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Abstract

Magnetoencephalography (MEG) is a functional neuroimaging tool that records the magnetic 

fields induced by neuronal activity; however, signal from non-neuronal sources can corrupt 

the data. Eye-blinks, saccades, and cardiac activity are three of the most common sources 

of non-neuronal artifacts. They can be measured by affixing eye proximal electrodes, as in 

electrooculography (EOG), and chest electrodes, as in electrocardiography (ECG), however this 

complicates imaging setup, decreases patient comfort, and can induce further artifacts from 

movement. This work proposes an EOG- and ECG-free approach to identify eye-blinks, saccades, 

and cardiac activity signals for automated artifact suppression.

The contribution of this work is three-fold. First, using a data driven, multivariate decomposition 

approach based on Independent Component Analysis (ICA), a highly accurate artifact classifier 

is constructed as an amalgam of deep 1-D and 2-D Convolutional Neural Networks (CNNs) to 

automate the identification and removal of ubiquitous whole brain artifacts including eye-blink, 
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saccade, and cardiac artifacts. The specific architecture of this network is optimized through 

an unbiased, computer-based hyperparameter random search. Second, visualization methods are 

applied to the learned abstraction to reveal what features the model uses and to bolster user 

confidence in the model’s training and potential for generalization. Finally, the model is trained 

and tested on both resting-state and task MEG data from 217 subjects, and achieves a new 

state-of-the-art in artifact detection accuracy of 98.95% including 96.74% sensitivity and 99.34% 

specificity on the held out test-set. This work automates MEG processing for both clinical and 

research use, adapts to the acquired acquisition time, and can obviate the need for EOG or ECG 

electrodes for artifact detection.
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1. Introduction

Magnetoencephalography (MEG), is a functional neuroimaging method that offers better 

temporal resolution than fMRI (Bellec et al., 2010; Dekhil et al., 2018; Duan et al., 

2013; Fatima et al., 2013). MEG also uses a more direct measure of neuronal activity 

via the magnetic flux induced by neuronal activity compared to fMRI, which measures 

activity indirectly through the blood-oxygen-level-dependent (BOLD) response that can be 

compromised through vascular decoupling. Compared to electroencephalography (EEG) 

which is also a direct measure of neuronal activity, MEG’s reliance upon magnetic flux 

rather than electrical conduction is advantageous as the flux is less affected by intervening 

tissue characteristics and can yield more accurate source space reconstruction (Buzsáki et 

al., 2012; Fatima et al., 2013; Muthukumaraswamy, 2013). Nevertheless, MEG is vulnerable 

to noise from non-neuronal sources. For example, the spectral bandwidth of muscle activity 

overlaps with the gamma-frequency band of neuronal activity (Criswell and Cram, 2011; 

Muthukumaraswamy, 2013). In particular, eye-blink (EB) artifacts, saccade (SA) artifacts, 

and cardiac activity (CA) artifacts, which are three of the most common sources of artifact 

in MEG data, share frequency bands (1 Hz – 20 Hz) with alpha, theta, and delta brain waves 

(Breuer et al., 2014; Zikov et al., 2002). Fig. 1 shows how such artifacts can corrupt much 

of brain source space when reconstructed directly from the MEG sensor signals, making 

artifact identification and suppression crucial for mapping true brain activity.

Manually removing artifacts from MEG using Independent Component Analysis (ICA) can 

improve MEG signal-to-noise ratio by up to 35% on task MEG and it has been suggested 

that these conclusion hold for resting-state MEG (Gonzalez-Moreno et al., 2014). ICA is a 

source separation method that decomposes the data into individual independent components, 

separating artifact and signal in the process. However, these components are randomly 

ordered and must be manually labeled as neuronal signal or artifact (Gross et al., 2013; 

Muthukumaraswamy, 2013) allowing the neuronal components to be projected back into 

sensor space. Manual labeling of artifacts for MEG processing is prohibitive as it is both 

time consuming and requires a MEG expert. In addition, manual labeling is subjective 

as it is dependent on the rater’s experience, which can decrease the reproducibility of 
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MEG processing. To automate the detection of EB and CA artifacts, some researchers use 

electrooculography (EOG) and electrocardiography (ECG) electrodes to separately record 

the eye-blink and cardiac artifact signals (Breuer et al., 2014). However, these methods 

can add complexity and time to the data acquisition setup (especially important for large 

cohorts), can be uncomfortable for the some subjects such as those with sensitive skin, 

and may induce additional artifacts from postural muscle movements and facial twitching. 

Additionally, although ICA components can be ranked based on correlation with the 

signal from the EOG and ECG electrodes, manual labeling is still required in commonly 

used pipelines (Tutorials/Epilepsy - Brainstorm, 2021). This work presents an automated, 

objective, pipeline that can detect EB, CA and SA artifacts in MEG data that does not 

require EOG- and ECG-recordings.

This work aims to automate the removal of ICA components to increase the signal to noise 

ratio of MEG data, and make MEG data more readily useable. To achieve this we build a 

highly accurate, generalizable, unbiased, and adaptable model to automate the detection and 

removal of ICA artifacts in MEG. In addition, the general framework is made open source 

such that others can create a custom pipeline for their work, if needed. In our previous 

work, a neural network was built to detect eye-blink artifacts using the ICA derived spatial 

maps (Garg et al., 2017b). Later, models were designed that can detect eye-blink and cardiac 

artifacts using the ICA derived time courses (Garg et al., 2017a). Others have also published 

work automating the detection of artifactual ICA components, these works are compared 

to this work in Section 4.1. This research builds on our past work, and provides various 

improvements to prior work published by others in several important aspects including; an 

increase in performance, an increase in model generalizability and reliability, and generation 

of a highly optimized, custom model. To achieve these objectives (1) a large dataset 

is formed for model training consisting of both resting-state and task-based MEG. This 

training dataset includes subjects from 3 different databases, span a large age range of 15 

to 73 year old subjects, and includes both sexes. (2) The model is trained to seamlessly 

integrate both ICA spatial maps and the time courses for artifact detection. (3) Models are 

built to that take advantage of the available acquired MEG data regardless of the acquisition 

duration: e.g. 1–80 min. (4) Held out test performance and validation performance, rather 

than just validation performance is reported to facilitate results comparison. (5) The model 

is optimized using an extensive automated neural architecture search. (6) Ground truth is 

formed from the consensus of 4 expert raters. (7) Finally, the model is shown to be highly 

interpretable and understandable through an analysis revealing what parts of the spatial maps 

and time courses are used for artifact detection.

2. Materials and methods

2.1. Magnetoencephalography data

This study uses both resting-state and task-based MEG data from 294 scans from 217 

subjects with ages ranging from 10 years to 73 years. To include both resting-state and 

task MEG, both sexes, and achieve such a wide age distribution, data is drawn from three 

databases described in the following sections. Demographics for the subjects in the overall 

MEG training dataset are summarized in Table 1.
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From the 217 subject dataset, 46 subjects and a total of 62 scans (20% of the data) are set 

aside prior to training for testing the model’s performance, while the remaining 80% or 171 

subjects with a total of 232 scans are subsequently partitioned by 10-fold cross validation 

for model training and hyperparameter optimization. The winning model is selected and its 

performance is evaluated on the held out test set not used during training or model selection. 

All splits including the test split, and the folds of the 10-fold cross validation are similarly 

stratified by age, sex, site (origin database), and scan type (resting-state or task-based), and 

grouped by subject. Statistical tests, including a Student’s T-test is for continuous-valued 

age, and the Chi square test used for sex, site, and scan type, reveal the success of the 

stratified partitioning with no statistically significant differences (p < .05) between splits 

(Supplemental Table S1).

2.1.1. Database 1: McGill OMEGA dataset—Five minutes of continuous resting-

state, eyes-open MEG data was obtained from 82 volunteers within the Open MEG Archive 

(OMEGA) (Nisoet al., 2016). This dataset contains subjects with ages 18 through 73 years 

and is 53% female. The participants were instructed to look at a target (fixate) during the 

acquisition. The McGill OMEGA dataset was collected on CTF whole-head MEG system 

(VSM MedTech Ltd., Coquitlam, Canada) that consist of 275 first-order axial-gradiometer 

coils (ctfmeg, 2020. 000Z). MEG signals were sampled at a rate of 2400 Hz and a 

bandwidth of 1–80 Hz.

2.1.2. Database 2: Imaging telemetry and kinematic modeling in youth 
football (iTAKL) dataset—Eight minutes of continuous resting-state MEG data was 

obtained from 49 male football players: 30 youth (10–13 years) and 19 high school (14–18 

years old) subjects, as part of the Imaging Telemetry And Kinematic modeling in youth 

football (iTAKL) concussion study (Davenport et al., 2014). The participants were instructed 

to look at a target (fixate) during the acquisition. MEG signals were recorded using a 275 

channel axial gradiometer whole-head CTF system with 29 additional reference sensors 

for noise cancelation, and sampled at a rate of 600 Hz with an acquisition bandwidth of 

0.25–150.

2.1.3. Database 3: Human connectome project (HCP) dataset—Task data was 

obtained from the HCP database (van Essen et al., 2012). Scan times varied between 7 and 

13 min. Three different tasks are available and all 3 were used in this study: a sensory motor 

task, a working memory task, and a language processing (story memory) task. To provide a 

roughly balanced number of resting-state and task-based MEG scans for training, a total of 

150 task-based scans were selected from 89 different subjects. The 150 scans were selected 

by maximizing the number of subjects, while also maximizing age range, and balancing 

the sex and number of scans per task. HCP used a MAGNES 3600 MEG system with 

248 magnetometer channels, 23 reference channels, a sapling rate of 2034.5101 Hz, and a 

bandwidth of 1–90 Hz. Additional information on the task data is available in (Larson-Prior 

et al., 2013).
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2.2. Overview of the proposed MEG pipeline

An overview of the proposed MEG processing pipeline is shown in Fig. 2. Constituent 

electrical activity in the physical space of the MEG scanner (Fig. 2a) include eye-blinks, 

saccades, and cardiac activity as well as true neuronal activity. These activities induce 

magnetic flux measured by the MEG sensors near the scalp. Raw MEG sensor space data is 

corrupted by the non-neuronal activity and can manifest as large troughs and perturbations 

in the sensor space data (Fig. 2b, left, red arrows). Consequently, a naïve reconstruction 

of brain space activity, where raw data is projected into source space without prior artifact 

removal, does not estimate well the true neuronal activity (Fig. 2b, right). The proposed 

pipeline applies preprocessing, and extracts independent components (Fig. 2c) via ICA in 

steps whose details are described in the following sections. The proposed MEGnet classifier 

(described below) takes the independent components, each comprised of a spatial map and a 

time course, as input and labels each component as an EB, SA, CA artifact or a non-cardiac/

non-blink/non-saccade independent component. From here onwards, the latter category will 

be referred to as the non-artifact (NA) label. Projection of only the NA components back 

onto sensor space reveals substantially cleaner sensor space signals (Fig. 2e, left) which, 

when used to reconstruct the brain source space activity, provides a more accurate estimate 

of actual brain activity (Fig. 2e, right).

2.3. Preprocessing

Data preprocessing steps included: down-sampling to 250 Hz, application of a notch filter to 

suppress line noise at 60 Hz and its first 2 harmonics, and band pass filtering to 1–100 Hz 

using the Brainstorm toolbox (Tadel et al., 2011).

2.4. Independent component analysis

The data was decomposed into 20 components via InfoMax ICA (Bell and Sejnowski, 

1995). InfoMax is frequently used for MEG and is readily available in the Brainstorm 

toolbox. Each of these components consists of a pair of spatial maps and activation time 

courses, as shown in Fig. 3. The spatial map reveals the areas of magnetic influx (red) and 

outflux (blue) across the scalp while the time course indicates the temporal activation pattern 

of the spatial map during the MEG acquisition. Such pairs will be discussed in further detail 

in the subsequent sections. The number of components (20) is chosen for several reasons. 

First empirical analysis indicated that between 18 and 25 components yielded artifacts 

readily identifiable by our expert human readers, and there was unanimous consensus 

among the 4 expert raters that the artifacts were most identifiable using a 20 component 

decomposition. There is a tradeoff: at the low end, the raters noted that the artifacts are 

occasionally not well separated from non-artifact signal, while at the high end, artifacts more 

frequently split into multiple components. Multiple studies have identified between 8 and 

14 canonical resting-state networks in resting-state functional MRI (rs-fMRI) (Beckmann 

et al., 2005; Giorgio et al., 2015; Heuvel and Hulshoff Pol, 2010; Smitha et al., 2009) 

and the standard Brain Nexus atlas includes 13 templates (Resting-State fMRI Templates – 

SCANlab, 2020). These networks have largely been shown to extend to electrophysiological 

neuroimaging, including MEG (Brookes et al., 2011; Coquelet et al., 2020; van Dyck et al., 

2020). Thus, the choice of 20 ICA components presents a reasonable balance: it provides 
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enough components to account for both the variability due to canonical biological networks 

and artifact sources while not dividing components into unrecognizable waveforms. In this 

study, the predictive models use both the spatial map and the time course components as 

inputs.

2.4.1. Ground truth labeling of ICA components—The component pairs from all 

subjects are independently classified as EB, SA, CA, or NA signal by 4 expert raters, with 

more than 23 years of experience in MEG data interpretation between them. If a component 

pair was not identically labeled by 3 or more raters, then it was flagged for discussion. 

A total of 52 of the 5880 component pairs were flagged. The raters then discussed and 

came to unanimous single label consensus for 39, while there remained a split decision for 

10, with a split between artifacts and neuronal. These 10 were assigned the label NA, to 

encourage the subsequently trained predictive model to favor retaining signal in such cases. 

For the remaining 3 component pairs there was unanimous agreement that the component 

pairs contained both saccade and blink signal, these were subsequently labeled as saccade. 

Out of the total 5880 components, 4988 were labeled as NA, 285 EB, 183 SA, and 424 and 

CA. Representative examples of the component pairs from three subjects are shown in Fig. 

4. The three components shown in the first row of Fig. 4b are illustrative of the inter-subject 

variation observed in the spatial maps of the cardiac artifact. The corresponding inter-subject 

variability in the time courses is shown in the top most panel of Fig. 4a. Subsequent rows in 

Fig. 4 show the variation across subjects in the spatial maps and time courses of the EB, SA, 

and NA signals.

2.4.2. Preparation of the 2D-Spatial maps—The preprocessing pipeline renders the 

spatial maps from ICA as topographic maps in the form of colored RGB images for ease 

of human interpretation, examples illustrated in Fig. 4a. The spatial maps are generated 

using the “2D disk ” display of Brainstorm, which projects the flux information from the 3D 

arrangement of sensors near the scalp surface onto a standardized 2D circular space while 

minimizing distortion (Tadel et al., 2020.000Z). To reduce the input size, the 2D images 

are cropped to the bounding box containing just the disk, and has a final dimension of 120 

pixels x 120 pixels x 3 color channels.

2.4.3. Preparation of the 1D-time courses—In order to make the trained classifier 

capable of handling recordings of varying lengths, the time components are split into 60 

second epochs (15,000 time-steps when sampled at 250 Hz) with a 15 second overlap, show 

in Fig. 5. In order to use all the data when the time series cannot be evenly split, the final 60 

second epoch is taken as the last 60 s of the scan, and has a larger than 15 second overlap 

with the prior epoch. This approach, allows for all acquired data to be used both for training 

and testing the model. The 15 second overlap ensures that any predictive signal will be 

completely captured in at least one epoch without any edge effects. Additional information 

on the implementation for both training and testing described in Section 2.8. Sixty second 

epochs are used as the blink artifact has the largest period of the classified artifacts. With an 

average blink interval of about 20 s, a 60 second epoch will typically contain signal from at 

least 2 blinks.
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2.5. Convolutional neural networks

Convolutional neural networks (CNN) have demonstrated remarkable success identifying 

real world objects in images in the Image-net Large Scale Visual Recognition Challenge 

(Krizhevsky et al., 2017; Russakovsky et al., 2015; Simonyan and Zisserman, 2015). Such 

2D CNNs (2D images with additional color channel) automatically learn the appropriate 

filters needed to accurately categorize the contents of a color image. Prior to the use 

of CNNs, the best algorithms used filters with manually crafted coefficients, which were 

applied to the images to extract local features. By 2016, through refinement of the CNN 

approach, the error rate surpassed human object recognition performance achieving an error 

rate of less than 3%. Inspired by these successes, the classifiers evaluated in this study 

employ combinations of CNNs.

2.6. Model construction

The overall structure of the proposed model’s architecture consists of three subnetworks as 

illustrated in Fig. 2d. The general structure of the model entails a two-dimensional CNN to 

process the spatial maps, a one-dimensional CNN to process the time courses, and a dense 

feedforward network that merges via concatenation the latent representations learned by the 

two CNNs and outputs the predicted component class: eye-blink artifact, saccade artifact, 

cardiac artifact, or NA. Importantly the specific architectural design has been optimized 

through an extensive random search, which is described in the following section.

2.7. Random search model optimization

There are many hyperparameters that must be chosen when constructing neural networks. In 

order to select optimal hyperparameters for the model’s architecture, an extensive random 

search was conducted in which a total of 150 unique networks were constructed, trained, 

and evaluated using the random search (James Bergstra, 2012). To run the random search, 

a finite hyperparameter configuration space is defined and randomly sampled to define 

architectural configurations to evaluate. The hyperparameters of the configuration space 

and the ranges searched for each dimension are summarized in Table 2. The specific 

hyperparameters searched for each of our 3 subnetworks are described in the following 

3 sections. In addition to these hyperparameters, which impact individual parts of the model 

architecture, there are 2 hyperparameters that are optimized that impact the entirety of each 

generated model. These include: (1) the kernel weight initializer that is selected from He 

normal, He uniform, Glorot normal or Glorot uniform, and, (2) the activation function that 

is selected between Parametric Rectified Linear Unit (PReLU) or Rectified Linear Units 

(ReLU). The order of batch normalization is subject to current debate, and therefore is also 

included in our hyperparameter search and the results are described in Section 4.2.

2.7.1. Search space of the spatial subnetwork—Specifically, for the spatial map 

2D CNN subnetwork, the hyperparameters optimized included: the number of convolutional 

layers, the number of 2D convolutional filters for each layer, the kernel dimensions for each 

layer, whether to insert a maxpooling layer after each convolutional layer and whether batch 

normalization should be included after all of the convolutional layers in the spatial network. 

The number of convolutional layers was randomly drawn from a uniform distribution with 
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a range of 1 to 10. The number of filters per convolutional layer was randomly drawn from 

a uniform distribution with a range of 1 to 64. The filter kernel dimensions were randomly 

selected from a uniform distribution with a range of 2 to 12, and was always square (height 

= width). The filters for the first layer span two dimensions in space and an additional 

dimension across color channel. The search space for the spatial network takes inspiration 

from both AlexNet and VGG-net. Similar to these networks the search space includes the 

options of max pooling layers and square kernel size spanning from 2 × 2 to 12 × 12. Batch 

normalization was also randomly chosen to be applied after each convolutional layer or 

not applied at all. After each individual convolutional network there was a 50% chance of 

adding a maxpooling layer with a window size of 2 × 2.

2.7.2. Search space of the temporal subnetwork—The configuration space 

searched for the time course 1D-CNN subnetwork included: the number of convolutional 

layers, the number of filters for each layer, the kernel size for each layer, whether to insert 

a maxpooling layer after each convolutional layer, and whether batch normalization should 

be included after all of the convolutional layers in the spatial network. The number of 
convolutional layers was randomly selected from a uniform distribution with a range of 1 to 

10. The number of filters was drawn from a uniform distribution with a range of 1 to 64. The 

kernel size was drawn from a uniform distribution with a range of 2 to 16. The search space 

for the temporal network was similar to that of the spatial network, however the maximum 

kernel size was increased to 16 to ensure that for deeper networks, the last convolutional 

layer’s receptive field size could cover two consecutive QRS complexes, even for subjects 

with very slow heartbeats of ~37.5 beats/min.

2.7.3. Search space of the dense feed forward neural network—To combine 

the outputs of both models, the latent representations learned by the 2D and 1D CNNs 

are combined via concatenation and are input into a dense feed forward network for 

classification. The search space for the dense network includes: (1) the number of layers 

ranging between 1 and 4, (2) the number of neurons ranging from 3 to 258, both of these 

hyperparameters are drawn from a uniform distribution, and (3) whether the input to the 

dense network should have batch normalization applied. A dropout layer has the possibility 

of being added after the dense layers with a dropout rate of 0.5, similar to AlexNet and 

VGG- net.

2.8. Model training, selection, and final evaluation on held out test data

2.8.1. Model training through optimization of individual model weights—To 

optimize the weights of each individual model configuration the Adam optimizer (Kingma 

and Ba, 2014) was used. Adam was selected as it combines the desirable properties from 

2 commonly used optimizers: RMSprop and AdaGrad by including both the first and 

second moments of the gradient. The categorical cross-entropy loss was selected as it 

outputs a probability over the set of classes for each component and this has been shown 

in the literature to produce high performance for multi-class classifiers (e.g. AlexNet and 

GoogleNet). Balancing per class was achieved by weighting the loss function by the ratio of 

each class. Each fold was trained for a maximum of 500 epochs (i.e. the number of iterations 

that the training data is used to update the models weights via back propagation). While 
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training models for hyperparameter optimization, early stopping is employed to monitor the 

validation F 1 score and halt training when the F 1 score stops increasing. This helps ensure 

that models do not overfit to the training data.

2.8.2. Cross-validation based model selection—To compare performance across 

models, stratified group k-fold cross-validation is employed in which the components from 

a subject are grouped together such that they are in either the training or validation set, but 

not both. Using this approach, the 217 training scans are split into 10 folds with roughly 23 

scans per fold. None of the 62 scans from the test set subjects are used for model selection. 

The splits were stratified for age, sex, site (source database), and scan type (resting-state, 

motor task, memory task, language task). Subsequent statistical testing confirmed that there 

were no statistically significant differences between the complete dataset and each split, 

Supplemental Table S1. As the temporal data is of varying length, the temporal data is split 

into 60-second epochs. Exact numbers of epochs for each train, validation, and test split is 

provided in Supplemental Table S2.

To select the winning model, the models are ranked according to the lower bound of the 95% 

confidence interval of the F 1 macro score across the 10 folds. The score for each of the 

four classes in our model is then calculated, where class F1 = (2 * precision * recall
precision + recall ). Then, the 

mean of the four scores irrespective of the number of samples in each class is taken, also 

known as the F 1 macro score. The F 1 macro score allows each class to be weighted equally 

giving a fair account of the model performance, even in the presence of class imbalance. 

Additional performance metrics include the F 1 micro score and a confusion matrix. The 

confusion matrix includes performance for each class individually including sensitivity (true 

positive rate), false negative rate, positive predictive value, and false discovery rate.

2.8.3. Performance estimation on the test set—After selecting the winning model 

configuration, the model was trained on all training data, similarly split into 60 second 

epochs, and then evaluated on the held out test set of 1240 ICA component pairs from 62 

test set scans. These 62 scans are not used for model training, hyperparameter optimization, 

or model selection. For final performance on classification of the 1240 ICA components 

(20 from each of the 62 scans) test data, the model is evaluated based on its performance 

labeling components (Fig. 5) as well as its performance labeling individual epochs within 

components. The final classification of each entire ICA component is formed from the 

weighted mean, over the posterior distribution of the models prediction for each class 

(Fig. 5C and 5D). The weighting is calculated by balancing the amount each time point 

contributes to the overall prediction, to ensure time points that occur in multiple epochs 

don’t outweigh those in only one epoch.

2.9. Revealing what the model has learned

An important approach to gain insight into the abstraction learned by the proposed model, is 

to examine the components it labels correctly, with both high and low confidence. For each 

ICA component pair, the model outputs a confidence for each class (Fig. 5D), the class with 

the highest confidence is the predicted class. Those examples labeled with high confidence, 

are the ones that the model has learned well are canonical representations of the class, and 
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contain features that are central to the label in its learned abstraction. Conversely, those 

example components, which the model predicts correctly but with lower confidence, are in 

the periphery of its learned abstraction. Results from such an analysis can be compared to 

what human experts might consider canonical features of each artifact class and neuronal 

component class.

Another important approach to gain insight into the abstraction learned by the proposed 

model, is to examine the importance or weight the model assigns to specific inputs 

(features). An approach to achieve this is called gradient class activation mapping (grad-

CAM). This approach reveals which elements of an input feature vector are important 

for a the model to make a specific class prediction (Selvaraju et al., 2017). Grad-CAM 

uses the class-specific gradient information flowing into the final convolutional layer of a 

CNN to compute a localization map of the regions in the image important for making a 

classification. This method is broadly applicable to CNNs, including both the 1D time series 

and 2D spatial map sub-networks used in this work.

2.10. Ablation study

An ablation study was conducted to determine if both the time course and spatial maps are 

required to achieve maximum performance of the winning model. The model was split into 

two single input network models, one containing the layers from the spatial map subnetwork 

(Fig. 7 left subnetwork) and the other containing the layers from the time course subnetwork 

(Fig. 7 right subnetwork). For each single input model, the model was trained using the 

10 fold cross validation data and, like the complete model, early stopping was used to 

determine the optimal number of training epochs. To provide an equivalent comparison as 

well as statistical significance between the ablation tests, each of the models’ performance is 

measured and compared on the validation data across the 10 folds.

2.11. Analysis of the architectural search

The architectural search generates information about which hyperparameter combinations 

are likely to produce high and low performing models. To learn new lessons from this 

information, the performance of the top and bottom performing models is visualized 

to reveal what parameters they tended to have using kernel density plots. In particular, 

kernel density estimates (KDEs) are produced for the top and bottom 25% of models. 

In addition to the KDE plots, a contour plot of maximum model performance per 

hyperparameter combination is also generated to reveal a terrain map of model performance 

over hyperparameter space. Visualizing the complete 18 dimensional space is not feasible, 

however pairs of hyperparameters can be displayed as terrain maps. For this work, 

hyperparameter pairs are chosen that apply to the entire model, including activation, and 

number of layers, rather than hyperparameters like the number of filters per layer, which 

pertain to only a small part of the model.

2.12. Implementation of MEGNet

MEGnet is written in Python 3.7.10 (van Rossum and Drake Jr, 1995) using Keras 2.4.0 

(Chollet and et. al, 2015) with Tensorflow 2.4.1 (Martín Abadi et al., 2015) as the backend 

for the machine learning models. The implementation further makes of use these python 
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modules: numpy v1.19.2 (Harris et al., 2020), pandas v1.2.3 (McKinney, 2010), sklearn 

v0.24.1 (Fabian Pedregosa et al., 2011). Ray tune v1.2.0 (Liaw et al., 2018) is used for the 

hyperparameter optimization. The Brainstorm toolbox v3.1 (Tadel et al., 2011) is used for 

MEG preprocessing and ICA extraction.

3. Results

3.1. Ground truth labeling of ICA components: inter-observer agreement

To measure the inter-observer agreement between the expert raters, Fleiss’ kappa and overall 

agreement percent are reported. Fleiss’ kappa measures the degree of agreement above what 

would be expected by chance and ranges from less than zero to one. A kappa greater than 

0.81 is often considered almost perfect agreement, and a kappa above 0.61 is substantial 

agreement. Overall agreement is calculated as the mean agreement across all raters for each 

ICA component rating. Inter- observer agreement of the 4 expert raters was very high with a 

Fleiss’ kappa of 0.938 and an overall agreement of 97.5%. High agreement was also found 

on a per-class bases: for the class NA the Fleiss’ kappa and overall agreement is 0.971 and 

98.9% respectively, 0.87 and 95.1% for EB, 0.737 and 90.2% for SA, and 0.824 and 93.4% 

for CA.

3.2. Random search model optimization

The performance of the 150 models from the unbiased architecture search is illustrated 

in Fig. 6. Detailed performance results for each of the 150 models tested, are provided 

in Supplemental Table S3. A wide range in performance is attained across model 

configurations. Some models performed very well (Fig. 6 green), while others showed 

moderate ability to classify artifacts (yellow), and others demonstrated suboptimal 

performance (red). The figure inset provides a detailed comparison of the models that 

performed best. The model with the highest lower bound of the estimated F 1 macro score 

range over the validation folds is chosen as the winning (selected) model. The change in 

maximum performing model was also monitored during the search. When the maximum 

performance reached an asymptote, the search was stopped as the convergence indicated 

there is little further performance attainable by training additional models.

The architecture of the top performing model is shown in Fig. 7 and described in Table 

2 (right column). In this model, the CNN subnetwork that processes the 2D spatial maps 

employs 8 convolution layers, 4 followed by max pooling (Fig. 7, left subnetwork). The 

1D-CNN subnetwork processing the time course information (Fig. 7, right subnetwork) 

contains 5 convolution layers each, 4 followed by max pooling. Latent representations of 

the spatial maps and time courses are flattened, concatenated and used as inputs to the 

dense feed forward subnetwork. This subnetwork (Fig. 7, bottom) has three fully connected 

layers, the last layer having drop out applied while training, and terminated by an additional 

softmax layer that outputs the probabilities of each of the component class: eye-blink, 

saccade, cardiac artifact, or NA.
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3.3. Performance estimation on the test set

The top performing model demonstrates very high performance on the held-out test set. 

This model performance was quantified 3 different ways. (1) First, it was computed at the 

whole component level, which is the intended mode for use. Here the model attained an 

overall classification accuracy of 98.87% and an F 1 macro score of 96.60% and an F 1 

micro of 98.87%. The overall artifact sensitivity and specificity are 96.73% and 99.34% 

respectively. Complete details of the model’s performance on the held out test data (not 

used during training or model optimization) is shown in the confusion matrix in Fig. 8, 

and summarized in Supplemental Fig. S1A. In Fig. 8, the first four rows are the actual 

classes of the target components, while the first four columns correspond to their predicted 

classes. In each cell the number indicates the number of components. The right most column 

provides the sensitivity and false negative range (FNR) for each class, bottom row shows the 

positive predictive value (PPV) and false discovery rate for each class. The model achieves 

a sensitivity or true positive rate of 98.28%, 94.44%, 95.60%, and 99.34% for EB, SA, 

CA, and NA components, respectively. The model also obtains a PPV of 98.28%, 91.89%, 

95.60%, and 99.43% for EB, SA, CA, and NA components, respectively. (2) Second, 

performance on individual epochs was computed and is detailed in Supplemental Fig. S1B 

where the model had an accuracy of 98.54%. (3) Third, model performance evaluated for 

each scan type, resting and task. This revealed that the model performs equivalently on both 

resting-state and task MEG. When the test data is split into resting-state and task the model 

achieves an accuracy, F 1 macro and F 1 micro of 98.57%, 96.04%, 98.57% on the resting-

state data respectively, and 98.95%, 97.03%, 98.95% on the task-based MEG respectively. 

Confusion matrices for resting-state and task-based data are shown in Supplemental Fig. 

S1C and S1D respectively.

3.4. Revealing what the model has learned: What are the characteristics of components 
predicted correctly with high and low confidence?

In the proposed model, the softmax layer outputs the input component’s class probabilities 

and the predicted class is the class with maximum probability. This probability can be 

considered the model’s confidence in the predicted class, where a confident prediction has 

a probability of near 100%. The predictions for each component class are examined. First, 

for components classified correctly as cardiac artifact with high confidence, the spatial 

maps (Fig. 9) have small, gradual change in flux over the scalp and the temporal series 

contain a strong, regularly repeating signal in the frequency range of a human heart beat 

(~60bmp). Cardiac components predicted correctly with lower relative confidence contain 

more flux signal in the center of the spatial map and have a temporal signal with greater 

noise amplitude between the repeating signal peaks. This tends to agree with the human 

expert notion of a cardiac artifact, with predominantly signal near the center of the scalp 

spatial map and with a ~60 bpm frequency. Second, for components classified correctly as 

eye-blink artifact, the high confidence spatial maps contain strong influx and outflux signal 

bilaterally in the ocular regions and have time courses with characteristic trough waveforms 

(dips) that are indicative of an eye-blink, less regular than a heartbeat, and with a longer 

duration between the waveforms blinks than the heartbeat waveforms (Fig. 10). The lower 

confidence correct eye-blink components (e.g. the bottom row with 58.91% confidence) lack 

a smooth bilateral signal in the spatial maps. Third, the high confidence saccade artifacts 
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(Fig. 11) show large signal in the time series with more irregular spacing indicative of 

saccades, and the spatial maps tend to have more symmetric flux with a large deviation by 

the ocular region. The lower confidence correctly predicted saccade components have less 

pronounced flux deviation across the ocular regions, or have more noise between saccade 

signal in the temporal component. Finally, for components classified correctly as NA with 

high confidence, the spatial maps do not have strong bilateral influx and outflux regions 

in the scalp periphery, but rather have strong signal fluctuation nearer to the center of the 

scalp. The NA time courses also show no regularly spaced peaks or troughs that could be 

indicative of heartbeats, or large isolated spikes in activity suggestive of eye-blinks (Fig. 12). 

Collectively, these results provide insight into the model’s learned abstraction for each class. 

They show that the model reports a high confidence on inputs that clearly belong to a certain 

component classification and produce lower confidence on the harder inputs that would also 

be harder to classify by a human expert.

3.5. Revealing what the model has learned: What important features are learned from 
spatial maps and time courses?

The results of applying Grad-CAM to the temporal and spatial components are shown in 

Fig. 13. When the model is applied to a correctly predicted cardiac component, (Fig. 13, 

top row), the feature importance (red curve) peaks in unison with the heartbeats (spikes, 

blue curve). The feature importance in the spatial map shown by a black to green to yellow 

overlay, indicate that the model focused on the small, gradual change in flux across much 

of the scalp. When the model is applied to a correctly predicted eye-blink component, (Fig. 

13, second row), the feature importance (red curve) peaks align perfectly with the signal 

troughs (blue curve) that are characteristic of eye-blinks in the time course. Mean-while, the 

spatial map overlay shows a focus on both orbital lobes and the center of the scalp, likely 

identifying the characteristic high edge color contrast at the regions of the two orbits and 

relative flux between orbits and compared to the center of the scalp during eye-blinks. When 

applied to the correctly predicted saccade components, (Fig. 13, third row), the feature 

importance curve is elevated during the periods of high signal fluctuations associated with 

ocular movement. Feature importance of the spatial map, indicates that the model is focused 

on the consistent signal in the center of the map, as well as the gradient in the front ocular 

region. When the model is applied to a correctly predicted NA, (Fig. 13, bottom row) the 

feature importance (red curve) remains relatively high throughout the NA signal, which 

has characteristic high frequency oscillations throughout the time course. The spatial map 

overlay shows how the network correctly focuses on the center of the scalp in an area of 

high flux with a unique shape, which is typical for NA components. Taken together, these 

results suggest that the model has learned meaningful representations of the inputs and helps 

establish trust in the predictions made and abstractions learned by the model.

3.6. Ablation study

To determine if both the time course and spatial maps are required to achieve maximum 

performance of the winning model an ablation study was conducted. As shown in Fig. 

14, the model using only time course information achieved a mean F 1 macro score of 

80.1% with a standard deviation of 0.81%. Meanwhile, the model using only spatial map 

information worked statistically significantly better achieving a mean F 1 macro of 89.05% 
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with a standard deviation of 1.62%. However, the final model that uses both the spatial map 

and time course inputs outperforms both single input models, achieving a mean F 1 macro 

of 96.3% with a standard deviation of 1.16%. These differences are significant with a p 

value < 0.00001. These results indicate that the spatial map and time course inputs contain 

complementary information and both contribute to the overall performance of the proposed 

model.

3.7. Analysis of the architectural search

The last 3 sections revealed insights into what the highest-performing model has learned 

and that there is a need to combine spatial and temporal information to obtain maximum 

performance. The extensive unbiased architecture search of 150 models also reveals insight 

into the hyperparameter configurations that tend to achieve high artifact classification 

performance.

One way that this can be achieved is by visualizing the performance of the top and 

bottom performing models and examining what parameters they tended to have using kernel 

density plots. This reveals that there is no one ideal configuration, but rather a set of 

configurations that perform very well and it reveals which hyperparameter combinations 

tend to comprise good performing models. In particular, the highest and lowest performing 

25% of the total 150 models, have been selected and the density plots for these two groups 

of models is shown in Fig. 15 as the high (green) and low (red) performing surfaces. 

Since the full hyperparameter space has 18 dimensions, for visualization, each plot shows 

two hyperparameters. In the hyperparameter subspace spanned by the number of layers 

in the spatial and temporal subnetworks (Fig. 15a), a few high performing (green) peaks 

are evident. High performing networks typically have 2–4 or 6–8 convolutional layers 
in the spatial subnetwork and 5, 6, or 8 convolutional layers in temporal subnetwork. 

For the hyperparameter subspace spanned by batch normalization in the temporal and 

spatial subnetworks, there is a preference (green peak) to use normalization in the spatial 
subnetwork, but not in the temporal subnetwork (Fig. 15b). Finally, for the hyperparameter 

subspace spanned by the number of layers in the dense neural network and the activation 

used for the network there is a preference for 2 dense layers (Fig. 15c).

KDEs indicate a preference of specific hyperparameters rather than the absolute 

performance attained for each hyperparameter combination. Another way to uncover 

insight into preferred hyperparameter configurations, is to visualize the highest performance 

attained at each point in hyperparameter space (Fig. 16). For this visualization, the 2D 

subspace (pair of hyperparameters) with highest performance variance over its axes was 

chosen. This more nuanced, perhaps more noisy view, confirms that there are several high 

performing regions in hyperparameter space (green regions) as well as several suboptimal 

configuration regions (red regions), where even the best performing model’s with the 

hyperparameter combination did not perform well.

4. Discussion

Based on our 4 expert raters, human expert inter-observer agreement is estimated to be 

97.5% percent with a Fleiss’ kappa of 0.938, thus the winning model achieves performance 
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at or very nearly the same level as the human experts, and it does so regardless of whether 

the MEG data is resting-state or task-based. Of all the detected artifacts, saccades appear 

to be the hardest artifact to identify. This is reflected in slightly lower inter-human expert 

agreement and model performance, though the model does achieve good performance on 

saccade artifacts (sensitivity of 94.4% and PPV of 91.89%). Further, the analysis shows that 

the artifact detection by integrating voting across from the multiple epochs per component 

(Fig. 8) performs better in almost every single metric than single epoch prediction (Fig. 

S1B), suggesting that using the complete component time series is preferable for prediction 

than a single epoch.

Achieving such a high performance level, suggests that the method may be used to obviate 

the requirement for human experts to identify component artifacts. As the model performs 

well on the on the held out test set, it can be expected to work well on MEG scans of 

people belonging to either sex, and a broad range of ages (9 through 73 years) and on task 

and resting-state. The proposed model facilitates the use of MEG for large research studies 

and clinical applications, where a human expert may not be available or when the numbers 

of subjects is large, making human labeling problematic. The performance of the selected 

model compares favorably to the most closely related published works, which are further 

described in Section 4.1. Section 4.2 discusses the optimal ordering of batch normalization 

and activation, while Section 4.3 discusses limitations of this study.

4.1. Comparison to related work

To date there has been limited research into the automation of artifact removal in MEG 

without the use of supplementary electrodes such as EOG and ECG. To provide a most 

commensurable comparison, this section focuses on studies that do not use EOG and ECG 

electrodes. Three other papers, (Croce et al., 2019; Duan et al., 2013; Hasasneh et al., 2018) 

also aimed to remove artifacts from the ICA components. An overview comparing our work 

to those discussed here is presented in Table 3.

Duan et al. employed a support vector machine (SVM) that was trained with five manually 

selected features (probability density, kurtosis, spectral entropy, fractal dimension, and 

central moment of frequency) extracted from the time courses from ICA. Hasasneh et al. 

and Croce et al. applied multi-input deep learning networks that are similar to the models in 

this work. Duan et al., Hasasneh et al. and Croce et al. all report a cross-validation (without 
held-out test set).

Notable in this comparison is that several other studies have used small sample sizes, 

which can be a significant impediment to reliable performance estimation. This study uses 

an extensive cohort with 217 subjects, with a broad age distribution of 9 years to 73 

years, and a mixture of males and females. 1 Overall, the MEGnet model proposed in this 

work demonstrates higher performance including 98.95% accuracy, 96.74% sensitivity and 
99.34% specificity (Supplemental Fig. S1A). The proposed model outperforms previously 

proposed models in all metrics, except for specificity by Duan et al. which reported 

99.65%, however this is within 0.31% of the proposed MEGnet model and Duan et 

1Duan et al. used 10 subjects roughly between 4–6 years old. Hasaneh and Croce et al. did not detail demographics.
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al. report cross-validation performance which tends to be inflated compared to the more 

rigorous and conservative held out test performance, that is used in our investigation. The 

higher performance of the proposed model herein is likely due to several factors: (1) an 

extensive, unbiased hyperparameter optimization (Section 2.7), (2) the training upon data 

from multiple datasets, (3) and training upon a larger number of total subjects. We suggest 

that a model learned from multiple sites’ data can help the model generalize well since the 

model has already learned information obtained from different technicians and acqusition 

protocols. In addition, the model proposed in this work is trained and tested on multiple 

types of scans including resting-state and 3 different tasks, this helps ensure that the model 

will generalize well reguardless of the type of scan. In comparison, works such as Duan et 

al. reports are based on a single scan type. Finally, in comparison to the work by Hasasneh 

et al. and Croce et al., this study provides insights to what the proposed MEGNet model has 

learned, giving further assurances that the proposed model will generalize well.

Our previous work (Garg et al., 2017a, 2017b), also removes artifacts. In those works, we 

separately used time course and spatial map components to identify artifacts. In comparison, 

this work expands on our previous work in numerous ways. The present work uses a 

multi-input deep neural network to extract features from both the spatial and the temporal 

components, learns to integrate that information optimally, and demonstrates increased 

predictive accuracy over a much broader test set.

Other, related work focuses on the identification of bad channels (sensors) in MEG 

acquisition. Notably, Autoreject (Jas et al., 2017) is one such bad channel rejection 

approach. We note that this work is distinct from and complementary to ours. Jas et 

al. identify and remove poorly performing sensor information from MEG data, while 

explicitly indicating that a complementary approach is needed to remove non-neurological 
physiological artifacts. Though not explored in this manuscript, the integration of Autoreject 

and MEGnet presents an interesting research direction to suppress both erroneous sensors 

and well as remove non-neurological signal sources. While successful at reducing sensor 

artifacts, the authors of Autoreject specifically note that their model does not completely 

remove biological artifacts, and that ICA methods “naturally supplement autoreject … 

[as they] extract and subsequently project out signal subspaces governed by physiological 

artifacts such as muscular, cardiac and ocular artifacts ”. This work complements Autoreject 

by automating the accurate identification and removal of these artifacts

4.2. What is the optimal ordering of batch normalization and activation?

Since there is open scientific debate regarding whether batch normalization should be 

performed before or after the application of the activation function in each convolutional 

layer, an experiment was run to determine the effect of the ordering. It consisted of 

creating two models each of the same dual input subnetwork form illustrated in Fig. 2d. 

In one, model batch normalization was performed before the activation layer while in the 

other, it was performed afterwards. Both models were then trained identically and the 

training and validation performance was computed using 10-fold cross validation (Fig. 17). 

These results suggest that there is no clearly superior ordering. When activation precedes 

batch normalization (blue curve), learning is faster, while when the opposite ordering is 
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used (orange curve), the final performance is slightly better. Since these results may be 

architecture dependent, the ordering was included in the random search of Section 2.7. For 

the final model, shown in Fig. 7, batch normalization preceded activation in the temporal 

network, and followed activation in the spatial network, and is not used in the merge 

network.

4.3. Limitations

There are several limitations in this study. First, this study does not include patients with 

abnormal P-QRS-T patterns such as patients with a heart arrhythmia. Second, this study 

does not include patients with neurological disease, such as myasthenia gravis or patients 

with eye pathologies and in these populations abnormal eye-blinks can occur. Third, the final 

model was trained on subjects aged 9–73 years, but not on very young children and infants 

using specialized infant-MEG scanners; therefore, it may not detect artifacts in subjects 

with ages substantially lower than 9 years with the same high performance. Additionally, 

while this model was trained on 3 different tasks including sensory motor task, a working 

memory task, and a language processing, and thus will likely perform will on other tasks, 

performance on other tasks has not been tested thus cannot be guaranteed. However, the 

proposed model training approach includes a comprehensive architectural search that is 

fully automated. Therefore, with additional data spanning such cases the approach could be 

readily adapted. Also, we target identification of the most prolific and problematic cardiac, 

eye blink and saccade artifacts. We note that there are other artifacts, which could also be 

targeted. With an appropriately labeled dataset, we expect the model could be trained to 

identify such artifacts. To support such extensions, full source code is being made publically 

available. Finally, our ICA components are extracted using Brainstorm. Preprocessing on 

other software packages or with different processing steps (Section 2.3 and 2.4) could affect 

the performance of the model, however, brainstorm was selected for this work as it is widely 

used, reliable, and open source.

The proposed approach achieves human expert level performance, which suggests that it 

may be suitable for the analysis of other functional neuroimaging scenarios, particularly 

those in which ICA is already a commonly used preprocessing step, including: fMRI, EEG, 

and fNIRS. In these modalities, ICA can also yield time course and spatial map components 

much like those that the proposed model processes for MEG. Adaptation of the proposed 

model for fMRI would require extension to 3D, but the classification task would otherwise 

have multiple similarities.

5. Conclusion

MEG is a rapidly growing functional neuroimaging modality that has the potential 

to facilitate diagnoses and prognoses in a wide range of neurodegenerative diseases, 

psychological disorders and developmental disorders. It is already being used clinically 

for pre-surgical planning in epilepsy, brain tumors and other indications requiring brain 

resection. More recently MEG has shown promise to discriminate neurodegenerative 

disorders (Guillon et al., 2017; Nakamura et al., 2018; Olde Dubbelink et al., 2014), 

neurodevelopmental disorders (Kasturi Barik et al., 2020; Monge et al., 2015) and 
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psychological disorders (Crunelli et al., 2020; Wang et al., 2019). To obtain the most 

useful signals from MEG, artifact identification and suppression is vital since these artifacts 

can corrupt large portions of the signal in brain space reconstructions. This work provides 

multiple contributions to the field of MEG neuroimaging data analysis. First, this paper 

proposes an artifact classification approach that combines multivariate decomposition with a 

deep learning multi-subnetwork model that fully automates artifact separation and detection 

directly in MEG data without the need for complicated patient setup procedures that 

use EOG (electrooculography) or ECG (electrocardiography). Second, compared to the 

published literature, the proposed model achieves new state of the art accuracy detecting 

MEG artifacts with 98.95% accuracy, 96.74% sensitivity and 99.34% specificity. The 

model achieves this expert human level artifact classification performance across a wide 

spectrum of subject ages: 9–73 years old. Third, this work utilizes a computational, unbiased 

model selection procedure ensuring that the proposed model is well suited to the artifact 

classification task. Fourth, this research also reveals insights about suitable candidate 

architectures from the unbiased model search, as well as the features and abstractions 

learned by the top performing model. Fifth, the study demonstrates that spatial maps 

and time courses contain complementary information and therefore need to be combined 

to achieve a top performing classifier. Lastly, the proposed method is fully automated, 

requiring no user input which facilitates automated MEG processing for clinical and 

research use and supports it adaptation for additional domains.
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Fig. 1. 
The manifestation of MEG artifacts in brain space, reconstructed using minimum norm 

estimate (MNE) source localization. First row: projection of isolated cardiac artifact ICA 

component. Second row: projection of isolated eye-blink artifact component. Third row: 

projection of all 20 ICA components, including artifacts. Fourth row: projection of only the 

all neuronal ICA components without the cardiac and eye-blink components. Both cardiac 

and eye-blink artifact projections can demonstrate diffuse activity across much of brain 

space. The amplitudes in third row are much higher than fourth row due to the effects of 

artifacts on source space.
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Fig. 2. 
The acquisition of MEG data and proposed post-processing pipeline with comparison to 

direct source reconstruction from sensor space time series. (A) Primary electrical activities 

in the physical acquisition space of the MEG scanner include: eye movements, particularly 

eye-blinks, cardiac activity, and electrical activity from neuronal firing (right). (B) Raw 

recorded sensor space of sensors near the scalp, with perturbation from blink artifacts 

indicated by red arrows (left) and a direct reconstruction in brain source space, without 

artifact removal (right). (C) ICA component extraction. (D) Overview of proposed MEGnet 
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classifier to identify neuronal components. (E) Projection of components onto sensor space, 

with CA and EB artifacts removed, allows for a more faithful reconstruction of actual 

activity in brain source space (right).
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Fig. 3. 
Representative example of the ICA components extracted from a single subject. Each of 

the 20 components consists of a spatial map and a time course of map activation. (A) The 

20 activation time courses of each spatial (B). The corresponding spatial maps capturing 

magnetic influx (red) and outflux (blue). The spatial map is projected into a 2D disk, and 

orientated as a top down view, with the subject’s nose at the top.
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Fig. 4. 
Inter-subject variability in spatial maps and time courses is apparent in these four 

representative subjects. (A) Time courses for each signal category (B). Spatial maps from 4 

subjects for each signal category.
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Fig. 5. 
Splitting time series into epochs and weighted voting. To provide a prediction on scans of 

varying length, the data is split into evenly sized 60 second epochs with a 15 second overlap, 

and voting is used for the final classification. A. The complete scan with a 10 min length. 

B. The complete scan is split into 60 second epochs, with corresponding spatial map. C. 

MEGnet is used to make a classification on each of the 60 second epochs. D. A weighted 

mean is used as a voting system to produce a final prediction for all of the data epochs.
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Fig.. 6. 
Random search over model architectures reveals wide performance variation. A. The 

performance for all 150 tested networks ordered by the lower bound of the 95% confidence 

interval (shown as a bar) of the F1 macro score across the 10 fold cross validation. The 

architecture for the winning model is indicated with the red arrow. Models can be roughly 

categorized by performance. In red are models with low F 1 macro and/or high variance. 

Yellow highlighted models demonstrate suboptimal performance. B. Models highlighted in 

green demonstrate the best performing models.
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Fig. 7. 
Architecture of the best performing model. Overall, the spatial map and time course 

networks uses 8 and 5 convolutional layers respectively. 3 hidden layers are used in the 

dense merge network and drop out was used prior to the final layer. PReLU was used for the 

activation function along with He uniform initialization.
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Fig. 8. 
Confusion matrix showing the winning model’s performance on the held out test data. 

First four rows correspond to the actual (true) target classes, while the first four columns 

correspond to the model predicted classes. The bottom row shows the raw number and 

percentages of components predicted to belong to each class that are correctly (green) 

and incorrectly (red) classified called the precision (or positive predictive value) and false 

discovery rate, respectively. The right most column shows the percentages of all components 

belonging to each class that are correctly and incorrectly classified, called the sensitivity (or 

true positive rate) and false negative rate, respectively. The cell in the bottom right shows the 

raw component count and overall accuracy (green).
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Fig. 9. 
Examples of correctly predicted cardiac artifact components, ordered from high confidence 

(top) to lower confidence (bottom).

Treacher et al. Page 31

Neuroimage. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 10. 
Examples of correctly predicted eye-blink artifact components, ordered from high 

confidence (top) to lower confidence (bottom).
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Fig. 11. 
Examples of correctly predicted saccade artifact components, ordered from high confidence 

(top) to lower confidence (bottom).
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Fig. 12. 
Correctly predicted NA components are ordered from high confidence (top) to lower 

confidence (bottom)
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Fig. 13. 
Grad-CAM on an input from each class that the model predicts with high confidence.

Treacher et al. Page 35

Neuroimage. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 14. 
Performance of the combined, spatial only and temporal only network across the k fold 

validation data. Early stopping was used to ensure each model did not overfit. Error bars 

show 1 standard deviation. All p values are highly significant at 3.99e-8, 2.32e-6, 3.71e-11 

for spatial vs temporal, spatial vs both and temporal vs both respectively. P-values are 

calculated using a paired t -test. The highest performing model used both the spatial and 

temporal inputs.
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Fig. 15. 
Hyperparameters that tend to produce high and low performance. Kernel density plots of 

models with the top 25% and bottom 25% F1 macro performance are shown in green and red 

respectively. A. For the number of layers in the temporal network and spatial network, four 

high performing (green) peaks are evident. B. For batch normalization in the temporal and 

spatial subnetworks, there is a preference (green peak) to use normalization in the spatial 

subnetwork. C. Among the number of layers in the dense neural network and the activation 

used for the network, there is a preference for 2 dense layers, and the opposite for 4 dense 

layers.
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Fig. 16. 
Performance landscape within the hyperparameter subspace consisting of the number of 

layers in the spatial subnetwork and the number of layers in the temporal network. 

Maximum performance across the tested models is shown in each pixel entry. Several better 

performing configurations (greener regions) are evident. A contour plot that interpolates 

and smooths raw performance helps intuit these regions. The performance of each pixel 

is measured corresponding best performing model’s lower 95% confidence interval of the 

F 1, measured on the validation data over the 10 fold cross validation. The final models 

parameters are indicated by the blue box.
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Fig. 17. 
The plots here show the importance of including the order of activation and batch 

normalization in the random search. The blue line represents the performance per epoch 

when the model has activation before batch normalization (BN) and the orange represents 

the model having batch normalization before activation. This was trained using 10 fold cross 

validation, and did not include the test data. Each point is the mean with error bars of one 

standard deviation across the 10 folds. A. The accuracy of the model per epoch on the 

training data. B. The accuracy of the model per epoch on the validation data.
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Table 1

Demographics of each database, and the combined dataset used in this work.

Database McGill iTAKL HCP Combined

Subject Count 82 49 86 217

Age: Mean(std) 34.6(9.33) 13.3(2.63) 28.8(3.24) 28.5(8.87)

Age: min/max 28/73 10/18 23.5/33 10/73

Sex: M/F 41/46 49/0 74/11 164/57
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