0.58

logACFL mean 48.7 ± 3.5 46.9 ± 3.5 0.0025� 0.52

ACFL median 315 ± 140 251 ± 99.0 0.0030� 0.53

H1-H2 kurtosis 10.9 ± 4.30 8.8 ± 2.6 0.0061� 0.59

logACFL kurtosis 3.17 ± 0.60 2.93 ± 0.4 0.0076� 0.50

ACFL mean 359 ± 163 296 ± 117 0.0091� 0.45

H1-H2 minimum 2.39 ± 4.20 0.38 ± 4.4 0.0120 0.48

HRF kurtosis 11.6 ± 4.7 10.0 ± 2.9 0.0230 0.42

MFDR median 365.4 ± 171.8 310.6 ± 127.7 0.0270 0.37

https://doi.org/10.1371/journal.pone.0209017.t003

Table 4. Classification performance of L1 logistic regression (L1-LR) and support vector machine (SVM) approaches for 96 subjects using IBIF features. Mean (stan-

dard deviation) is reported for the performance metrics. Previous results using 51 pairs [3] and 20 pairs [16] are also shown. It is worth noting that the distribution of met-

rics such as AUC, across all models, may be non-normal and may benefit from other summary statistics such as median (IQR).

Method AUC Accuracy F-score Sensitivity Specificity PPV NPV Threshold

L1-LR (IBIF) 0.82 (0.25) 0.83 (0.14) 0.77 (0.27) 0.78 (0.29) 0.85 (0.22) 0.81 (0.21) 0.82 (0.18) 0.54 (0.25)

SVM (IBIF) 0.82 (0.26) 0.84 (0.14) 0.78 (0.27) 0.79 (0.28) 0.84 (0.24) 0.83 (0.22) 0.82 (0.21) 0.02 (0.67)

Mehta et al. [3] 0.74 (0.27) - 0.77 (0.20) 0.74 (0.30) 0.77 (0.29) - - -

Ghassemi et al. [16] 0.71 (-) 0.66 (-) 0.63 (-) 0.50 (-) 0.81 (-) 0.72 (-) 0.62 (-) -

https://doi.org/10.1371/journal.pone.0209017.t004
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Fig 6. Performance results across subject pairs with L1-logistic regression. Area Under the ROC Curve (AUC),

Accuracy, Sensitivity, Specificity. The red crosses indicates the average value for each performance metric.

https://doi.org/10.1371/journal.pone.0209017.g006

Fig 7. Classification results from L1-logistic regression. The threshold (blue line) at 0.57 classifies correctly 79 from 96 subjects (82.3%).

https://doi.org/10.1371/journal.pone.0209017.g007
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(VH) for all subjects. 79 subjects from 96 were classified correctly by using a threshold of 0.57.

This corresponds to 82.3% of accuracy.

Feature selection is important for identifying the most relevant features that can help to fur-

ther understand the underlying process, as well as reducing the complexity for future biofeed-

back applications. Table 5 shows the total number of features (26) that were present in all 48

models after using LASSO with the resulting 55 features after FFS. Table 6 shows the results

for all 26 models and the subset of features by sorting beta values. The mean F-score is stable

in the 0.7 region until the number of features is 9. After that, the performance degrades moder-

ately, where the AUC is 0.68 and the accuracy is 0.71 with only 7 features. Fig 8 shows boxplots

of the same models versus F-score, where we can see the same trend: classification perfor-

mance is more or less similar if we left in 9 features or more in the classifier.

Fig 9 shows the association counts of features with PVH subjects as odds ratios. Odds ratios

represent the association with a one-unit increase in the features. These features represent a

combination of time and frequency-domain features that were consistently present in all 48

logistic regression models with p< 0.05 [3]. The 95th percentile of H1-H2 (daily normalized)

had a large association with PVH labels, which is a voice measure correlated with voice quality

[36]. However, the large confidence interval for this feature represents low level of precision of

the odds ratio. The 95th percentile ratio of SPL and MFDR (MFDR’ 95%ile in Fig 9) has a

Table 5. Association count of Beta (weight) variables that were included in all 48 models. These 26 features were present in each logistic regresion model.

Associated Feature Phonotraumatic Control Beta Weight Mean Standard Deviation

H1-H2 95th% (Daily Normalized) 48 0 2.50 0.16

NAQ mean 48 0 1.42 0.11

HRF skewness 48 0 1.38 0.09

logACFL standard deviation 48 0 1.30 0.10

HRF 5th% (daily normalized) 48 0 1.21 0.15

logACFL skewness (daily normalized) 48 0 1.17 0.05

SQ 5th% 48 0 1.16 0.05

SQ standard deviation 48 0 1.12 0.06

MFDR’ 95th% 48 0 1.01 0.13

OQ 5th% 48 0 0.94 0.12

H1-H2 standard deviation (daily normalized) 48 0 0.71 0.09

HRF dtandard deviation (daily normalized) 48 0 0.43 0.06

logMFDR 5th% (daily normalized) 48 0 0.32 0.06

ACFL’ standard deviation (daily normalized) 48 0 0.18 0.02

SQ skewness (daily normalized) 0 48 -0.12 0.03

SQ standard deviation (daily normalized) 0 48 -0.21 0.02

OQ 5th% (daily normalized) 0 48 -0.27 0.04

SQ 5th% (daily normalized) 0 48 -0.41 0.02

NAQ mean (daily normalized) 0 48 -0.47 0.05

HRF skewness (daily normalized) 0 48 -0.89 0.06

logACFL standard deviation (daily normalized) 0 48 -0.97 0.07

OQ mean 0 48 -1.00 0.13

H1-H2 dtandard deviation 0 48 -1.28 0.13

logACFL skewness 0 48 -1.58 0.07

HRF 5th% 0 48 -1.86 0.29

H1-H2 95th% 0 48 -4.47 0.31

https://doi.org/10.1371/journal.pone.0209017.t005
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moderate association compared to the rest of the features with a small confidence interval, rep-

resenting a higher precision on the odds ratio.

The current study sought to determine whether optimized IBIF-based estimates of glottal

airflow measures extracted from ambulatory voice (accelerometer-based) recordings can be

used to differentiate between normal vocal function and pathophysiological mechanisms asso-

ciated with PVH. Results showed that this approach can be quite successful in classifying sub-

jects as being normal or having PVH. Within-subject univariate analyses identified eight

aerodynamic features that were statistically different between the patient and matched control

groups. ACFL was the most significant measure with medium effect sizes exhibited. These

findings are in agreement with previous laboratory studies that used measures extracted from

the inverse filtered oral airflow [2], [4] and with computer modeling that suggests that

increases in ACFL may reflect the type of increased compensatory effort (i.e., increased vocal

hyperfunction) that is necessary for PVH patients to maintain adequate phonation in the pres-

ence of vocal fold fold trauma/lesions [9], [10]. Such increases in vocal effort are believed to

reflect the “vicious cycle” of progressive concomitant increases in PVH and vocal fold trauma

that contribute to perpetuating these disorders.

From Table 4, use of the IBIF-based glottal airflow measures in the supervised classification

task produced results that outperformed previous reports that used acoustic-based features

extracted from ambulatory recordings of the acceleration signal to differentiate between

Table 6. Mean and (standard deviation) performance metrics from L1-logistic regression for different group of features from Table 5, starting with the whole set of

26 features. Iteratively, the following group is obtained by taking out the feature with the smallest absolute Beta value.

Added feature Number AUC F-score Accuracy Sensitivity Specificity PPV NPV

Daily norm. Log ACFL Skew 26 0.82 (0.25) 0.76 (0.30) 0.84 (0.14) 0.77 (0.32) 0.87 (0.19) 0.79 (0.27) 0.83 (0.19)

Daily norm. ACFL’ stand. dev. 25 0.82 (0.25) 0.76 (0.30) 0.83 (0.14) 0.77 (0.32) 0.87 (0.19) 0.79 (0.27) 0.83 (0.19)

Daily norm. SQ stand. dev. 24 0.82 (0.25) 0.76 (0.30) 0.84 (0.14) 0.77 (0.32) 0.87 (0.19) 0.79 (0.27) 0.83 (0.19)

Daily norm. OQ 5th% 23 0.82 (0.25) 0.77 (0.28) 0.83 (0.14) 0.77 (0.30) 0.86 (0.19) 0.80 (0.24) 0.83 (0.19)

Daily norm Log MFDR 5th% 22 0.82 (0.25) 0.77 (0.28) 0.83 (0.15) 0.78 (0.30) 0.85 (0.23) 0.81 (0.25) 0.82 (0.22)

Daily norm. SQ 5th% 21 0.82 (0.25) 0.77 (0.28) 0.83 (0.15) 0.78 (0.30) 0.85 (0.22) 0.81 (0.25) 0.81 (0.22)

Daily norm. HRF stand. dev. 20 0.82 (0.27) 0.78 (0.28) 0.83 (0.15) 0.79 (0.30) 0.85 (0.23) 0.81 (0.25) 0.82 (0.22)

Daily norm. NAQ mean 19 0.82 (0.27) 0.78 (0.28) 0.84 (0.15) 0.79 (0.30) 0.85 (0.22) 0.79 (0.27) 0.82 (0.22)

Daily norm. H1-H2 stand. dev. 18 0.82 (0.26) 0.77 (0.28) 0.83 (0.15) 0.78 (0.30) 0.85 (0.22) 0.80 (0.25) 0.81 (0.22)

Daily norm. HRF skew 17 0.79 (0.24) 0.74 (0.28) 0.80 (0.14) 0.75 (0.30) 0.81 (0.23) 0.76 (0.26) 0.78 (0.21)

OQ 5th% 16 0.77 (0.24) 0.71 (0.30) 0.79 (0.15) 0.73 (0.33) 0.80 (0.26) 0.74 (0.26) 0.77 (0.21)

Daily norm. Log ACFL stand. dev. 15 0.77 (0.24) 0.71 (0.30) 0.79 (0.14) 0.73 (0.32) 0.80 (0.25) 0.77 (0.24) 0.77 (0.21)

OQ mean 14 0.78 (0.24) 0.72 (0.29) 0.79 (0.14) 0.73 (0.32) 0.80 (0.26) 0.77 (0.24) 0.78 (0.21)

MFDR’ 95th% 13 0.78 (0.24) 0.71 (0.29) 0.79 (0.14) 0.72 (0.32) 0.81 (0.25) 0.78 (0.21) 0.77 (0.21)

SQ stand. dev. 12 0.78 (0.24) 0.71 (0.30) 0.79 (0.14) 0.72 (0.33) 0.82 (0.25) 0.77 (0.24) 0.77 (0.21)

SQ 5th% 11 0.78 (0.24) 0.73 (0.27) 0.79 (0.14) 0.75 (0.30) 0.79 (0.26) 0.76 (0.24) 0.78 (0.21)

Daily norm. Log ACFL skew 10 0.78 (0.25) 0.73 (0.28) 0.79 (0.15) 0.75 (0.31) 0.79 (0.27) 0.76 (0.24) 0.78 (0.21)

Daily norm. HRF 5th% 9 0.75 (0.23) 0.71 (0.25) 0.75 (0.13) 0.74 (0.28) 0.72 (0.30) 0.73 (0.20) 0.75 (0.19)

H1-H2 stand. dev. 8 0.74 (0.22) 0.69 (0.26) 0.75 (0.13) 0.72 (0.29) 0.72 (0.29) 0.73 (0.20) 0.73 (0.19)

Log ACFL stand. dev. 7 0.68 (0.22) 0.62 (0.29) 0.71 (0.12) 0.66 (0.33) 0.69 (0.28) 0.63 (0.26) 0.66 (0.23)

HRF skew 6 0.69 (0.22) 0.63 (0.29) 0.71 (0.12) 0.67 (0.32) 0.68 (0.29) 0.63 (0.26) 0.67 (0.23)

NAQ mean 5 0.68 (0.23) 0.63 (0.29) 0.71 (0.12) 0.68 (0.34) 0.68 (0.29) 0.63 (0.26) 0.68 (0.24)

Log ACFL skew 4 0.66 (0.24) 0.63 (0.27) 0.70 (0.13) 0.67 (0.32) 0.67 (0.33) 0.64 (0.25) 0.66 (0.23)

HRF 5th% 3 0.63 (0.30) 0.64 (0.29) 0.71 (0.15) 0.69 (0.34) 0.67 (0.36) 0.66 (0.37) 0.74 (0.22)

Daily norm. H1-H2 95th% 2 0.63 (0.33) 0.64 (0.33) 0.74 (0.16) 0.67 (0.38) 0.76 (0.34) 0.69 (0.32) 0.70 (0.29)

H1-H2 95th% 1 0.58 (0.22) 0.53 (0.30) 0.65 (0.10) 0.58 (0.37) 0.64 (0.35) 0.58 (0.26) 0.64 (0.16)

https://doi.org/10.1371/journal.pone.0209017.t006
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subjects with PVH and normal controls [16], [3]. The improvement in performance using

IBIF-based features, in combination with the capability of such features to provide better

insights into pathophysiological mechanisms, supports the potential that this approach has to

improve the clinical assessment of hyperfunctional voice disorders. Future research could

Fig 8. F-score distributions from Table 5. From all 26 features (rightmost box plot) to only one feature (H1-H2 95th%, leftmost box plot).

https://doi.org/10.1371/journal.pone.0209017.g008

Fig 9. Odds ratio association with phonotraumatic subjects.

https://doi.org/10.1371/journal.pone.0209017.g009
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explore the performance of IBIF-based features with other pathologies, such as unilateral vocal

fold paralysis [11].

There are several limitations to the current study which may serve to constrain any addition

improvement in classification performance. First, even though the use of univariate statistics

over 5-minute windows showed good performance, such an approach could smooth out fast

variations in some features that may provide important information related to pathophysiol-

ogy. Moreover, discarding silence periods from the analysis windows might be eliminating

information that could further differentiate normal and pathological vocal function by indicat-

ing relative differences in non-vocal (non-phonatory) recovery times.

In addition, determination of the IBIF Q parameters is based on accurate estimates of the

glottal volume velocity waveform obtained by inverse filtering the oral airflow recorded in the

laboratory during sustained vowel production. However, the process of inverse filtering to esti-

mate the glottal flow is still a topic of research and any method will have a degree of error (see

[7], [8] for general discussions). The inverse filtering process is particularly challenging when

applied to pathological female voices, as was done in this study. The process was made even

more demanding by that fact that many subjects in this study were singers who regularly

reached very high pitches (above 400 Hz) daily during practice that tend to cause the inverse

filtering and IBIF methods to fail. In addition, every feature has an associated uncertainty from

the accelerometer measurements, and the task becomes difficult when we combine multiple

estimated features (e.g., for the SPL-normalized measures of ACFL’ and MFDR’) since those

errors may propagate and increase the total uncertainty in an ambulatory setting.

Finally, the task of differentiating normal and pathological subjects was made more difficult

because the patients with PVH in this study were classified as having only mild-to-moderate

voice disorders. We know from clinical experience that such patients can display periods of

seemingly normal vocal function, and, conversely, normal speakers can display transient epi-

sodes of VH that do not develop into chronic conditions. Future studies could attempt to

address these issues by developing estimates of uncertainty for the extracted IBIF parameters

and using other analysis methods such as unsupervised learning to better pinpoint specific seg-

ments of abnormal vocal function, as has been initially demonstrated in [45]. In addition,

efforts to incorporate aerodynamic features in the framework of ambulatory biofeedback to

improve voice therapy are currently underway [46].

Conclusion

An ambulatory approach that correctly identifies the instance, duration, and type of incorrect

vocal behaviors during daily activities has the capability to provide transformative advance-

ments for the assessment, monitoring, and treatment of vocal hyperfunction. In this study, we

further develop prior ambulatory efforts, by improving the ability to discriminate pathological

voices from healthy ones. Using an impedance-based inverse filtering scheme to estimate the

unsteady glottal airflow component from a neck-surface accelerometer and a smartphone plat-

form, we obtain and quantify, for the first time in an ambulatory assessment and a comprehen-

sive framework, aerodynamic features that have been shown to be physiologically relevant for

vocal hyperfunction in recent laboratory settings and computational studies. Prior efforts to

obtain aerodynamic features from neck surface acceleration were limited to sustained vowels

[18] and simple proof of concept examples [3]. The result of our comprehensive quantitative

analysis show that these ambulatory glottal airflow measures can be successfully used to differ-

entiate between normal vocal function and pathophysiological mechanisms associated with

phonotraumatic vocal hyperunction, and outperform state-of-the-art reports using sound

pressure level, fundamental frequency, and related vocal doses. Due to its physiological
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relevance, the proposed aerodynamic ambulatory approach has already potential to improve

the clinical assessment of hyperfunctional voice disorders, including the evaluation of treat-

ment outcomes. Thus, future efforts will be focused on further relating ambulatory aerody-

namic features to vocal therapy and real-time biofeedback.

Acknowledgments

This research was supported by the National Institute on Deafness and Other Communication

Disorders of the National Institutes of Health under awards number R33DC011588 and

P50DC015446, as well as CONICYT grants FONDECYT 1151077, BASAL FB0008, and CON-

ICYT doctoral scholarship 21161606. Additional support was obtained from the Voice Health
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