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Abstract

Since the mid 1970s, cancer has been described as a process of Darwinian evolu-

tion, with somatic cellular selection and evolution being the fundamental pro-

cesses leading to malignancy and its many manifestations (neoangiogenesis,

evasion of the immune system, metastasis, and resistance to therapies). Histori-

cally, little attention has been placed on applications of evolutionary biology to

understanding and controlling neoplastic progression and to prevent therapeutic

failures. This is now beginning to change, and there is a growing international

interest in the interface between cancer and evolutionary biology. The objective

of this introduction is first to describe the basic ideas and concepts linking evolu-

tionary biology to cancer. We then present four major fronts where the evolu-

tionary perspective is most developed, namely laboratory and clinical models,

mathematical models, databases, and techniques and assays. Finally, we discuss sev-

eral of the most promising challenges and future prospects in this interdisciplin-

ary research direction in the war against cancer.
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Introduction

In 1971, the US president Richard Nixon declared the now

famous ‘war on cancer’, predicting victory within 5 years.

Forty years later, cancer still accounts for about one-

quarter of human deaths in wealthy countries and about

one-eighth worldwide (World Health Organization 2008).

Despite significant progress, treatments have not met

expectations and cancer research is now at a crossroad,

needing new ideas, major innovation, and new and unprec-

edented transdisciplinary teams of scientists (Drake 2011).

Although the theory of cancer initiation and progression is

deeply rooted in evolutionary and ecological concepts

(Cairns 1975; Nowell 1976), many promising opportunities

for the application of evolutionary biology to oncology

remain unexplored. To what extent does evolutionary the-

ory provide a useful framework for understanding and pre-

dicting cancer progression in laboratory and clinical

settings, and is it more applicable to certain cancers rather

than others? What level of mathematical sophistication is

necessary to investigate observations and will this require

stochastic components, meaning less predictability? Can we

alter the competition between cancerous and healthy cells

by boosting the fitness of benign cells? What are the selec-

tive effects of therapies?

The important challenges in cancer research are to

understand susceptibility, emergence, and progression, and

to predict treatment outcomes, including the major prob-

lem of relapse, given both limited individual-level informa-

tion and data from past clinical cases and laboratory

studies. Whereas enormous progress has been made in

understanding cell-autonomous molecular mechanisms of

oncogenic transformation, our vision of tumor–host inter-
actions is still in its infancy. Specifically, we know that the

vast majority of cells that have initiated an oncogenic trans-

formation will be eliminated by the host, but we lack the

capacity to predict which will escape the surveillance mech-

anisms (Folkman and Kalluri 2004; Bissell and Hines

2011). Our increased capacity to detect precancerous

lesions and circulating or dormant tumor cells is, thus, dif-

ficult to put into practice. Indeed, as exemplified by a

recent controversy regarding early diagnosis of prostate

cancer (Cooperberg et al. 2011; see also Epstein et al. 2001

for breast cancer), a strategy to aggressively target all pre-

cancerous or dormant cancerous cells carries the risk of

overtreatment, when active surveillance may be a safer and

acceptable alternative. Thus, while we need further

advances in the description, classification, and understand-

ing of molecular mechanisms of cancer, we must strive to

meet additional challenges, such as, for instance, our capac-

ity to predict and model the interrelationships between the

tumor and its environment at different scales (Bissell and

Hines 2011).

While defining the probability of progression of early

lesions to full-blown cancer is a major challenge in cancer

research, it must be emphasized that today most patients

are diagnosed when their disease is at an advanced, meta-

static stage (reviewed in Valastyan and Weinberg 2011).

From the clinical standpoint, it is thus of the utmost

importance to develop efficient therapies to fight tumor cell

proliferation with minimal side effects and to either man-

age or prevent the emergence of resistance in neoplastic cell

populations. In this respect, ecological and evolutionary

approaches have contributed with mathematical models

(Gatenby and Vincent 2003; Komarova and Wodarz 2005;

Foo and Michor 2009; Gatenby et al. 2009; Cunningham

et al. 2011; Lorz et al. in press; Hochberg et al. this

volume) yielding predictions such as (i) evolving neo-

plasms and microenvironments may thwart cell-targeted

therapies (Gillies et al. 2012), (ii) multiple therapeutic tar-

gets are less likely to result in resistance than monothera-

pies (Komarova and Wodarz 2005; Lorz et al. in press),

and (iii) developing preventive therapies with minimal side

effects may control or eliminate incipient lesions and neo-

plasms, and prevent the emergence of chemoresistant lin-

eages (Hochberg et al. this volume).

The objective of this special issue is to continue the con-

struction of a broad base for a more balanced approach to

cancer research, by assembling some of the latest, most

exciting results, syntheses, and perspectives relating to the

action of natural selection and drift in determining evolu-

tionary dynamics and emergent patterns in cancer. Emer-

gent patterns include, but are not limited to, interspecific

differences in cancer susceptibility and tumor suppression,

cancer initiation, and progression, and cancer therapies.

Evolutionary biology in the study of cancer

An important conceptual breakthrough in understanding

cancer lies in Darwinian and ecological theories: cancer is a

disease of opportunity, associated with clonal evolution,

expansion, and competition within the body (Cahill et al.

1999; Merlo et al. 2006; Greaves and Maley 2012). Specifi-

cally, somatic cellular selection and evolution are the funda-

mental processes leading to malignancy, metastasis, and

resistance to therapies, with the contribution of cancer stem

cells as the progenitors of these more differentiated cell types

(Shipitsin and Polyak 2008; Greaves this volume). However,

it is not known whether patients relapse because cancer stem

cells are intrinsically resistant to therapy, and/or because

therapy selects for resistance or, most likely, both. An addi-

tional complication is the tremendous plasticity of cancer

cells and their ability to acquire stem cell characteristics

through deregulated expression of just a few genes (Takah-

ashi and Yamanaka 2006; Mani et al. 2008; Morel et al.

2008). This phenomenon notwithstanding, tumors can be
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viewed as collections of individuals (cells) that accumulate

genetic and epigenetic changes, and through their interac-

tions with the environment (selection), adaptively evolve.

Examples include stressful microenvironments affecting the

evolution of the invasive phenotypes (Lee et al. 2011), and

the evolution of resistance to toxicity during tumor growth,

providing a competitive advantage with respect to wild-type

cells (Gatenby et al. 2006; Vineis and Berwick 2006). Epige-

netic changes have been recognized as neoplasm markers

since the 1980s (Romanov and Vanyushin 1981); however,

their role is still elusive. Some see them as a byproduct of

deregulated gene expression, others as initial event in onco-

genesis. Only very recently, epimutations were included in

mathematical models that attempt to describe the evolution

of tumors (Iwami et al. 2012). Transient increases in epige-

netic mutations as a result of stressful environments could

provide a solution to the conundrum that rapid evolution

of somatic cells into neoplasms would require very high

mutation rates, placing them at risk of extinction due to

excessive levels of (epi)genetic instability (Cahill et al. 1999;

Solé and Deisboeck 2004).

Based largely on cytological, molecular, and genetic stud-

ies, researchers have recently argued that cancers should be

viewed both as genetically and phenotypically heteroge-

neous populations within individuals (Marusyk and Polyak

2010) and as different ‘species’ between individuals (Merlo

and Maley 2010; Gatenby 2011). This variability suggests

that stochastic and complex interactive forces reduce our

ability to make generalizations about different stages in

carcinogenesis. Mechanisms that could generate this vari-

ability are mutations, chromosomal damage, including cat-

astrophic events such as recently described chromotripsis

(Stephens et al. 2011), deletions and duplications, heritable

changes in gene expression, DNA methylation, and changes

in protein conformation (Maley et al. 2006). Interestingly,

recent sequence data from a large number of different

tumor types have revealed the frequent occurrence of

events affecting global control of cellular functions, for

instance, changes in chromatin modifications or RNA pro-

cessing (recently reviewed in the study by Ma et al. 2012),

likely to impact the rate of tumor evolution. Tarafa et al.

(2003) showed that chromosomal instability arises early in

cancer progression, and that major genetic changes tend to

occur in one of a few particular orders, meaning that

some level of predictability in key events may be possible

for some cancers. Progress in phylogenetic reconstruction

(Gerlinger et al. 2012), inference methods (Riester et al.

2010), agent based modelling (Sprouffske et al. 2011),

and whole genome sequencing (Parmigiani et al. 2009)

will be key to untangling and reconstructing somatic

evolutionary pathways. A major unresolved question,

therefore, is whether a single overarching framework can

incorporate observed variability and make cancer a more

predictable phenomenon both at individual and popula-

tion levels.

Evolutionary and ecological theory has already proven

useful in our understanding of cancer, but many basic parts

of the puzzle are missing. We need to know how variation

is created and selected for, and the adaptive consequences

of interactions between environments and genes. We also

need to understand the relative roles of stem cells and

differentiated cells in cancer dynamics (Visvader and Lind-

eman 2008; Greaves this volume), taking into account the

cellular plasticity that might render the distinction between

the two largely artificial. Perhaps, the greatest challenge is

to understand the relevance of processes occurring at one

scale for patterns at another (Tomlinson and Bodmer

1999). For example, it is increasingly recognized that many

cancers are associated with chronic inflammation, aging,

and changes in local microenvironments, and in tissue

structure and architecture (Polyak et al. 2009; Bissell and

Hines 2011; Gatenby 2011). Are these phenomena causes

and/or consequences of genetic instability and progression,

or less interestingly, correlations without demonstrable

causation?

Evaluating current theories and advancing new hypothe-

ses will require use of the latest techniques and the develop-

ment of new approaches. Four major fronts have proved

indispensable to cancer research.

Laboratory and clinical models

There is ample evidence of intratumor clonal heterogeneity

in human cancer (recently reviewed in Marusyk et al.

2012), with many examples from hematopoietic malignan-

cies and from solid tumors. There are ongoing efforts

worldwide to provide a comprehensive description of

genomic, transcriptomic, and epigenomic profiles of a large

number of tumors (International Cancer Genome Consor-

tium 2010). Whereas such global analyses will undoubtedly

lead to a better understanding of the complexity of tumor

cell populations, there is also a need for model systems that

are simpler to analyze and possible to manipulate. The sim-

plest of such models consists of analyzing two or more

genetically distinct tumor clones grown in coculture under

different environmental constraints. More ambitiously, the

tumor microenvironment can be mimicked in culture, for

example, by constructing three-dimensional models with

controlled physicochemical characteristics of the extracellu-

lar matrix (reviewed in Egeblad et al. 2010). Finally, in vivo

animal models are particularly attractive for studies of

tumor growth and evolution. For example, mammary

tumors inoculated into cleared fat pads (Mani et al. 2008;

Fridriksdottir et al. 2011) or hepatic tumorigenesis follow-

ing intrasplenic injection of transformed cells (Zender et al.

2006) have already provided a wealth of information. Such
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models carry rich opportunities for studying complex

interactions between cell clones.

While cellular competition is the issue most often

addressed, other types of interactions, with possible major

clinical impacts have also been observed. For example, it

has recently been reported that an apoptosis proficient

clone provides an advantage to a tumor relapse through

stimulation of growth via paracrine signaling from cells

dying after radiation therapy (Huang et al. 2011). From an

evolutionary perspective, however, an additional complica-

tion comes from a recent finding that subtle differences in

the precise mechanism of programmed cell death give rise

to diametrically opposed consequences of the host immune

reaction toward the dying cells (Green et al. 2009). Under-

standing how selection drives the evolution of complex

interactions between cell clones remains a challenging

question.

Mathematical models

Mathematical models are important tools for characteriz-

ing the complexity of cancerogenesis and the underlying

role of evolutionary processes (Foo and Leder this volume).

There are various ways for models to include the rich and

puzzling biological diversity that may be observed in tumor

spatial and temporal heterogeneity, and whenever possible

to identify evolutionary trends, aiming at prediction and

control, in particular, for practical therapeutic purposes in

oncology.

Nevertheless, computer simulations are never proofs,

even though they can give hints to what can actually be

proven by mathematics. The simplest mathematical models

aim at describing a well-characterized situation by sets of

ordinary differential equations or probabilistic branching

processes (Iwasa et al. 2006; Foo and Michor 2009; Toma-

setti and Levy 2010) and yield answers to important prob-

lems such as the prediction of drug resistance. As regards

more physiologically detailed models designed to predict

cell population behavior, there are two main streams of

models: agent-based stochastic models and spatially or

physiologically structured continuous deterministic mod-

els. Agent-based models (Anderson et al. 2006) include

stochastic rules that decide how a whole cell population

passes from stage i to stage i + 1, by taking into account all

individual cell behaviors. Spatially or physiologically struc-

tured continuous deterministic population models are

based on partial differential or integrodifferential equations

and consider the population as a whole, structured accord-

ing to a continuous variable that can be space (Frieboes

et al. 2006, 2009), but also molecular content in a protein,

or level of expression of a phenotypic trait (Lorz et al.

2012), etc., that has been selected as relevant to describe

population heterogeneity. Continuous deterministic

population models are not limited by computer perfor-

mance, which is not the case for agent-based models; con-

versely, agent-based models are more flexible than simpler

deterministic models and may take into account virtually

any local biological phenomenon. Comparisons between

the two approaches have been made (Byrne and Drasdo

2009; Osborne et al. 2010), pointing out their respective

advantages and drawbacks.

Models of these different types have simulated a range of

the many facets of tumor biology, for example, stem cell

dynamics (van Leeuwen et al. 2007; Michor 2008; Sottoriva

et al. 2011), the stochastic emergence of resistance during

clonal expansion (Iwasa et al. 2006), the numerical dynam-

ics of differentiated cell types (Dingli et al. 2007), metasta-

sis (Gatenby and Vincent 2003; Frieboes et al. 2006;

Michor et al. 2006), and therapeutic outcomes (Michor

et al. 2005; Frieboes et al. 2009; Gatenby et al. 2009). These

models have been successful in evaluating hypothetical

scenarios in adaptation to different microenvironmental

challenges, such as hypoxia and acidosis (Anderson et al.

2006; Gatenby et al. 2006), and to chemotherapy (Michor

et al. 2005; Foo and Michor 2009; Cunningham et al.

2011). There has been a recent surge in models integrating

observations and experimental data (Frieboes et al. 2009;

Bozic et al. 2010; Byrne 2010) and next-generation models

capable of simulating highly detailed somatic genetic events

(Stephan-Otto Attolini et al. 2010; Sprouffske et al. 2011).

Databases

Numerous international and national databases are now

available online relating to several socioeconomic and

health topics, including statistics on cancer incidence and

mortality worldwide, or cancer mutations and copy num-

ber variation (CNV; International Agency for Research on

Cancer (IARC GLOBOCAN project, 2008, http://globocan.

iarc.fr/; http://www.biologie.uni-hamburg.de/b-online/

library/genomeweb/GenomeWeb/human-gen-db-mutation.

html; http://gwas.biosciencedbc.jp/cgi-bin/cnvdb/cnv_top.

cgi). Such databases provide a unique opportunity to con-

duct comparative analyses at the largest scale to explore or

validate various hypotheses on cancer origin and/or

dynamics. For instance, macroecological approaches have

been recently employed to study the infectious causation of

certain cancers (Thomas et al. 2011, 2012a; Vittecoq et al.

2012) or to explore the evolutionary links between malig-

nancies and birth weight (Thomas et al. 2012b).

Techniques and assays

Techniques originally used to reconstruct the evolutionary

history of species have been applied to tracing the somatic

lineages of healthy and cancerous cells within an individual.

© 2012 The Authors. Published by Blackwell Publishing Ltd 6 (2013) 1–104
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State of the art genetic, molecular, cellular, and biochemical

technologies have been applied to study tumor clonality,

plasticity and, evolution. This is in fact a major issue for

tumor characterization, due to problems of representative

sampling (Marusyk and Polyak 2010; Navin et al. 2011).

Currently, major progress in tumor characterization comes

from the generalized use of global genomic and postge-

nomic analyses (next-generation sequencing, transcripto-

mics, proteomics). Two complementary strategies are

currently being developed to address tumor heterogeneity:

multiple comparisons of single cells from macrodissected

tumors (Navin et al. 2010, 2011) and the development of

analytical methods to infer cell populations from unmixed

tumor-wide gene expression or SNP data (Subramanian

et al. 2012). While these technologies have become widely

available and technically reliable, their usefulness is largely

determined by careful definition of biological samples and

models under study. Apart from cancer cell lines, this

research relies on human fresh tumor samples being frozen

and stored in highly specialized biorepositories. To be use-

ful, samples need to be linked with clinical data, and this is

a major challenge given the complexity of different ethical

laws in different countries (Riegman and van Veen 2011).

Challenges and future prospects

Ecology and evolutionary biology as scientific fields have,

until now, developed in relative isolation from the health

sciences. This is unfortunate because links between these

areas have the potential to reveal new perspectives and ave-

nues for fundamental research (Daoust et al., Khalid et al.

this volume). Evolutionary processes and their relevance to

the biology and epidemiology of disease also hold the

promise of instructing on more applied health issues, offer-

ing scientific reasons for why certain medical approaches

are more successful than others. Understanding basic scien-

tific processes could be translated into huge progress for

therapies. For instance, understanding the proliferative and

survival effects due to chimeric tyrosine kinase (bcr-abl) in

Chronic Myelogenous Leukemia has led to a targeted ther-

apy, transforming the prognosis of this lethal disease. Simi-

larly, systematic screening for acquisition of further bcr-abl

mutations permitted to anticipate escape of subclones and

rapidly administer second generation TK inhibitors, thus

restoring drug sensitivity (Gibbons et al. 2012). The tradi-

tional separation between subdisciplines is a fundamental

limitation that needs to be overcome if complex processes,

like oncogenesis, are to be understood. Below, we present

some of the most important current challenges amenable

to ecological and evolutionary approaches to understand

major fundamental and therapeutic aspects of cancer.

Recent reviews on these and related topics can be found in

the studies by Merlo et al. (2006), Pienta et al. (2008),

Gerlinger and Swanton (2010), Caulin and Maley (2011),

Greaves and Maley (2012), Aktipis et al. (2011).

Ecology: infectious agents and cancer

The World Health Organization currently estimates that

20% of cancers are caused by infectious agents, with special

emphasis on viruses and bacteria. Identifying infectious

agents that directly or indirectly contribute to oncogenesis

remains a priority in the war on cancer for an obvious rea-

son: insofar as infectious diseases are preventable or treat-

able, cancers associated with infection could be preventable

as well (De Martel and Franceschi 2009; Ewald and Ewald

this volume). Persistent infections may promote cancer

because long-term host defensive responses induce inflam-

mation that subsequently increases mutation rates (Fitzpa-

trick 2001). In addition, intracellular pathogens may

manipulate their host cells in ways that disrupt traditional

cell barriers to cancer, allowing oncogenic mutations to

accumulate through time. Current evidence links Epstein–
Barr virus, Hepatitis B and C viruses, the bacteria Helicob-

acter pylori, human papilloma virus, and the trematodes

Schistosoma haematobium, S. japonicum, and S. mansoni to

cancers of the lymph nodes, liver, stomach, cervix, bladder,

colon, and liver, respectively. The complete list of onco-

genic pathogens is probably far from being fully established

(Ewald 2009; zur Hausen 2009; Dapito et al. 2012), and

certain scientists speculate that most cancers may have an

infectious origin (Ewald 2009).

Evolution: selection for cancer suppression at the

organism level

Why are some species and/or individuals more at risk than

others to particular cancers? Answering this question neces-

sitates we understand the ecological and evolutionary bases

of cancer vulnerabilities. Comparing cancer incidence

among wildlife species is currently considered a promising

research direction to highlight the natural defenses against

cancers retained by natural selection, and to ultimately

improve cancer prevention in humans (Caulin and Maley

2011). This requires that we resolve Peto’s paradox (Peto

et al. 1975): the lack of a correlation between body size (or

longevity) and cancer across species (Roche et al. this vol-

ume; Nunney, this volume). If each dividing cell in a multi-

cellular organism has the same probability of initiating a

malignant neoplasm, then all else being equal, the more

cells an organism has, the greater the chance of a cancer

emerging. Moreover, transitions to malignancy are

expected to increase with the number of cell divisions –
that is with organism lifespan. Numerous studies have

shown correlations between longevity and body size,

making Peto’s paradox all the more difficult to resolve

© 2012 The Authors. Published by Blackwell Publishing Ltd 6 (2013) 1–10 5
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(Caulin and Maley 2011). How can large, long-lived

organisms avoid the emergence of cancer or overcome its

progression should it emerge? Few empirical studies have

addressed this question (Seluanov et al. 2008; Gorbunova

and Seluanov 2009). There is also a crucial need to develop

mathematical models to explore theoretically how cancer

vulnerability among wildlife species could have been

shaped by natural selection. The question is by far more

complex than just a problem of body size and longevity –
instead it undoubtedly also depends on the relative impor-

tance to fitness of cancer, infectious and parasitic diseases,

predation, and adverse environmental conditions (Roche

et al. in press). Considering these wildlife species within

their ecosystem could be the missing ingredient to resolve

Peto’s paradox and give critical insights into mechanisms

of cancer resistance. Besides the possible application for

improving cancer prevention for humans, modeling

approaches are a promising way forward for understanding

the impact of cancer in wildlife conservation.

Recent advances have also highlighted that cancer-caus-

ing genes can be maintained in populations through vari-

ous processes. For instance, as for genes reducing survival

in general, natural selection is unlikely to strongly counter-

select oncogenes when their negative effects occur after

reproduction (Frank 2004, 2005; Balducci and Ershler

2005). Additionally, antagonistic pleiotropy might be an

important component in the evolutionary maintenance of

oncogenes (for a review, see Crespi and Summers 2006).

Certain genes indeed have beneficial effects in early life,

when natural selection is strong, but harmful at later ages,

when the effect of selection on evolutionary adaptation

weakens. In the context of cancer, this phenomenon -

antagonistic pleiotropy - has been found in animal models,

perhaps the most stunning case being Xiphophorus fish,

where late life melanoma-promoting oncogene alleles are

associated with early life advantages (Fernandez and Bow-

ser 2010). There is increasing evidence that some human

cancers occurring at later ages may result from negative

trade-offs with early age adaptations (Summers and Crespi

2008, 2010; Smith et al. 2012), such as, for instance, high

birth weight – a life-history trait that has a genetic basis

and is also associated with fitness benefits early in life (e.g.,

survival until maturity, Thomas et al. 2012b; Smith et al.

2012).

Evolution: within-organism selection for cancer cells

Given mounting evidence that neoplasms are characterized

by increased mutation rates, chromosomal anomalies, and

epigenetic alterations, applying evolutionary thinking

to study the proliferation of cancerous cells is crucial

to understanding neoplastic progression. The fitness of

neoplastic cells is shaped by various factors, ranging from

the quantity and the quality of genetic and epigenetic alter-

ations that are beneficial to a neoplastic clone and also by

the interactions with cells and other factors from the local

environment. One of the most promising models for

understanding the role of natural selection in cancer pro-

gression is myeloid malignancies. There may be less genetic

variation and more likelihood for successful treatments

leading to eradication, or at least cancer management. Of

the many mutations that characterize myeloid malignan-

cies, some (TET2, ASXL1) can initiate a preleukemic clone,

whereas others (MPL, JAK2) are phenotypic lesions that

trigger the overt malignant disease (Vainchenker et al.

2011). A preleukemic state may also be the consequence of

germ-line mutations. Thus two preleukemic contexts,

either clonal or polyclonal, driven by somatic or germ-line

lesions, may exist. The degree of overlap between them is

difficult to assess, and initiating events may have subtle

phenotypic consequences for years or decades, before the

actual onset of a full-blown malignancy.

Evolution in solid tumors can differ substantially from

that observed in myeloid cancers. Recent studies have ana-

lyzed the genomic landscape of human colorectal cancers

and identified ~80 nonsilent mutations in individual

tumors, among which <15 were likely to be responsible for

driving the initiation, progression, or maintenance of the

tumor (Sjöblom et al. 2006; Wood et al. 2007; Leary et al.

2008; Cancer Genome Atlas Network 2012). These seminal

studies concluded that although alterations in Wnt, K-Ras,

and p53 pathways remain pivotal to tumor formation, a

large number of mutations – each associated with a small

fitness advantage – are likely to be involved in tumor pro-

gression. Future studies will need to consider several addi-

tional, important aspects of evolution in carcinogenesis,

such as (i) When do selected ‘driver’ mutations (Bozic

et al. 2010, Reiter et al. this volume) occur during tumor

formation? (ii) What are the associated qualitative and

quantitative changes in gene expression? (iii) Which genes/

pathways are selected or counter-selected for during tumor

development?

A major challenge in understanding cancerogenesis is

relating process to pattern in malignant and preneoplastic

lesions to untangle the dynamics of cell–cell competition.

This will involve predicting how the host and the grow-

ing neoplasm, which change in time and spatially, affect

signaling networks and have emergent impacts on the

demography and evolution of progressing cancerous

growth. This phenomenon is driven by expression of cer-

tain oncogenes, such as Myc, or tumor suppressors. This

results in overgrowth or in active killing (induction of

apoptosis) of ‘loser’ clone cells by the ‘winner’ clone and

thus evolution. While the role of ‘active competition’ in

tumorigenesis has yet to be demonstrated formally, it has

been confirmed both in the context of mammalian tissue
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regeneration and in coculture of mammary carcinoma

cell lines (Oertel et al. 2006; Tamori et al. 2010). Specifi-

cally, early work on breast epithelial cancer cell lines

derived from a single spontaneous tumor arising in a

Balb/C mouse demonstrated that the ‘winner’ phenotype

of two related cell lines is independent of their intrinsic

proliferative capacity when cultured alone (Miller et al.

1988). These results were obtained before our current

understanding of apoptosis and of the role of active

cellular competition. They merit reinvestigation in the

context of evolutionary processes.

Evolution: selection for therapeutic resistance during

treatment

Clonal evolution not only selects for increased proliferation

and survival, but is also instrumental in leading to invasion,

metastasis, and therapeutic resistance. Understanding the

costs and benefits of cellular resistance to therapeutic envi-

ronments will constitute a major step forward in improving

treatment outcomes (Martinez-Quintanilla et al. 2009).

A hallmark of myeloid cancers is the ability of the malig-

nant clone to evolve into multiple, frequently more aggres-

sive subclones, as a result of either the natural history of

the disease or the selective pressure of chemotherapy. In

acute myeloid leukemia AML, several pathways involving

the control of proliferation, apoptosis, and chemoresistance

can participate in clonal evolution. Modifications in prolif-

eration advantage have been related to ID1, a common tar-

get of activated tyrosine kinases in chronic and acute

myeloid malignancies (Tang et al. 2009) while leukemic

stem cells express high levels of various ABC proteins

(ABCB1, ABCG2, ABCG1) that protect them from xenobi-

otics (Marzac et al. 2011). Other promising directions

exist. For instance, cyclin-dependent kinases (CDK) are a

new class of therapeutic targets for cancer cells, because

they are required for cell proliferation and are efficiently

inhibited by specific pharmacological agents (Hanahan and

Weinberg 2011). Most importantly, unlike proliferation

arrest induced by DNA damage (irradiation, genotoxic

agents), which may stimulate cancer progression, the cyto-

static effect of CDK inhibitors is direct and, a priori, free of

such undesired side effects. However, as with all chemo-

therapeutic agents, the development of clinical resistance to

CDK inhibitors is likely, and it would be necessary to inves-

tigate the evolution of this resistance. This is sketched in a

theoretical way in the study by Lorz et al. (2012), where it

is shown (by using an adaptive dynamic cell population

model designed to study the evolution of drug resistance)

that it is theoretically possible to overcome resistance in

cancer cell populations (and to eradicate them with

minimal damage to healthy cell populations) by using a

combination of cytotoxic and cytostatic drugs.

Concluding remarks

Ecology and evolution provide a framework for predicting

cancer emergence, progression, and therapies. Phenotypic

evolution of cancers will depend on the complexities of

gene expression (e.g., pleiotropy and epistasis), epigenetic

alterations, and cellular plasticity, all of which interact with

the microenvironment. We can advance toward a predic-

tive science for cancer if we can characterize and measure

(i) demographic parameters (birth and death rates), (ii)

potential (epi)genetic states, their relative fitnesses, and

costs in different microenvironments, and their sequence

of probable appearance, (iii) cellular and tissue functions

(e.g., potential for motility and therefore metastasis), and

(iv) genetic instabilities (aneuploidy, mutation rates). His-

torically, little attention has been focused on applications

of evolutionary biology to understand and control neoplas-

tic progression and to prevent therapeutic failures (Aktipis

et al. 2011). We believe that an accurate evolutionary

approach should unite and explain, rather than replace, the

insights into mechanistic nonevolutionary studies. With

this goal in mind, we are convinced that the topic ‘evolu-

tion and cancer’ is one of the most exciting and challenging

research directions in the effort to understand multicellular

organization and regulation, as well as in applying insights

gained in the ‘war against cancer’.
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Sjöblom, T., S. Jones, L. D. Wood, D. W. Parsons, J. Lin, T. D. Barber,

D. Mandelker et al. 2006. The consensus coding sequences of human

breast and colorectal cancers. Science 314:268–274.

Smith, K. R., H. A. Hanson, G. P. Mineau, and S. S. Buys. 2012. Effects

of BRCA1 and BRCA2 mutations on female fertility. Proceedings of

the Royal Society of London Series B-Biological Sciences 279:2926–

2929.
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