
sensors

Article

Iktishaf+: A Big Data Tool with Automatic Labeling for Road
Traffic Social Sensing and Event Detection Using Distributed
Machine Learning

Ebtesam Alomari 1, Iyad Katib 1, Aiiad Albeshri 1 , Tan Yigitcanlar 2,3 and Rashid Mehmood 4,*

����������
�������

Citation: Alomari, E.; Katib, I.;

Albeshri, A.; Yigitcanlar, T.;

Mehmood, R. Iktishaf+: A Big Data

Tool with Automatic Labeling for

Road Traffic Social Sensing and Event

Detection Using Distributed Machine

Learning. Sensors 2021, 21, 2993.

https://doi.org/10.3390/s21092993

Academic Editor: Alberto Gotta

Received: 19 March 2021

Accepted: 21 April 2021

Published: 24 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
EAlomari0011@stu.kau.edu.sa (E.A.); IAKatib@kau.edu.sa (I.K.); aaalbeshri@kau.edu.sa (A.A.)

2 School of Architecture and Built Environment, Queensland University of Technology, 2 George Street,
Brisbane 4000, QLD, Australia; tan.yigitcanlar@qut.edu.au

3 School of Technology, Federal University of Santa Catarina, Campus Universitario, Trindade,
Florianópolis 88040-900, SC, Brazil

4 High Performance Computing Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
* Correspondence: RMehmood@kau.edu.sa

Abstract: Digital societies could be characterized by their increasing desire to express themselves
and interact with others. This is being realized through digital platforms such as social media that
have increasingly become convenient and inexpensive sensors compared to physical sensors in many
sectors of smart societies. One such major sector is road transportation, which is the backbone of
modern economies and costs globally 1.25 million deaths and 50 million human injuries annually. The
cutting-edge on big data-enabled social media analytics for transportation-related studies is limited.
This paper brings a range of technologies together to detect road traffic-related events using big data
and distributed machine learning. The most specific contribution of this research is an automatic
labelling method for machine learning-based traffic-related event detection from Twitter data in the
Arabic language. The proposed method has been implemented in a software tool called Iktishaf+ (an
Arabic word meaning discovery) that is able to detect traffic events automatically from tweets in the
Arabic language using distributed machine learning over Apache Spark. The tool is built using nine
components and a range of technologies including Apache Spark, Parquet, and MongoDB. Iktishaf+
uses a light stemmer for the Arabic language developed by us. We also use in this work a location
extractor developed by us that allows us to extract and visualize spatio-temporal information about
the detected events. The specific data used in this work comprises 33.5 million tweets collected
from Saudi Arabia using the Twitter API. Using support vector machines, naïve Bayes, and logistic
regression-based classifiers, we are able to detect and validate several real events in Saudi Arabia
without prior knowledge, including a fire in Jeddah, rains in Makkah, and an accident in Riyadh.
The findings show the effectiveness of Twitter media in detecting important events with no prior
knowledge about them.

Keywords: smart cities; big data; event detection; road traffic; distributed machine learning; auto-
matic labeling; social media; data analytics; social media analytics; Arabic tweets

1. Introduction
1.1. Smart Cities, Tranportation, and Social Sensing

Smart cities and societies aim to revolutionize our daily lives and improve social,
economic, and environmental sustainability through increased technology penetration,
participatory governance, and wise use of natural and other resources [1]. Smart urban
and rural developments require timely sensing and analysis of diverse data produced by
various edge sensors, smart devices, GPS, cameras, and the Internet of Things (IoT) [2].
Social media such as Twitter have become an important class of sensors for smart urban and

Sensors 2021, 21, 2993. https://doi.org/10.3390/s21092993 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3796-0294
https://orcid.org/0000-0001-7262-7118
https://orcid.org/0000-0002-4997-5322
https://doi.org/10.3390/s21092993
https://doi.org/10.3390/s21092993
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21092993
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21092993?type=check_update&version=2

Sensors 2021, 21, 2993 2 of 33

rural developments [3], and in many sectors of smart cities and societies, it is increasingly
being seen as a conveniently available and relatively inexpensive source of information
compared to physical sensors [4]. Road transportation that is considered the backbone
of modern economies is one such sector. It costs globally 1.25 million deaths and 50
million human injuries annually and therefore it is a research and development area of
high significance.

Increased urbanisation is giving rise to the evolution of cities into megacities where
traffic congestion is a leading problem causing devastating economic, social, and ecological
losses. The annual cost of congestion in the US is USD305 billion, not to mention the
damages to health and the number of deaths. Congestion is caused due to the steadily
growing traffic in the cities over the years, road damages, roadworks, traffic accidents, bad
weather, and other contingencies. There is a need to detect these causes or events to enable
timely planning and operations.

Many times, congestion is caused due to events that are beyond the direct scope of
physical road sensors, and therefore physical sensors cannot detect these events until the
effects of these events are visible on the roads and can be sensed by the on-road sensors.
For example, a football match in a city is likely to disrupt the traffic and increase pressure
on the road network in certain segments of the city. Such an event can be detected through
social media in advance of the event and timely intervention may reduce the aggravation
of congestion in the city. Events such as a major football event may have already been
known to the authorities. However, social media can also detect events that are being
arranged on ad hoc bases—such as social gatherings, small sports gatherings—and, though
these are small, there can be many of these in a city and can create an aggregately large
pressure on the city roads. Similarly, unpredictable events such as a fire in a city segment
may also disrupt the city traffic and such events can also be detected automatically on
social media before their effects on the roads are visible. Moreover, historical analysis of
social media data can reveal hidden information related to the traffic that may have not
known otherwise and can be used for urban planning.

Twitter is one of the most popular microblogging media used for communication
and sharing personal status, events, news, etc. [5]. Twitter allows users to post short text
messages called tweets. A massive amount of real-time data is posted by millions of users
on various topics including transportation and real-time road traffic [4,6–8]. In the recent
decade, the use of Twitter and other social media by researchers and practitioners to study
different issues in many application domains and sectors has steadily increased [9–14].
Transportation is no exception where social media has been used to study various aspects
such as for analysing travel behaviours [15], recognizing mobility patterns [16], congestion
detection [17], and event detection [4,6,9,18,19]. Due to the microblogging and real-time
nature of Twitter, people are likely to communicate information about small and large-scale
social gatherings, sports events, or events such as a fire, weather, allowing such information
to be extracted in real-time [20]. Such information can allow the detection of transportation-
related events and their causes for timely planning and operations. However, while
manifesting great potential, several major challenges need to be overcome before its wide
adoption in transportation and other areas.

1.2. Summary of the Proposed Work

The aim of this work is to develop big data technologies for detecting road traffic-
related events (i.e., events that may affect road traffic) from Twitter data in the Arabic
language with a focus on Saudi Arabia. Over the past few years, we have continued
to build a detailed literature review on social media analytics in transportation. We
have learnt from the literature review that the cutting-edge on big data-enabled social
media analytics for transportation-related studies is limited. Many more studies are
needed to improve the breadth and depth of the research on the subject in several aspects
to establish maturity in this area. The research gaps relate to the focus of the studies,
the size and diversity of the data, the applicability and performance of the machine

Sensors 2021, 21, 2993 3 of 33

learning methods, the diversity in terms of the social media languages, the scalability of the
computing platforms, and others [13,21]. The maturity of research in this area will allow
the development, commercialization, and wide adoption of the tools for transportation
planning and operations (for the literature review and research gap, see Section 2).

This paper brings a range of technologies together to detect road traffic-related events
using big data and distributed machine learning. The paper contributes to most of the
above-mentioned research gaps. The most specific contribution of this research is an au-
tomatic labelling method for machine learning-based traffic-related event detection from
Twitter data. In principle, the method itself is generic and can be applied for natural lan-
guage processing (NLP) in any language. However, in this paper, the method is applied to
Twitter data in the Arabic language. One of the approaches to detecting events from social
media requires text classification using supervised classification algorithms. Supervised
classification requires labeling of data for the training phase. For big data, the manual
labeling process is time-consuming and labor-intensive [22]. Using the automatic labelling
techniques developed in this paper we are able to deal with over an order of magnitude
larger dataset compared to our earlier work in [6]. We are able to detect several real events
in Saudi Arabia without any prior knowledge, including a fire in Jeddah, rains in Makkah,
and an accident in Riyadh. The proposed automatic labeling method uses predefined dic-
tionaries to reduce the effort, time, and cost of manual labeling of tweets. The dictionaries
have been generated automatically for each event type using the top vocabularies extracted
from the manually labeled dataset. Then, the dictionaries are adjusted manually to add
synonyms and make sure that we do not miss any important vocabulary. After that, we
divide them into levels based on the importance and the degree of relevance to the event
type. Then, we calculate the weight for each labeled tweet (see Section 3 for details of the
tool design including the automatic labelling method).

The proposed method has been implemented in a software tool called Iktishaf+ (an
Arabic word meaning discovery) that is able to detect traffic events automatically from
tweets in the Arabic language using distributed machine learning over Apache Spark. The
tool is built using nine components that are used for nine specific functions namely data
collection and storage, data pre-processing, tweets labeling, feature extraction, tweets filter-
ing, event detection, spatio-temporal information extraction, reporting and visualization,
and internal and external validation. The architectural blocks of the Iktishaf+ system are
depicted in Figure 1 (we will describe in detail the system architecture including its nine
components in Section 3). Iktishaf+ is built using a range of technologies including Apache
Spark, Spark ML, Spark SQL, NLTK, PowerBI, Parquet, and MongoDB.

The Iktishaf+ tool uses Iktishaf Stemmer that we introduced in [6]. It is a light stemmer
for the Arabic language developed by us. It is designed to strip affixes based on the length
of the tokens. It allows reducing the feature space and minimizing the number of removed
letters from the token to prevent changes in meaning or losing important words. We also
use in this work a location extractor developed by us that helps to find the location of the
detected events. It uses multiple methods to extract the event location. The location is
extracted from the tweet text where the place name is explicitly mentioned in the message
or is included as hashtags. Additionally, the event locations are identified from the account
names using a predefined list of account names that are specialized in posting about traffic
conditions in different cities in Saudi Arabia. If no information is found, the other attributes
associated with the tweets JSON object such as coordinates and user profiles are checked
for the location information. These methods have allowed us to extract and visualize
spatio-temporal information about the detected events.

The specific data used in this work comprises 33.5 million tweets collected from Saudi
Arabia using the Twitter API for a period of over a year. We have not used this data in any
of the earlier works. The findings show the effectiveness of the Twitter media in detecting
important events, and other information in time, space, and information-structure with
no earlier knowledge about them. The detected events are validated using internal and
external sources.

Sensors 2021, 21, 2993 4 of 33

Sensors 2021, 21, 2993 9 of 35

Figure 1. Iktishaf+: The proposed system architecture. Figure 1. Iktishaf+: The proposed system architecture.

Iktishaf+ is an enhanced version of our tool Iktishaf that was introduced in [6]. The
tool Iktishaf+ extends the functionality, capacity, and testing of our earlier work on traffic
event detection. The earlier work on event detection has reported analyses of 2.5 million
tweets [6]. The number of tweets was limited by our ability to manually label the tweets.
We have also applied the Iktishaf tool to detect government measures and public concerns
related to CVOID-19 using unsupervised learning [13]. Our earlier work on big data
social media analytics has also focused on application areas including public sentiments
analysis of government services [23], logistics [24,25], and healthcare [7] in both Arabic
and English languages.

The Iktishaf+ tool uses open-source big data distributed computing technologies
that enable the scalability and integration of transportation software systems with each
other and with other smart city systems such as smart healthcare and urban governance

Sensors 2021, 21, 2993 5 of 33

systems. An elaboration of the novelty, contributions, and utilization of this work is given
in Section 2.4.

The organization of the paper is as follows: Section 2 highlights the related work,
in which we review different techniques for traffic events detection from social media in
addition to the existing approaches for labeling large-scale datasets. Section 3 describes the
proposed methodology and details the tool design and architecture. Section 4 explains the
analysis results, which is followed by conclusions and future work reported in Section 5.

2. Literature Review

Digital societies could perhaps be characterized by their increasing desire to express
themselves and interact with others, and this is done through various digital platforms [26].
The core ingredients of these digital societies, or digital platforms that enable these societies
include a range of emerging technologies and their convergence. The technologies include
big data [27–30], high-performance computing (HPC) [31–34], artificial intelligence [35–38],
cloud, fog, and edge computing [39–41], social sensing [42–45], and Internet of Things
(IoT) [36,40,46–48]. The applications include transportation [4,49–53], healthcare [7,54–56],
and others [57–60]. The pulse for sensing and engaging with the environments are provided
by social media and IoT. Sentiment analysis, or opinion mining, is a vital tool in natural
language processing (NLP) [61], and many of the notable works on sentiment analysis rely
on artificial intelligence, Twitter, and other social media.

We review here the literature related to the topics of this paper, which is detection
of events related to road traffic using Twitter in the Arabic language. We begin with the
literature about traffic event detection and then we discuss the solutions for automatic
labeling. We discuss in Section 2.1 the works that have been developed for event detection
in any language whether they use big data or not. Section 2.2 discusses works in the Arabic
language and since works for Arabic are very limited, we introduce the studies related to
detect any type of events not only traffic events. In Section 2.3, we present the solutions for
labeling large datasets. Finally, Section 2.4 reveals the research gap.

2.1. Traffic Events Detection Using Social Data (Any Language)

Sakaki et al. [62] proposed an earthquake reporting system using Japanese tweets.
They classified real-time tweets into positive (event-related) and negative (not related to
events) classes using an SVM classifier. To prepare the training set, they used three groups
of features for each tweet, which are keywords in a tweet, the number of words, and the
words before and after the target-event words. Furthermore, they extended their work
to extract events from tweets referring to driving information [63]. They collected tweets
using a list of keywords about traffic-related events such as heavy traffic, traffic restriction,
police checkpoints, parking, and rain mist. As in their previous work, they prepared the
features using different methods and then they selected the best features to train a classifier
using the SVM algorithm. Moreover, Klaithin and Haruechaiyasak [10] analyzed tweets in
the Thai language to extract traffic events. They trained a classifier using Naïve Bayes to
classify the tweets into six categories, which are accident, announcement, question, request,
sentiment and traffic condition. They applied machine learning classifier based on Naive
Bayes Model.

Kumar et al. [64] trained a sentiment classification model to detect negative sentiment
about a road hazard from Twitter. The data is collected using search filtering with specific
terms that relate to traffic. Then, naïve Bayes, K-nearest-neighbor and the dynamic language
model (DLM) are used to build models to classify the tweets into a hazard and not hazard.
Semwal et al. [65] applied real-time spatio-temporal analysis on Facebook data to detect
traffic insights. They designed a module to detect the occurrence of events based on the
spike in the number of posts at a specific time period and location. When the number is
more than a threshold, the posts associated with that time and location are analyzed to
evaluate their sentiments. Further, a random forest classifier was used to predict the most
dominant issue for the next day. To address the problem of having an imbalanced dataset,

Sensors 2021, 21, 2993 6 of 33

they used SMOTE. Tejaswin et al. [66] also used random forest classifier to predict traffic
incidents. The traffic incidents are clustered and predicted using spatio-temporal data from
Twitter. The location information is extracted using NLP and background knowledge by
using Freebase API, which is a community-curated structured database containing large
number of entities and each one defied by multiple properties and attributes that helps in
entity disambiguation.

Moreover, D’Andrea et al. [11] collected real-time Italian tweets and classified them
after applying text mining techniques. The tweets are classified into three classes namely,
traffic due to an external event, traffic congestion or crash, and non-traffic. They built a set
of traffic events detected from official news websites or local newspapers and then they
compared the time of detecting an event from these official sites with the time of detection
from Twitter’s stream fetched by their system.

None of the above-discussed approaches have used big data technologies. Salas et al. [44]
used apache spark to process tweets and train model using SVM classification algorithm
to classify them into traffic and non-traffic related tweets. To extract location information,
they used a combination of name entity recognition (NER) such as Stanford NER and a
knowledge base such as Wikipedia.

Suma et al. [67] built a classification model using logistic regression with stochastic
gradient descent to detect events related to road traffic from English tweets using Apache
Spark. Lau [42] used the latent Dirichlet allocation (LDA) topic modeling module to filter
traffic messages. In addition, they used the Spark MLib library and trained classifiers using
SVM, KNN and NB to detect traffic events. A detailed survey of event detection techniques
using twitter data can be found in [68].

2.2. Traffic Events Detection Using Social Data (Arabic Language)

A very limited number of studies have proposed to analyze Arabic social information
for traffic event detection, so first we review the studies about detecting any event not
necessarily related to traffic. Then, we review the works that focus on transport and traffic
events. Finally, we discuss the works that use big data. Alkouz and Alghbari [69] analyzed
English and Arabic data, including standard Arabic and UAE dialectical posts from Twitter
and Instagram to detect and predict traffic jams. They filtered the collected data to keep
only traffic-related data. They used about 2.4 million tweets and 319,125 traffic-related
image captions from Instagram. Further, the text is cleaned, tokenized and then stemmed
using the NLTK root stemmer. Then, they used a predefined list of keywords to classify the
posts into reporting posts or non-reporting posts where reporting posts contain at least one
vocabulary from the list. They developed a tool to identify locations from the text of posts
and/or GPS location. Further, they employed a linear regression model to predict future
traffic jams. Moreover, Alkhatib et al. [70] analyzed tweets written in Modern Standard
Arabic and Dialect Arabic analysis for the purpose of incident and emergency reporting. To
detect incidents and disasters occurring in the UAE, they collected tweets in real-time using
specific keywords, which are a car accident, earthquake, drought, hailstorm, heatwave,
building collapse, riot and civil disorder. They labeled 8000 tweets manually to generate a
training set and collected 82,150 tweets as a testing set. They built classification models
using five machine learning algorithms, which are Polynomial Networks (PN), NB, KNN,
Rachio (RA) and SVM. Moreover, they applied root stemmer and the results showed that
it improves the classification accuracy. Further, they built NER corpus using Wikipedia
to identify certain types of NEs such as building name, event risk and impact level and
number of casualties. To extract location information, they built a dictionary of terms
related to location names in the Dubai city.

Other researchers have proposed a solution to detect events but their main focus was
not on traffic. AL-Smadi and Qawasmeh [71] extracted events about technology, sports,
and politics using unsupervised rule-based technique. Alsaedi and Pete [72] developed a
solution using naïve Bayes and online clustering algorithms to detect disruptive events.
Alabbas et al. [73] detected a high-risk flood using a SVM classifier.

Sensors 2021, 21, 2993 7 of 33

However, none of the above-discussed approaches for event detection from Arabic
have used big data technologies. Alomari and Mehmood [18] developed a dictionary-
based approach using SAP HANA, which is an in-memory processing platform to analyze
Arabic tweets related to traffic congestion in Jeddah city. Additionally, they extracted traffic
congestion causes. Furthermore, they extended their work and applied sentiment analysis
on traffic-related tweets [19]. Moreover, they developed a supervised classification models
using Apache Spark platform to detect eight types of traffic events, which are accident,
roadwork, road closure, road damage, road condition, fire, weather, and social events. The
results show that SVM achieves better results compared to logistic regression and Naive
Bayes algorithm. Subsequently, they extended their work and validate the ability of the
proposed Iktishaf tool [6] in detecting various events, their locations and times, with no
earlier knowledge about the events from about 2.5 million tweets. Further, they designed
a new light stemmer, Iktishaf Stemmer, for Arabic text and study the effect of using it on
the performance. The results show that the performance of the trained model with and
without using the proposed stemmer is almost similar. On the other hand, comparing to
other light stemmers such as Tashaphyne and ISRI, Iktishaf Stemmer helps to minimize the
number of letters removed and eliminate changes on the meaning especially for the words
that related to transportation.

2.3. Solution for Labeling Large Scale Dataset (Any Language)

Manual labeling is a very challenging and expensive process especially with having a
very large dataset and thus supervised learning is hard to applied on big social data. One
of the solutions is crowdsourcing by cooperating with freelancers but one of the issues is
the quality of the work [74]. Besides, crowdsourcing is not a fully automatic approach. In
this section, we discuss the existing works that are similar to us and enables labeling text
automatically to eliminate the need for human experts to label all the training set.

Pandey and Natarajan [75] proposed a system to extract situation awareness (SA)
information and location from Twitter during disaster events. They suggested using semi-
supervised classification instead of the traditional supervised machine learning approach,
which would be tedious and time-consuming in term of labeling. For creating a semi-
supervised model, they manually labeled a small set of tweets and then fed them to the
SVM to classify them into situation awareness and non-situation awareness. Then, they
used the result from this initial classification to self-train the model. However, their model
achieved very low precision and recall value for situation awareness class.

Shafiabady et al. [76] suggested using an unsupervised clustering approach such as
self-organizing maps (SOM) and correlation coefficient (CorrCoef) to group the unlabelled
documents and use them as labelled data to train the SVM for text classification. However,
their approach was applied on documents not on short text such as tweets. Ghahreman
and Dastjerdi [77] applied semi-automatic labelling by combining co-training algorithms
with the similarity evaluation measure. They labelled a small set of data manually, then
they used the SVM algorithm to classify the unlabelled document. After that, based on the
threshold, part of the output is selected. Then, they calculated the similarity between the
selected documents and manually labelled documents

Zewen et al. [78] suggested labeling a few documents automatically using the external
semantic resources e.g., HowNet. Then, they combined the labeled data and most of
the unlabeled training data to train the classifier by semi-supervised learning. To label
the documents automatically, they obtained the knowledge of the category name using
lexical databases as external semantic resources and then they generated a set of features
for the corresponding category. Further, they extracted features from the documents as
a corresponding feature vector. After that, the similarity between each category name
and each text document are calculated to rank the documents and classify them into the
corresponding category. Triguero et al. [79] provided a taxonomy for the self-labeled
techniques. One of the techniques is the addition mechanism. It consists of a variety of
schemes, including incremental, batch and amending.

Sensors 2021, 21, 2993 8 of 33

2.4. Research Gap, Novelty, Contributions, and Utilization

It can be seen from the literature review provided in this section that the works
that use big data technology for traffic-related event detection are limited. To the best
of our knowledge, none of the existing works for Arabic have used big data technology
and platforms. Furthermore, none of them have used automatic labeling to address
the problem of manual labeling of large datasets. The cutting-edge on big data-enabled
social media analytics for transportation-related studies is limited. Many more studies
are needed to improve the breadth and depth of the research on the subject in several
aspects to establish maturity in this area. The research gaps relate to the focus of the
studies, the size and diversity of the data, the applicability and performance of the machine
learning methods, the diversity in terms of the social media languages, the scalability of the
computing platforms, and others [13,21]. The maturity of research in this area will allow
the development, commercialization, and wide adoption of the tools for transportation
planning and operations.

The range of technologies that we have incorporated in the Iktishaf+ tool advances
the state-of-the-art on big data social media analytics in the Arabic language in a number
of ways (some of these contributions related to big data analysis also apply more broadly
to English and other languages). Firstly, the extended tool Iktishaf+ has contributed
multiple big data pipelines and architectures for event detection (in transportation and
other sectors) from social media using cutting-edge technologies including data-driven
distributed machine learning and high-performance computing. Secondly, it incorporates a
novel pre-processing pipeline for Saudi dialectical Arabic that includes irrelevant characters
removal, tokenizer, normalizer, stop words removal, and an Arabic light stemmer to
improve event detection and overall performance. This will help many other works in
the Arabic language to benefit from our work. Thirdly, the tool incorporates a range of
lexicon-based, supervised, and unsupervised machine learning methods for event detection
from social media in the Arabic language to enable smarter transportation and smarter
societies. Using these methods, we have detected various physical and conceptual events
such as congestion, fire, weather, government measures, and public concerns. Fourthly,
the extended tool incorporates an automatic labeling method to reduce the effort, time,
and cost of manual labeling of large datasets. We are not aware of any automatic labelling
work in the Arabic language. Fifthly, we have developed and incorporated methods in
the tool for spatial and temporal information from Twitter data to allow spatio-temporal
clustering and visualization of detected events. Sixthly, we have developed methods for
validating the detected events using internal and external sources. None of the existing
works in English and other languages, particularly Arabic, have reported a similar analysis
of Twitter data for event detection in terms of the richness of the methods, depth of analysis,
and significance of findings. To the best of our knowledge, no work in the Arabic language
exists that has used automatic labelling or big data tools or has reported analysis of a large
number of tweets such as we have in this paper.

The scalability of the software systems for big data analytics is critical and is being
hampered due to the challenges related to the management, integration, and analysis of
big data (the 4V challenges). The use of big data distributed computing technologies is
important because it will allow the scalability and integration of transportation software
systems with each other and with other smart city systems. The ability of the Iktishaf+
tool to execute in parallel could save a month of computing time for the specific dataset
size and the problem addressed in our work and speed up the development process [13].
For larger datasets, executing sequential codes may not even be possible, or distributed
computing could save years of development time.

The utilization possibilities of our tool are many. For example, governments could
learn about the various events, public concerns, and reactions related to certain govern-
ment policies, measures, and actions (in pandemic and normal times) and develop policies
and measures to address these concerns. The public could raise their concerns and give
feedback on government policies. The public could learn about various public and in-

Sensors 2021, 21, 2993 9 of 33

dustry activities (such as fires, social events, and other events, and economic activities
detected by our tool in the earlier work [13]) and get involved in these to address financial,
social, and other difficulties. The standardization and adoption of such tools could lead
to real-time surveillance and the detection of transportation-related or other events, or
disease outbreaks (and other potentially dangerous phenomena) across the globe and allow
governments to take timely actions to prevent various risks, the spread of diseases, and
other disasters. The international standardization of such tools could allow governments
to learn about the impact of policies of various countries and develop best practices for
national and international response.

3. Iktishaf+: Methodology and Design

Figure 1 illustrates the Iktishaf+ architecture. It consists of nine components, which are:
(1) Data Collection and Storage Component, (2) Data Pre-Processing Component, (3) Tweets
Labeling Component, (4) Feature Extractor Component, (5) Tweet Filtering Component,
(6) Event Detection Component, (7) Spatio-Temporal Extractor Component, (8) Reporting
and Visualization Component and (9) External and Internal Validation Component. The
next subsection explains the tools and libraries used to develop Iktishaf+. Sections 3.2–3.10
elaborate each component in detail.

3.1. Tools and Libraries

Iktishaf+ is built over the Apache Spark platform, which enables in-memory pro-
cessing on distributed data. The main libraries that have been used are Spark ML and
Spark SQL. Spark.ML is a new package introduced in Spark 1.2. Unlike the Spark.MLlib
package that was built on top of RDDs, Spark.ML contains higher-level API built on
top of DataFrames creating and tuning practical machine learning pipelines. Moreover,
the script was written using Python and runs on the Aziz supercomputer, a Fujitsu 230
TFLOPS machine comprising around 500 nodes, each with 24 cores. Besides, Fujitsu Ex-
abyte File System (FEFS) has been used to provides high performance storage space as
well as Scalable I/O performance. FEFS is a scalable parallel file system based on Lustre.
The Aziz supercomputer supports running Spark with YARN, which allocates resources
across applications.

Figure 2 shows the architecture of Apache Spark with YARN. Spark applications can
run as independent sets of processes on a cluster. It acquires Executors on cluster nodes.
The SparkContext is responsible for coordinating the application and enable connecting
YARN. Then, it sends tasks to the executors to run computations for the application.

Sensors 2021, 21, 2993 10 of 35

Figure 2. Spark Application Run on Yarn.

3.2. Data Collection and Storage Component (DCSC)
We collected the data using the Twitter REST API, which enables collecting historical

data. The returned data by the Twitter API are encoded using JavaScript Object Notation
(JSON). Each tweet object includes a unique ID, the text content itself, a timestamp that
represents when it was posted, and many child objects such as ‘user’ and ‘place’. Based
on their documentation [80], a tweet can have over 150 attributes associated with it. Each
child object encapsulates attributes to describe it. For instance, the ‘user’ object contains
‘name’, ‘screen_ name’, ‘id’, ‘followers_count’, and others. Some of the attributes belong
to ‘user’ object can be filled in manually by the user such as ‘description’ and ‘location’.
Additionally, each tweet includes the ‘entities‘ object, which encapsulates several attrib-
utes such as ‘hashtags’, ‘user_mentions’, ‘media’, and ‘links’. The example in Figure 3
shows the core attributes of a tweet object.

We fetch Arabic tweets posted by the users in Saudi Arabia by using geo-filtering.
Besides, we searched for tweets using hashtags that included cities name. Both methods
ensure collecting tweets about Saudi Arabia or posted from any place inside it, but not
necessarily related to road traffic. Moreover, we created a list of specialized accounts that
post about transportation and traffic condition in Saudi Arabia and then use them to ob-
tain traffic-related tweets. We collected data in the period between September 2018 and
October 2019. The total number of the collected tweets is 33.5 million. After that, we clean
the data by removing duplicates and the retweets.

For storing the collected tweets, we need a storage method that provides flexible
schemas to store/retrieve the data. So, we found that the NoSQL databases are more ap-
propriate comparing to the traditional table structures in relational databases. One of the
common types of NoSQL databases is a document-oriented database. In this type, each
key is paired with the document of various document data types, such as XML and JSON.
One of the most widely used document-oriented databases is MongoDB. Thus, we used
MongoDB to store the fetched tweets using Twitter API.

Moreover, we use parquet file storage. The Parquet is a column-oriented format. It is
supported by many data processing systems including Apache Spark. Furthermore, it en-
ables very efficient compression. We select it to store the output after each stage because
it is efficient and provides good performance for both storage and processing. Besides,
Spark SQL supports both reading and writing Parquet files that automatically preserves
the schema of the original data. After reading data from the Parquet file, it is stored in

Figure 2. Spark Application Run on Yarn.

Sensors 2021, 21, 2993 10 of 33

3.2. Data Collection and Storage Component (DCSC)

We collected the data using the Twitter REST API, which enables collecting historical
data. The returned data by the Twitter API are encoded using JavaScript Object Notation
(JSON). Each tweet object includes a unique ID, the text content itself, a timestamp that
represents when it was posted, and many child objects such as ‘user’ and ‘place’. Based
on their documentation [80], a tweet can have over 150 attributes associated with it. Each
child object encapsulates attributes to describe it. For instance, the ‘user’ object contains
‘name’, ‘screen_ name’, ‘id’, ‘followers_count’, and others. Some of the attributes belong
to ‘user’ object can be filled in manually by the user such as ‘description’ and ‘location’.
Additionally, each tweet includes the ‘entities‘ object, which encapsulates several attributes
such as ‘hashtags’, ‘user_mentions’, ‘media’, and ‘links’. The example in Figure 3 shows
the core attributes of a tweet object.

Sensors 2021, 21, 2993 11 of 35

Spark DataFrames, which is equivalent to a table in a relational database or a data frame
in R/Python. However, it provides richer optimizations.

Figure 3. A Tweet Object.

3.3. Data Pre-Processing Component (DPC)
We use pre-processing component proposed in our earlier work, Iktishaf [6]. Algo-

rithm 1 shows the Iktishaf+ pre-processing algorithm. It received the collected tweets, the
Arabic diacritics [D], punctuations [P], and Arabic stop words [SW] as an input while the

Figure 3. A Tweet Object.

Sensors 2021, 21, 2993 11 of 33

We fetch Arabic tweets posted by the users in Saudi Arabia by using geo-filtering.
Besides, we searched for tweets using hashtags that included cities name. Both methods
ensure collecting tweets about Saudi Arabia or posted from any place inside it, but not
necessarily related to road traffic. Moreover, we created a list of specialized accounts that
post about transportation and traffic condition in Saudi Arabia and then use them to obtain
traffic-related tweets. We collected data in the period between September 2018 and October
2019. The total number of the collected tweets is 33.5 million. After that, we clean the data
by removing duplicates and the retweets.

For storing the collected tweets, we need a storage method that provides flexible
schemas to store/retrieve the data. So, we found that the NoSQL databases are more
appropriate comparing to the traditional table structures in relational databases. One of
the common types of NoSQL databases is a document-oriented database. In this type, each
key is paired with the document of various document data types, such as XML and JSON.
One of the most widely used document-oriented databases is MongoDB. Thus, we used
MongoDB to store the fetched tweets using Twitter API.

Moreover, we use parquet file storage. The Parquet is a column-oriented format. It
is supported by many data processing systems including Apache Spark. Furthermore, it
enables very efficient compression. We select it to store the output after each stage because
it is efficient and provides good performance for both storage and processing. Besides,
Spark SQL supports both reading and writing Parquet files that automatically preserves
the schema of the original data. After reading data from the Parquet file, it is stored in
Spark DataFrames, which is equivalent to a table in a relational database or a data frame in
R/Python. However, it provides richer optimizations.

3.3. Data Pre-Processing Component (DPC)

We use pre-processing component proposed in our earlier work, Iktishaf [6]. Algo-
rithm 1 shows the Iktishaf+ pre-processing algorithm. It received the collected tweets, the
Arabic diacritics [D], punctuations [P], and Arabic stop words [SW] as an input while the
output is clean, normalized, and stemmed tokens. The collected tweets are exported from
MongoDB and stored in Apache Spark DataFrame. The next subsections explain the main
pre-processing steps.

3.3.1. Irrelevant Characters Removal

We removed Arabic diacritics, punctuation marks. English letters and numbers.
For Arabic diacritics, we created a list of all the three forms of diacritics suggested by
Diab et al. [81]. The first form is vowel diacritics. It refers to the three main short vowels,
named in Arabic as Fatha (�), Damma (�) and Kasra (�) as well as the Sukun diacritic (�),
which indicates the absence of any vowel. The second form is nunation diacritics, which
are named in Arabic as Fathatan (�

'�), Dammatan (�
'�) and Kasratan (�

'�). They represent the
doubled version of the short vowels. The third form is called Shadda (germination) and
refers to the consonant-doubling diacritical (�). It also can be merged with diacritics from

the two previous types and result in a new diacritic such as (�), (�
'�). Therefore, the total

number of Arabic diacritics is thirteen diacritical marks. All of them will be removed from
the text.

Furthermore, we created a list of all the punctuation marks such as commas, period,
colons, both Arabic and English semi-colons, and question marks, in addition to the
different types of brackets, slashes and mathematical symbols as well as the other signs
such as $, %, &, and @. For the hashtags, we strip only the hash (#) and underscore (_)
symbols and keep the keywords because it may contain useful information such as the
place or event name.

Sensors 2021, 21, 2993 12 of 33

Algorithm 1 Pre-Processing.

Input: tweets; [D]; [P]; [SW]
Output: Clean, normalized and stemmed tokens

1 $spark← createSparkSession()
2 tweets_DF← spark.read(tweets)
3 ForEach tweet in tweets_DF[’text’] do

// Remove Irrelevant Characters

4 clean_tweets← ""
5 For char in tweet do
6 If char not in [D] AND char not in [P] AND not char.isdigit() AND not char.isEnglishChar()

then
7 clean_tweets.append(char)
8 end

// Tokenize

9 tokens← []
10 tokens← clean_tweets.split()

// Normalize

11 normalized_tokens← []
12 For token in tokens do

13 For alif in [’

@’, ’ @

’, ’

�
@’] do

14 If alif in token then
15 token← token.replace(alif, ’ @’)

16 end
17 If token.endswith(’ ø

’) or token.endswith(’ ø’) then

18 token← token.replaceLastCharWith(’ø’)

19 If token.endswith(’ �
è’) then

20 token← token.replaceLastCharWith(’ è’}

// Remove Stop Words

21 If token not in [SW] then
22 normalized_tokens.append(token)
23 end

// Stemmer

24 stemm_tokens← stemmer(normalized_tokens)
25 End

3.3.2. Tokenizer and Normalizer

To divide the text into a list of words (tokens), we used a split() method in python,
which returns a list of substrings after breaking the giving string by a specified separator,
in our case the separator is any white space in the text. After that, the tokens are passed to
the normalizer to replace letters that have different forms into the basic shape. The letter (@)

pronounced Alif had three forms (

@, @

,

�
@). It will be normalized to bare Alif (@). Besides, the

letter (ø

) pronounced Yaa will be normalized to dotless Yaa (ø). In addition, the letter (�
é�)

pronounced Taa marbutah will be normalized to (é�).

3.3.3. Stop-Words Removal

The Natural Language Toolkit (NLTK) [82] provided a stop-words list for Arabic
Language. However, it was designed for the formal Modern Standard Arabic. Therefore,
we modified the list and added new stop-words that usually used in dialectical Arabic such
as “ �

��
Ë”, “ú

ÎË@” and others. Subsequently, we considered common grammar mistakes. For

Sensors 2021, 21, 2993 13 of 33

instance, the preposition “ú
�
æÓ” might be written “ A

�
JÓ” and “ 	áºË” might be written “ 	á» B”.

Besides, we added the common words that are used in Du’aa (prayer) such as “H. PAK
”,

“ÑêÊË @”, “ é<Ë @” because they are frequently used and keeping them is not necessary, in our
particular case. Before using the final generated stop-words list, we normalized them
because they will be stripped from normalized tweets.

3.3.4. Stemmer

The existing Arabic stemmer tools can be categorized into two types, which are root-
based stemmer and light stemmer. The first type extracts the root of the words while the
light stemmers strip affixes (prefixes and suffixes). However, root-based stemmers are a
heavy stemmer and known to have some weaknesses such as increasing word ambiguity.
Thus, in this work, we decided to use a light stemmer. However, most of the existing
Arabic light stemmers can lead to removing important parts of the word which results in
a few letters with no meaning. Therefore, we used the developed Arabic Light Stemmer,
Iktishaf Stemmer [6]. It is designed to strip affix based on the length of the word to reduce
the chance of stripping important letters which could lead to change the meaning or losing
important words particularly the words that are related to transportation. Algorithm 2
shows the algorithm of the proposed stemmer. It gets the normalized tokens, the lists
of prefixes [P], and suffixes [S] as input. For prefix, we divide them into three lists, each
list contains specific prefixes that do not usually come together in one word. P1 includes
prefixes such as “¼”, “ð”, “

	
¬”, “H. ” whereas P2 contains “ AÓ”, “ AK
” and P3 includes prefixes

such as “È@”, “ÉË”, “È@ð”, “ÈA
	
¯”, “ÈA¿”, “ÈAë”. Both P1 and P2 will be removed only if the

token length is greater than 5 to decrease the chance of making mistakes and stripping
important letters that are part of the token. For instance, “ èYK
QK.” city starts with “H. ” but
the length is greater than 5 so it will not be affected by stemmer. On the other side, any
prefixes in P3 will be stripped if the length of the word is greater than 4. Moreover, we
take into consideration that the word may contain more than one prefix so the first list of
prefixes contains the prefixes that come at the beginning of the word. For instance, the
word “ I. �A

	
JK
AÖß.” contains two prefixes: ‘H. ’, which is in P1 and ‘ AÓ’, which is in P2 so ‘ AÓ’

will be stripped after ‘H. ’.

Similarly, for suffix, we have three lists. S1 contains suffixes such as, “ Aë”, “Õ»”, “ 	á»”,

“Ñë”, “ 	áë”, “ A
	
K”, “ú

	
G”, “ AÓ”, “ 	á

�
K” while S2 contains “ 	áK
”, “ 	

àð”, “ 	
à@”, “ @ð”. To clarify, we give

an example of the verb “
	

¬QªK
”. It can be ended with any of the following suffixes: Õ», 	
àð,

	áë, A
	
K, Aë, ú

	
G, Ñë. It may also contain two suffixes like in “Ñî

	
Eñ

	
Q̄ªK
”, which contains “ 	

àð”

and “Ñë” So, “Ñë” will be removed first because it is in S1 and then “ 	
àð”will be removed

in the next step.
After removing any suffix from the previous lists, we check the last letter in the word

to see if it becomes end with ‘ �
H’ to replace it with ‘ è’. For example, the word “Ñî

�
EPAJ
�”

(their car) will become “ �
HPAJ
�” after removing “Ñë” but the correct spelling is “ èPAJ
�” so

we need to replace ‘ �
H’ with ‘ è’.

Subsequently, the stemmer removes suffix in S3, which are ‘ è’, ‘ø’ only if the length
of the word is greater than five and thus, we reduce the chance of stripping them if they
are part of the word like the ‘ è’ in the previous example “ èPAJ
�”. It will not be removed
because the word consists of 5 letters. After that, we check if the new stemmed token ends
with ‘ �

H’ to replace it with ‘ è’. For example, the words “ú
�
GPAJ
�” (my car) or “ é

�
KPAJ
�” (his

car) will become after stemming “ �
HPAJ
�”, so we need to replace the last letter to make it

“ èPAJ
�”. The final suffix is ‘ �
H@’ and it will be replaced with ‘ è’. For instance, “ �

H@PAJ
�” (cars)

Sensors 2021, 21, 2993 14 of 33

will become “ èPAJ
�”. Finally, we check the length of the word after striping suffixes and
prefixes and keep only words that have at least two characters.

Algorithm 2 Stemmer.

Input: normalized_tokens; [P1]; [P2]; [P3]; [S1]; [S2]; [S3]
Output: Stemmed tokens

1 stemm_tokens← []
2 ForEach nToken in normalized_tokens do

// Remove Prefix

3 If nToken.length() > 4 then
4 If nToken.length() > 5 and nToken.startWithany([P1]) then
5 nToken← nToken.removeStartWith([P1])
6 If nToken.length() > 5 and nToken.startWithany([P2]) then
7 nToken← nToken.removeStartWith([P2])
8 If nToken.startWithany([P3]) then
9 nToken← nToken.removeStartWith([P3])

\\ Remove Suffix

10 If nToken.length() > 5 then
11 If nToken.endWithany([S1]) then
12 nToken← nToken.removeEndsWith([S1])
13 If nToken.endWith(’ @’) then

14 nToken← nToken.removeEndWith(’ @’)

15 If nToken.endWith(’ �
H’) then

16 nToken← nToken.replaceWith(’ è’)

17 If nToken.endWithany([S2]) then
18 nToken← nToken.removeEndWith([S2])
19 If nToken.endWith(’ @’) then

20 nToken← nToken.removeEndWith(’ @’)

21 If nToken.endWith(’ �
H’) then

22 nToken← nToken.replaceWith(’ è’)

23 If nToken.endWithany([S3]) then
24 nToken← nToken.removeEndWith([S3])
25 If nToken.endWithany(’ @

�
H’) then

26 nToken← nToken.replaceWith(’ è’)

27 If nToken.endWith(’ �
H’) then

28 nToken← nToken.replaceWith(’ è’)

29 If nToken.length() >1 then
30 stemm_tokens.append(nToken)
31 End

3.4. Tweets Labeling Component (TLC)

To generate a training set for the classifiers, we need labeled tweets. Since we have a
very large dataset of around 33.5 million tweets, manual labeling will be very expensive
and time-consuming process. We manually labeled approximately twenty thousand tweets
of the total 33.5 million tweets and then we combined them with automatically labeled
tweets using the automatic labeling approach. The manually labeled tweets also help us
to generate dictionaries for automatic labeling since it is a lexical based approach. The
following subsections explain the proposed approach for labeling tweets about event
classifiers and tweets filtering classifier. Even though we detect events after filtering tweets,
we will start with labeling events because the output will be used later on to label the
tweets into relevant and irrelevant.

Sensors 2021, 21, 2993 15 of 33

3.4.1. Automatic Labeling for Events Tweets
Creating Dictionaries

For each event type, we automatically generated a dictionary that contains the top
frequent terms using the manual labeled tweets. We manually updated each dictionary to
include the missing terms related to each event type in addition to add synonyms. Both
manually and automatically added terms in the dictionaries are passed to the stemmer
since the search for matching terms will be applied to the tweet after pre-processing. We
used Iktishaf light stammer (see Section 3.3.4).

The dictionaries contain a group of terms but we cannot use them directly to search
for matching tweets because the degree of relevance to the event type is not equal for all
the terms. Therefore, for each event type, we created an N number of terms list. Each list is
considered as a level. So, we have N number of levels (L1, L2, ..., Ln). Each term T in the
event dictionary is assigned to a level based on the degree of the importance of this term
to the event. Thus, the terms that are highly related to the event and almost exist in each
report about this event are assigned to the first level (L1) while the last level contains terms
that are least related to the event.

Furthermore, we gave each list a weight W based on the level it belongs to, which
means we have N weights (W1, W2, . . . , Wn). Wn is the highest weight so it is assigned
to L1 which contains the most important terms. In this work, we used 4 levels of terms.
To clarify, for Accident event, Level 1 includes terms such as Accident (�

HXAg) and crash

(ÐY�), Level 2 contains terms such as car (èPAJ
�), driver (�
�

KA�) and, road (�

�K
Q£), Level 3

include Ambulance (
	

¬Aª�@) and death(èA
	
¯ð) while the last level (Level 4) contains the less

important/relevant terms such as cause (I. �. ��
).
Algorithm 3 shows the automatic labeling algorithm. It receives the pre-processed

tweets (tweets_P), term dictionaries (terms_D), and event types (event_T) as input and
provides the labeled tweets as an output. Apache Spark is used and the pre-processed
tweets are stored in Spark Dataframe (tweets_DF). For each token in the tweet, it searched
for the matched term in the terms dictionary. The “Find Matching Terms” section explains
the process of searching for the matching terms. After that, weight is calculated for each
labeled tweet. The section “Weight Calculation” clarifies the process of weight calculation.
The last step is sorting and filtering the labeled tweets based on the calculated weight, see
section “Sort and Filter Automatic Labeled Tweets” for further details.

Find Matching Terms

For each tweet, we applied the pre-processing steps explained in Section 3.3 to remove
irrelevant characters, divide the text into tokens, normalize the tokens, remove the stop
words, and apply stemmer. The output is N number of clean normalized and stemmed
tokens (K1, K2, . . . , Kn). Moreover, we iterated over each tweet and for each token K, we
searched for the match terms in the term levels (L1, L2, . . . , Ln). The output is a list of
existing terms in each level as shown below where Tx is the matching term:

Lx1 = [Tx1 , Tx2, . . . , Txn], . . . , Lxn = [Tx1 , Tx2, . . . , Txn] (1)

Sensors 2021, 21, 2993 16 of 33

Algorithm 3 Automatic Labeling for Events.

Input: tweets_P; terms_D; event_T
Output: Labeled tweets

1 spark← createSparkSession()
2 tweets_DF← spark.read(tweets_P)
3 n← get_levels_num(terms_D)
4 ForEach tweet in tweets_DF do
5 tokens← get_tokens(tweet)
6 forEach event in event_T do
7 term_levels← terms_D[event]
8 forEach token in tokens do
9 l← 1
10 stopSearch← False
11 while l < n do
12 If !stopSearch then
13 ForEach term in term_levels[l] do
14 If term.isEqual(token) then
15 matchedTerms← add(term,l)
16 stopSearch← True
17 break
18 end
19 l← +1
20 end
21 end
22 tweet_weight[event]← calculate_weight(matchedTerms)
23 end
24 tweets_DF[’weight’]← tweet_weight
25 end
26 tweets_label_DF← sort_and_filter(tweets_DF[’weight’])

Weight Calculation

We filtered the tweets to keep only the tweets contain at least one term from the high-
level (L1), except for roadwork/damage event type, we keep tweets that contain at least
one term from level (L1) and at least one term from level (L2). For roadwork/damage event,
L1 includes terms such as maintenance (é

	
KAJ
�), development (QK
ñ¢

�
�) while L2 include terms

such as road (�
�K
Q£), street (¨PA

�
�). So at least on terms from each level should be found to

assign a label to a tweet. After that, the weight is calculated using the following equation:

WE = {(size(Lx1)×Wn) + (size(Lx2)×Wn−1) + . . . + (size(Lxn)×W1)} (2)

where WE is the total weight for the event E, Lx is the list of matching terms and W is the
weight assigned for this level. Since we have 4 levels, the highest weight is 4, so, each of
the term Tx that was found in Level Lx1 has a weight equal to 4.

Sort and Filter Automatic Labeled Tweets

We used the weight to sort the labeled tweets and then we filtered them. Furthermore,
we specified a threshold to discard labeled tweet that has low weight and kept tweets that
have high weight because they are most likely related to the event. The same process is
repeated for each event type. We take into consideration during this process that the tweet
can have multiple labels.

Testing and Evaluation

The testing and evaluation of the proposed automatic labeling tool are performed in
two stages. The first stage is in the beginning in order to update and modify the list of
terms in each level in the dictionary such as moving terms from level to another level or
adding new terms. After each initial labeling iteration, we extracted the top vocabularies

Sensors 2021, 21, 2993 17 of 33

to search for the new important terms that are not yet included in the dictionary of that
event. For instance, for the first iteration, most of the weather event is about rains so the
automatic generated dictionary contains terms related to rains. So, this stage is important
to insert missing terms and then we manually update the dictionary to add their synonyms
if they exist. The second stage is applied to randomly selected tweets to make sure that the
tweets are labeled correctly. The main goal is reducing the number of false positive (labeled
as an event but it is not) more than the number of false negatives (event but labeled as not
related) to reduce the chance of making mistakes and including none event tweet in the
training set of events classifiers. Besides, missing a few events tweets will not have a major
effect on the size of the training set.

3.4.2. Automatic Labeling for Irrelevant Tweets

Before detecting the event, we need to train a classifier to classify the tweets into
relevant and irrelevant to traffic. The training set contains positive tweets (related to traffic)
and negative tweets (not related). Even though we train the filtering classifiers before the
events classifiers, we generate the training set for event before filtering classifiers. The
output from the automatic event labeling process is used for a positive class for tweet
filtering. For negative class, we applied another automatic filtering approach by searching
for the tweets that do not contain any terms related to traffic and transportation. We
searched in the tweets collected by geo-filtering and we excluded tweets posted by any
account related to traffic.

3.5. Feature Extractor Component (FEC)

We used CountVectorizer and IDFModel algorithms provided in the Spark ML pack-
age to generate the feature vectors and rescale them. IDFModel applied TF-IDF (Term
Frequency-Inverse Document Frequency), which reflects the importance of a token to a
document (tweet) in a corpus. The TF-IDF is the product of TF and IDF where TF (t, d) is
the frequency of the appearance of token t in document d while the IDF is calculated using
Equation (3). A detailed explanation was given in our earlier paper [6]:

IDF(t, D) = log
|D|+ 1

DF(t, D) + 1
(3)

3.6. Tweets Filtering Component (TFC)
3.6.1. Model Training

To filter tweets into related to road traffic and not related, we built a classifier using
ML supervised classification algorithms. After labeling the tweets using both automatic
and manual labeling approach, we used the Spark ML library to build and train the models.
We built three models using SVM, naïve Bayes and logistic regression algorithms. We
have an imbalanced dataset because in our work, the number of samples for the negative
class (not related to traffic) is much higher than the positive class (traffic-related). This will
lead to misleading evaluation results, especially for accuracy. To address this issue, we
applied a random under-sampling approach to randomly remove some tweets from the
negative class.

3.6.2. Hyperparameter Tuning

After data processing and feature extraction, we need to tune the parameters to obtain
the best performance model. Grid search is one of the well-known ways to search for the
best tuning parameter values. To do that, we need to specify a set of candidate tuning-
parameter values and then evaluate them. Cross-validation can help to generate samples
from the training set to evaluate each distinct parameter value combination and see how
they perform. After that, we can get the best tuning parameter combination and use them
with the entire training set to train the final model.

Sensors 2021, 21, 2993 18 of 33

Spark ML supports model selection using tools such as CrossValidator to select a
relatively reasonable parameter setting from a grid of parameters. We used 5-fold cross-
validation, so CrossValidator will generate five (training, testing) dataset pairs. Then, the
average evaluation metric for the five models will be computed and the best parameter
will be founded. In the future, we plan to improve our method and use 10-fold validation.

3.6.3. Classification Model Evaluation

We compare the performance using the common evaluation metrics, which are accu-
racy, recall, precision and f-score. The model that achieves higher results is selected for
the final classification of tweets. Since we are using binary classification to classify into
relevant (class 1) and irrelevant (class 0), tuning the prediction threshold is very important.
The default threshold is 0.5 and it can be any value in the range [0, 1]. If the estimated
probability of class label 1 is greater than the specified threshold, the prediction result will
be 1, otherwise, it will be class 0. Thus, specifying a high threshold value will encourage the
model to predict 0 more often and vice versa. In our case, we need to minimize the chance
of making mistakes and predicting 0 (irrelevant) as 1 (relevant) so we set the threshold
to 0.8.

3.7. Events Detection Component (EDC)

We focus in this work on detecting the following event types: Fire, Weather, Social,
Traffic Condition, Roadwork/Road Damage, and Accident. The tweets are labeling using
the labeling method explained in Section 3.4. The classes are not mutually exclusive where
the tweet can be about multi-events at the same time. For instance, the tweet might explain
the accident that occurs due to bad weather. Hence, two labels will be assigned to this
tweet, which are accident and weather. To address the issue, we used a binary classification.
We trained a model for each event type. For each model, we need positive and negative
samples. Assume we have event type T, the tweets that are labeled as T considered as
positive samples while all the remaining tweets that belong to the other events types
are considered negative samples. Moreover, tweet that has more than one label such as
accident and weather will be included in the positive class in the training set of accident
as well as weather during training both classifiers. However, as the number of tweets on
the negative class is very large compared to the positive because it includes all the tweets
about the other events types, we have an imbalance dataset problem. To address this
problem, we followed the same approach explained in Section 3.6.1 by applying a random
under-sampling approach.

3.8. Spatio-Temporal Extractor Component (STEC)

The location is the foremost matter of interest in transportation analysis and event
detection domain. Thus, we applied different techniques for location extraction from the
Tweet object.

3.8.1. Text, Hashtag and Username

The main approach is extracting location details which are mentioned within the post.
It might be explicitly mentioned in the tweet’s message or it might exist as part of the
hashtags or accounts name especially if the tweets are posted by a specialized account that
posts about the events and traffic condition in the cities. We created a list of cities name in
Saudi Arabia to search for cities name in the tweet message. We pass the Arabic names list
to the stemmer before using them to extract the place name from text because we extract
them from pre-processed text. In addition, we searched for the cities name in English to
extract them from accounts or hashtags using a predefined list of cities’ names in English.
We also created a list of specialized accounts that post about traffic in Saudi Arabia cities
and does not include a city name. After that, we use this list to find the city name based on
the username.

Sensors 2021, 21, 2993 19 of 33

3.8.2. Tweets Geo Attributes

One of the approaches is obtaining coordinates in geotagged tweets by getting latitude
and longitude from ‘coordinate’ or ‘place’ objects. The ‘place’ child object consists of several
attributes including ‘place_type’, ‘pl ce_name’, ‘country_code’. The place type is either city
or point of interest (poi). However, a small fraction of tweets are geotagged because most
of the users used to disable location services in their smartphones for privacy reasons.

3.8.3. User Profile

The location information is also extracted from user profiles where they usually
manually write the country and city name. We have to consider that this information might
be written in Arabic or English and they use different spelling. For instance, Makkah can
be written as Makkah or Mecca. The text is tokenized and then passed to the stemmer
before searching for the city name using the created dictionaries.

We cannot rely on the geo attributes alone because geo coordinates information
might not have been provided especially for users who disable location services in their
smartphones where the value will be ‘null’ in this case, as shown in the JSON example
in Section 3.2. Similarly, we cannot rely on profile information alone because users do
not always fill in these fields with accurate information. In addition, they might travel
to another city/country so the profile information, does not reflect the current location.
Besides, both approaches do not necessarily represent the place of the event because users
might post about events that occur in other cities.

In this work, we considered the text as the main source of location information because
it is more accurate than the other attributes besides, we need to find the location where the
events occur not where they were posted. If the information does not exist, we extract them
from coordinates or place attributes. The last option is to find location from the profile
because it is less accurate than the other since users specify their information in the profile
manually and they do not usually update them whenever they travel to another city. For
visualization, the geospatial coordinates of the detected locations are extracted to enable
plotting them on the map.

3.9. Reporting and Visualization Component (RVC)

This component supports plotting the output of the spatio-temporal information
extraction component and event detection components to show the detected events and
their location and time of occurrence. Also, it supports finding peak events based on
configurable parameters as well as visualize the results. Algorithm 4 shows the peak events
reporting algorithm. It enables searching for hourly, daily and monthly peak events when
the tweets intensity exceeds a specific threshold value.

Moreover, this component supports visualizing the results of the model evaluation
(see Section 3.6.3) for both tweet filtering and event detection components to illustrate
which algorithm achieved better results.

Algorithm 4 Peak Events Reporting.

Input: event_Tweets; event_Types; threshold; duration
Output: Peak events list

1 for event in event_Types do
2 for d in duration do

// Duration can be Hours, Days or Months

3 peakEvent← [[[]
4 for tweet in event_Tweets[event] do
5 if tweet.intensity() >threshold then
6 peakEvent.append(tweet)
7 end
8 end
9 End

Sensors 2021, 21, 2993 20 of 33

3.10. External and Internal Validation Component (EIVC)

To validate Iktishaf+ tool and its ability to detect events and their spatial and temporal
nature. We searched against various sources on the web including news media. Then, we
compared the information extracted by our tool with the information in the web sources.
However, news media do not report all the existing events and even if they report them,
they might not mention the time of occurrence. In this case, we searched in the tweets
we have, related to the event, to find the validation information we need. We consider
this process as an internal validation because it is based on the collected tweets. To find
time information, we go back to the earliest tweet we have about the event and if the time
is not mentioned explicitly in the tweet text, we refer to the time of posting the tweet as
the starting time of the event. The process of searching in the external sources was done
manually, but we plan to automate it in the future.

4. Analysis and Results
4.1. Detected Events
4.1.1. Validation of Detected Events

To validate the ability of iktishaf+ and verify if a detected event really happened
on the same detected date and location, we searched against external validation sources
(news media) or an internal source (Twitter) (see Section 3.10). Table 1 shows a comparison
between information extracted by Iktishaf+ and information from external/internal sources.
We cannot discuss all the detected events, due to the limited number of pages allowed
and the large period we are covering in this work (September 2018–October 2019). So, we
selected samples of different event types occurred in different time and location. Column
1 shows the event types. Column 2 lists the location (city name) where the event occurs
as we found from searching in various external sources as well as the location extracted
by our tool. Column 3 gives the date when the events occur. Column 4 gives the time of
occurrence to assess the ability of our tool to detect the time. We compared the starting
time mentioned in the web sources with the peak time showing by Iktishaf+. As explained
in Section 3.10 the time information may not be mentioned in the news reports. So, in this
case, we searched in the collected tweet and get the earliest tweet about this event. Then,
we extracted the time from the timestamp attached to the tweet.

Table 1. Example of Validation.

Event
Type

Location Date Time

Validation
Sources Iktishaf+ Validation

Sources Iktishaf+ Validation
Sources Iktishaf+

Fire
Riyadh 1/10/2018 Started at

3 p.m.
Found peak

around 4 p.m.

Jeddah 29/9/2019 Started at
12:35 p.m.

Found peak
around 12 p.m.

Weather Makkah and Jeddah 23/11/2018

Started at
dawn

(before
5:42 a.m.)

Found peak
around 4 a.m.

Accident Riyadh 8/10/2018
Started
around

4:48 a.m.

Found peak
around 5 a.m.

Moreover, we drew charts to display the time extracted by Iktishaf+ for each event in
the table. Further, the locations of each event are overlayed on top of the Saudi Arabia map.

Row 1 shows the “Fire” event on 1 October 2018. Figure 4 illustrates the locations.
Note the largest circle in Riyadh city, this matches the information found in the newspaper,
where they reported about a huge fire that broke out at a power plant in Riyadh [83]. They

Sensors 2021, 21, 2993 21 of 33

also mentioned that the Saudi Civil Defense received notification about the fire at 3 p.m.
Figure 5 shows the time extracted by our tool. It can be seen that the intensity started
raising at 3 p.m. and the highest peak was at 4 p.m.

Sensors 2021, 21, 2993 22 of 35

object and assumed that it was the time of occurrence (see Section 3.10). This is the English
translation for the earliest tweet we found about this event “Congestion in every street
and accident in the Alwashm bridge, stations crowded, crowded everywhere in Riyadh
#Riyadh_now”. The time attached to this tweet is “Mon Oct. 08 04:48:17 +0000 2018” and
the first peak time detected by Iktishaf+ as shown in Figure 11 is at 5 a.m. Therefore, it can
be seen from the discussed results above that the information from external or internal
validation sources matches the information detected by Iktishaf+, which proves the ability
of our tool to automatically detect events and their location and time without prior
knowledge.

Figure 4. Fire Event on 1 October 2018.

Figure 5. Intensity of Detected Fire Event in Riyadh (1 October 2018).

Figure 4. Fire Event on 1 October 2018.

Sensors 2021, 21, 2993 22 of 35

object and assumed that it was the time of occurrence (see Section 3.10). This is the English
translation for the earliest tweet we found about this event “Congestion in every street
and accident in the Alwashm bridge, stations crowded, crowded everywhere in Riyadh
#Riyadh_now”. The time attached to this tweet is “Mon Oct. 08 04:48:17 +0000 2018” and
the first peak time detected by Iktishaf+ as shown in Figure 11 is at 5 a.m. Therefore, it can
be seen from the discussed results above that the information from external or internal
validation sources matches the information detected by Iktishaf+, which proves the ability
of our tool to automatically detect events and their location and time without prior
knowledge.

Figure 4. Fire Event on 1 October 2018.

Figure 5. Intensity of Detected Fire Event in Riyadh (1 October 2018). Figure 5. Intensity of Detected Fire Event in Riyadh (1 October 2018).

Row 2 validates another “Fire” event. As we found in the web source [84], it was a
massive fire that ripped through the main station of the Haramain high-speed railway in
Jeddah city on 29 September 2019. It started at 12:35 p.m. according to the Haramain high-
speed railways’ Twitter account. Further, it burned for hours before it was brought under
control. Figures 6 and 7 show the location and time information extracted by Iktishaf+.
Note the largest circle in Jeddah city as well as the peak time around noon as shown in
Figure 7.

Sensors 2021, 21, 2993 22 of 33

Sensors 2021, 21, 2993 23 of 35

Figure 6. Fire Event on 29 September 2019.

Figure 7. Intensity of Detected Fire Event in Jeddah (29 September 2019).

Figure 6. Fire Event on 29 September 2019.

Sensors 2021, 21, 2993 23 of 35

Figure 6. Fire Event on 29 September 2019.

Figure 7. Intensity of Detected Fire Event in Jeddah (29 September 2019).

Figure 7. Intensity of Detected Fire Event in Jeddah (29 September 2019).

Furthermore, Row 3 validates the “Weather” event on 23 November 2018. This was
due to the rains in Makkah and Jeddah cities as reported in the newspaper [85]. Figure 8
plots the locations of weather events on that date. Note the largest circles are in Jeddah
and Makkah cities. The news article we found was posted around 5:42 a.m. and they
mentioned that the rains started at dawn. This validates the time extracted by our tool.
Figure 9 shows a peak at 4 a.m. As we know, Twitter users almost post about events like
rain immediately once they happen and most likely earlier than newspapers.

Finally, Row 4 illustrates the “Accident” event on 8 October 2018. Note the largest circle
in Riyadh shown in Figure 10. The time of occurrence is not available on the newspaper
website so in this case, we went back to the tweets and searched for the earliest tweet that
mentioned information about the same accident we wanted to validate. Then, we extracted
the time from the timestamp (created_at attribute) included with the tweet object and
assumed that it was the time of occurrence (see Section 3.10). This is the English translation
for the earliest tweet we found about this event “Congestion in every street and accident in
the Alwashm bridge, stations crowded, crowded everywhere in Riyadh #Riyadh_now”.
The time attached to this tweet is “Mon Oct. 08 04:48:17 +0000 2018” and the first peak
time detected by Iktishaf+ as shown in Figure 11 is at 5 a.m. Therefore, it can be seen
from the discussed results above that the information from external or internal validation

Sensors 2021, 21, 2993 23 of 33

sources matches the information detected by Iktishaf+, which proves the ability of our tool
to automatically detect events and their location and time without prior knowledge.Sensors 2021, 21, 2993 24 of 35

Figure 8. Weather Event on 23 November 2018.

Figure 9. Intensity of Detected Weather Event in Makkah (23 November 2018).

Figure 8. Weather Event on 23 November 2018.

Sensors 2021, 21, 2993 24 of 35

Figure 8. Weather Event on 23 November 2018.

Figure 9. Intensity of Detected Weather Event in Makkah (23 November 2018). Figure 9. Intensity of Detected Weather Event in Makkah (23 November 2018).

4.1.2. Spatial Analysis

Figure 12 depicts the percentage of the extracted location information using different
approaches explained in Section 3.8. As shown in the pie chart, 44% of the information
is extracted from tweet text while 16% are extracted using the information in the user’s
profile. However, 27% of tweets about events did not include any information about the
location where it occurs. Besides, only 5% are extracted from geo attributes. This could
be because few tweets are geo-tagged because users usually turn off the location service
in their smartphones. Also, we only look into the geo attributes if the location does not
mention in the text because we mainly focus on where the event occurs not where it has
been posted.

Sensors 2021, 21, 2993 24 of 33

Sensors 2021, 21, 2993 25 of 35

Figure 10. Accident Event on 8 October 2018.

Figure 11. Intensity of Detected Accident Event in Riyadh (8 October 2018).

4.1.2. Spatial Analysis
Figure 12 depicts the percentage of the extracted location information using different

approaches explained in Section 3.8. As shown in the pie chart, 44% of the information is
extracted from tweet text while 16% are extracted using the information in the user’s pro-
file. However, 27% of tweets about events did not include any information about the lo-
cation where it occurs. Besides, only 5% are extracted from geo attributes. This could be
because few tweets are geo-tagged because users usually turn off the location service in

Figure 10. Accident Event on 8 October 2018.

Sensors 2021, 21, 2993 25 of 35

Figure 10. Accident Event on 8 October 2018.

Figure 11. Intensity of Detected Accident Event in Riyadh (8 October 2018).

4.1.2. Spatial Analysis
Figure 12 depicts the percentage of the extracted location information using different

approaches explained in Section 3.8. As shown in the pie chart, 44% of the information is
extracted from tweet text while 16% are extracted using the information in the user’s pro-
file. However, 27% of tweets about events did not include any information about the lo-
cation where it occurs. Besides, only 5% are extracted from geo attributes. This could be
because few tweets are geo-tagged because users usually turn off the location service in

Figure 11. Intensity of Detected Accident Event in Riyadh (8 October 2018).

Sensors 2021, 21, 2993 26 of 35

their smartphones. Also, we only look into the geo attributes if the location does not men-
tion in the text because we mainly focus on where the event occurs not where it has been
posted.

After inferring cities’ name from the tweets, we group them by province. Figure 13
gives the number of tweets for each event type in the large provinces in Saudi Arabia. It
shows the aggregated number of tweets for the whole period (from September 2018 to
October 2019). It can be seen that the number of events detected in Riyadh is higher than
the events in other provinces. This could be because Riyadh is the capital and one of the
largest cities. Besides, based on the latest report published by INREX [86], Riyadh is the
most congested city in Saudi Arabia, which may explain the results we got.

Figure 12. Number of Tweets Using Different Location Extraction Approaches.

Figure 13. The Number of Detected Events in Different Provinces.

Figure 12. Number of Tweets Using Different Location Extraction Approaches.

Sensors 2021, 21, 2993 25 of 33

After inferring cities’ name from the tweets, we group them by province. Figure 13
gives the number of tweets for each event type in the large provinces in Saudi Arabia. It
shows the aggregated number of tweets for the whole period (from September 2018 to
October 2019). It can be seen that the number of events detected in Riyadh is higher than
the events in other provinces. This could be because Riyadh is the capital and one of the
largest cities. Besides, based on the latest report published by INREX [86], Riyadh is the
most congested city in Saudi Arabia, which may explain the results we got.

Sensors 2021, 21, 2993 26 of 35

their smartphones. Also, we only look into the geo attributes if the location does not men-
tion in the text because we mainly focus on where the event occurs not where it has been
posted.

After inferring cities’ name from the tweets, we group them by province. Figure 13
gives the number of tweets for each event type in the large provinces in Saudi Arabia. It
shows the aggregated number of tweets for the whole period (from September 2018 to
October 2019). It can be seen that the number of events detected in Riyadh is higher than
the events in other provinces. This could be because Riyadh is the capital and one of the
largest cities. Besides, based on the latest report published by INREX [86], Riyadh is the
most congested city in Saudi Arabia, which may explain the results we got.

Figure 12. Number of Tweets Using Different Location Extraction Approaches.

Figure 13. The Number of Detected Events in Different Provinces. Figure 13. The Number of Detected Events in Different Provinces.

4.1.3. Spatio-Temporal Analysis

Figure 14 shows the hourly distribution for the aggregated number of tweets for the
whole period. We plot only the provinces that show the high number of events to eliminates
having too much data in the chart since we have 13 provinces in Saudi Arabia. As shown
in this figure, the number of tweets starts raising in the morning and becomes very high
by the time of coming back from school and work, which usually between 12 p.m. and
5 p.m. Further, the number goes down after 8 pm, which is expected because usually the
traffic flow and activities during day-time are higher than the night-time because of work
and schools.

Sensors 2021, 21, 2993 27 of 35

4.1.3. Spatio-Temporal Analysis
Figure 14 shows the hourly distribution for the aggregated number of tweets for the

whole period. We plot only the provinces that show the high number of events to elimi-
nates having too much data in the chart since we have 13 provinces in Saudi Arabia. As
shown in this figure, the number of tweets starts raising in the morning and becomes very
high by the time of coming back from school and work, which usually between 12 p.m.
and 5 p.m. Further, the number goes down after 8 pm, which is expected because usually
the traffic flow and activities during day-time are higher than the night-time because of
work and schools.

Figure 14. Hourly Distribution of Tweets Divided by Provinces (Aggregated).

4.2. Evaluation: Tweet Filtering Classifiers
To evaluate the trained model for the Tweets Filtering Component (TFC), we used

the common statistical metrics, accuracy, precision, recall, f-score (see Section 3.6.3). Most
of the tweets we have are irrelevant to traffic, so we have an imbalanced dataset. So, to
eliminate the effect on the evaluation results, we have two options either oversampling
the majority class that represents the irrelevant tweets or under-sampling the minority
class that represents the traffic tweets. In our particular case, it is better to have a large
number of samples for both classes. Therefore, we decided to apply oversampling on pos-
itive (traffic-related) class. We simply duplicate the number of the tweet in the positive
class (see Section 3.6.3). Figure 15 shows that SVM achieved higher results compared to
the other algorithms. It achieved 91% for both accuracy and f1-score, 90% for precision
and 89% for recall. The difference between the results achieved by SVM and LR is approx-
imately 1%. However, we selected SVM where it performed better.

Figure 14. Hourly Distribution of Tweets Divided by Provinces (Aggregated).

Sensors 2021, 21, 2993 26 of 33

4.2. Evaluation: Tweet Filtering Classifiers

To evaluate the trained model for the Tweets Filtering Component (TFC), we used
the common statistical metrics, accuracy, precision, recall, f-score (see Section 3.6.3). Most
of the tweets we have are irrelevant to traffic, so we have an imbalanced dataset. So, to
eliminate the effect on the evaluation results, we have two options either oversampling the
majority class that represents the irrelevant tweets or under-sampling the minority class
that represents the traffic tweets. In our particular case, it is better to have a large number
of samples for both classes. Therefore, we decided to apply oversampling on positive
(traffic-related) class. We simply duplicate the number of the tweet in the positive class (see
Section 3.6.3). Figure 15 shows that SVM achieved higher results compared to the other
algorithms. It achieved 91% for both accuracy and f1-score, 90% for precision and 89% for
recall. The difference between the results achieved by SVM and LR is approximately 1%.
However, we selected SVM where it performed better.

Sensors 2021, 21, 2993 28 of 35

Figure 15. Numerical Evaluation (Tweets Filtering).

4.3. Evaluation: Event Classifiers
We numerically evaluated the built binary classifiers in the Event Detection Compo-

nent (EDC). For each event type, we trained three models using NB, SVM, and LR algo-
rithms and then we selected the algorithm that achieved higher results in most evaluation
metrics (accuracy, precision, recall and f1-score). We have used the four performance met-
rics as discussed before in the previous section (also see Section 3.6.3).

Figure 16 illustrates the evaluation results for the four performance metrics (left to
right: accuracy, precision, recall, and F-score) in four separate figures. The results show
that SVM performs better than other algorithms for Weather, Roadwork and Traffic con-
dition events while NB performed the best for Fire event. Besides, for accident events,
SVM achieved higher results for accuracy, precision and f1-score while NB performed
slightly better for the recall where SVM achieves 86% whereas NB achieves 88%. How-
ever, since the SVM performed better for most metrics, we selected SVM for accident
event. For Social event, NB achieved higher recall and precision while SVM performed
better for accuracy and f1-score. However, we selected NB for Social events since the ac-
curacy and f1-score achieved by SVM are approximately 1% higher than NB. To summa-
rize, SVM has been used for all the event types except Fire and Social where we used NB.
Moreover, the highest results we got in all metrics were achieved by SVM for Weather
event where it achieved 98% for both accuracy and f1-score and 97% for recall and preci-
sion. We assume that the reason is we have a larger number of tweets for the training set
of weather event since it occurs more often and a lot of users post about it compared with
other event types such as accident and roadwork/damage.

Figure 15. Numerical Evaluation (Tweets Filtering).

4.3. Evaluation: Event Classifiers

We numerically evaluated the built binary classifiers in the Event Detection Com-
ponent (EDC). For each event type, we trained three models using NB, SVM, and LR
algorithms and then we selected the algorithm that achieved higher results in most evalua-
tion metrics (accuracy, precision, recall and f1-score). We have used the four performance
metrics as discussed before in the previous section (also see Section 3.6.3).

Figure 16 illustrates the evaluation results for the four performance metrics (left to
right: accuracy, precision, recall, and F-score) in four separate figures. The results show that
SVM performs better than other algorithms for Weather, Roadwork and Traffic condition
events while NB performed the best for Fire event. Besides, for accident events, SVM
achieved higher results for accuracy, precision and f1-score while NB performed slightly
better for the recall where SVM achieves 86% whereas NB achieves 88%. However, since
the SVM performed better for most metrics, we selected SVM for accident event. For Social
event, NB achieved higher recall and precision while SVM performed better for accuracy
and f1-score. However, we selected NB for Social events since the accuracy and f1-score

Sensors 2021, 21, 2993 27 of 33

achieved by SVM are approximately 1% higher than NB. To summarize, SVM has been
used for all the event types except Fire and Social where we used NB. Moreover, the highest
results we got in all metrics were achieved by SVM for Weather event where it achieved
98% for both accuracy and f1-score and 97% for recall and precision. We assume that the
reason is we have a larger number of tweets for the training set of weather event since it
occurs more often and a lot of users post about it compared with other event types such as
accident and roadwork/damage.

Sensors 2021, 21, 2993 29 of 35

Figure 16. Numerical Evaluation (Events Classification).

5. Conclusions and Outlook
Digital societies could be characterized by their increasing desire to express them-

selves and interact with others. This is being realized through digital platforms such as
social media that have increasingly become convenient and inexpensive sensors com-
pared to physical sensors in many sectors of smart societies. One such major sector is road
transportation, which is the backbone of modern economies and costs globally 1.25 mil-
lion deaths and 50 million human injuries annually. The cutting-edge on big data-enabled
social media analytics for transportation-related studies is limited.

In this paper, we introduced the Iktishaf+ tool that uses big data and distributed ma-
chine learning to automatically detect road traffic events from Arabic tweets. Manual la-
beling is a time-consuming process that makes supervised classification hard to apply to
big data. In order to address this problem; we proposed an automatic labeling approach
to reduce the effort and time of generating a training set for training supervised classifi-
cation models. The traditional manual labeling for text is usually achieved by looking for
specific terms to decide whether the text is relevant to the topic or not. Hence, our tool
was designed to follow the same procedure. We built a dictionary for each event type that
contains lists of terms that usually used when posting about the events. The dictionaries
were generated automatically using the top vocabularies extracted from the manual la-
beled tweets. Then, we updated them manually to add synonyms and missing vocabu-
lary. After that, we divided them into levels based on the degree of importance and rele-
vance to the event type. Subsequently, the tool looked up the matched terms and labels
the tweets based on that. Finally, the tool calculated weight for each labeled tweet, and
only tweets that are highly related to the event are included in the training set.

Furthermore, we developed a location extractor to find the location of the events al-
lowing spatio-temporal information extraction and visualization of the events. Moreover,
using a stemmer is necessary for our work not only to minimize feature space for model
training but it is also very helpful especially for terms searching during automatic labeling
and location extraction. The existing Arabic stemmers are not efficient in our case where

Figure 16. Numerical Evaluation (Events Classification).

5. Conclusions and Outlook

Digital societies could be characterized by their increasing desire to express them-
selves and interact with others. This is being realized through digital platforms such as
social media that have increasingly become convenient and inexpensive sensors compared
to physical sensors in many sectors of smart societies. One such major sector is road
transportation, which is the backbone of modern economies and costs globally 1.25 million
deaths and 50 million human injuries annually. The cutting-edge on big data-enabled social
media analytics for transportation-related studies is limited.

In this paper, we introduced the Iktishaf+ tool that uses big data and distributed
machine learning to automatically detect road traffic events from Arabic tweets. Manual
labeling is a time-consuming process that makes supervised classification hard to apply to
big data. In order to address this problem; we proposed an automatic labeling approach to
reduce the effort and time of generating a training set for training supervised classification
models. The traditional manual labeling for text is usually achieved by looking for specific
terms to decide whether the text is relevant to the topic or not. Hence, our tool was
designed to follow the same procedure. We built a dictionary for each event type that
contains lists of terms that usually used when posting about the events. The dictionaries
were generated automatically using the top vocabularies extracted from the manual labeled
tweets. Then, we updated them manually to add synonyms and missing vocabulary. After
that, we divided them into levels based on the degree of importance and relevance to the

Sensors 2021, 21, 2993 28 of 33

event type. Subsequently, the tool looked up the matched terms and labels the tweets based
on that. Finally, the tool calculated weight for each labeled tweet, and only tweets that are
highly related to the event are included in the training set.

Furthermore, we developed a location extractor to find the location of the events
allowing spatio-temporal information extraction and visualization of the events. Moreover,
using a stemmer is necessary for our work not only to minimize feature space for model
training but it is also very helpful especially for terms searching during automatic labeling
and location extraction. The existing Arabic stemmers are not efficient in our case where
they might lead to removing an important letter from the word and then cause losing or
changing the meaning of important words. Therefore, we designed a light stemmer that
enables affix stripping with fewer changes in the word meaning.

We built and trained models to filter out irrelevant tweets to traffic events. We
focused on six events that might affect road traffic which are accident, fire, weather,
roadwork/damage, road condition, and social events. Furthermore, we built classifiers
to automatically classify tweets into different events. We used three machine learning
algorithms, which are SVM, NB, and logistic regression. Then, we selected the algorithm
that achieves better results in terms of accuracy, recall, precision, and f-score. Moreover,
we applied external validation using online sources such as newspapers. We selected the
highest peaks from the detected events and find whether they occurred or not. The results
show that our tool is able to automatically detect events and their spatial and temporal
nature without prior knowledge.

The ability of the Iktishaf+ tool to use big data distributed computing technologies
could save days, months, or years of computing time proportional to the size of the data.
Moreover, it enables the scalability and interworking of big data analytics software systems.
The utilization possibilities of our tool are many such as detection of transportation-related
events for planning and operations, detection of causes of road congestion, understanding
public concerns and their reactions to government policies and actions, and many more.
An elaboration of these aspects of our work (the novelty, contributions, and utilization)
was given in Section 2.4.

We have shown good evidence of the use of automatic labelling, machine learning,
and other methods. However, more work is needed to improve the breadth and depth of
the work with regard to what can be detected, the diversity of data and machine and deep
learning methods, the accuracy of detection in space and time, and the real-time analysis
of the tweets.

The real-time operation of the proposed system could depend on a number of factors.
Firstly, the definition of the term “real-time” per se depends on the application and the
requirements at hand. Some applications may require reactions within sub-second periods
while others may tolerate a few minutes or more. Moreover, taking preventive actions
also depends on the event and the action being taken. In this particular context, and
considering the example of a car accident, the Iktishaf system once trained can detect an
accident from tweets instantaneously provided the tweets are available in real-time for
the software to process. This can be achieved, for instance, by running the software at the
edge or fog layers. The reactive actions, in this case, can mean to inform the police and
ambulance services, which can be done in real-time by the software automatically through
an automatic emergency call to 911, by sending tweets or other messages to the concerned
bodies, or by other emergency strategies available in the area. The messages related to the
particular actions in this context can also be propagated using vehicular ad hoc networks
(VANETs), dedicated short-range communications (DSRC), etc. A more interesting and
lucrative work would be to detect certain events (such as car chases or certain patterns in
the traffic that may lead to accidents or certain social events that may cause congestion)
before these happen and take actions to prevent the events before they happen. These
will require further research and adding additional functionalities to the Iktishaf tool. Our
future work will look into these areas.

Sensors 2021, 21, 2993 29 of 33

Digitally and data-driven methods while bringing many benefits to the research
and practice have their risks and disadvantages as is the case for anything else. These
include issues related to security, privacy, data ownership, lack of standards describing
ethical requirements from digital methods and compliance to these standards, the safety
of the stakeholders involved in data-driven and digital methods, vulnerabilities of digital
platforms, and the digital divide. For a detailed discussion of these issues, see Section 11
in [87], and the references therein. As regards the specific privacy issues of Twitter data,
the data we use is openly available. The information about the location of these tweets
is also public. However, we have not disclosed any personal information through our
analysis. The information we detected and published is of general nature and therefore does
not infringe on individual privacy. However, generally speaking, it is possible to detect
information from Twitter data that affects individuals’ privacy. Our earlier works [57,88,89]
have looked into privacy and we plan to extend this to investigate Twitter data privacy in
the future.

Our focus in this work is on Saudi Arabia. The tool hence currently works with
tweets only in the Arabic language. The tool can be used in other Arabic language-
speaking countries, such as Egypt, Kuwait, Bahrain, and UAE. The system methodology
and design of the tool developed in this paper are generic, and therefore the tool can be
extended to other countries globally. This will require the adaptation of the tool with
additional languages, such as English, Spanish, or Chinese, by additional modules in the
pre-processing and clustering modules.

This line of our work deals with the use of Twitter data as a virtual sensor to detect
transportation-related events. It is necessary to look also into other sources and methods
of sensing in transportation systems, such as inductive loops, floating car data, automatic
vehicle locators, virtual loop detectors, cooperative driving, etc. The real vision and
potential of smart transportation systems will be realized when different sensing systems
will be integrated within the transportation systems as well as with other urban systems.
Our other strands of research have looked into different traffic sensing methods such as
GPS [51], inductive loops [49], cooperative decision-making for autonomous vehicles [35],
and urban travel data from travel cards and other sources [50]. Our future work will look
into integrating these sensing methods along with other urban sensing systems, such as
healthcare [7].

Author Contributions: Conceptualization, E.A. and R.M.; methodology, E.A. and R.M.; software,
E.A.; validation, E.A. and R.M.; formal analysis, E.A. and R.M.; investigation, E.A., R.M., A.A., I.K.
and T.Y.; resources, R.M., I.K., and A.A.; data curation, E.A.; writing—original draft preparation, E.A.
and R.M.; writing—review and editing, R.M., A.A., I.K. and T.Y.; visualization, E.A.; supervision,
R.M.; project administration, R.M., I.K. and A.A.; funding acquisition, R.M., A.A. and I.K. All authors
have read and agreed to the published version of the manuscript.

Funding: This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz
University, Jeddah, under grant number RG-11-611-40. The authors, therefore, acknowledge with
thanks the DSR for their technical and financial support.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data was obtained from Twitter. Restrictions apply to the availability
of these data.

Acknowledgments: The experiments reported in this paper were performed on the Aziz supercom-
puter at King Abdulaziz University.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2021, 21, 2993 30 of 33

References
1. Mehmood, R.; See, S.; Katib, I.; Chlamtac, I. (Eds.) Smart Infrastructure and Applications: Foundations for Smarter Cities and

Societies. In EAI/Springer Innovations in Communication and Computing; Springer: Cham, Switzerland, 2020; p. 692.
2. Hashem, I.A.T.; Chang, V.; Anuar, N.B.; Adewole, K.; Yaqoob, I.; Gani, A.; Ahmed, E.; Chiroma, H. The role of big data in smart

city. Int. J. Inf. Manag. 2016, 36, 748–758. [CrossRef]
3. Zheng, X.; Chen, W.; Wang, P.; Shen, D.; Chen, S.; Wang, X.; Zhang, Q.; Yang, L. Big Data for Social Transportation. IEEE Trans.

Intell. Transp. Syst. 2016, 17, 620–630. [CrossRef]
4. AlOmari, E.; Mehmood, R.; Katib, I. Road Traffic Event Detection Using Twitter Data, Machine Learning, and Apache Spark. In

2019 IEEE Smart World, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications,
Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI),
Leicester, UK, 19–23 August 2019; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2019; pp. 1888–1895.

5. Huang, W.; Xu, S.; Yan, Y.; Zipf, A. An exploration of the interaction between urban human activities and daily traffic conditions:
A case study of Toronto, Canada. Cities 2019, 84, 8–22. [CrossRef]

6. AlOmari, E.; Katib, I.; Mehmood, R. Iktishaf: A Big Data Road-Traffic Event Detection Tool Using Twitter and Spark Machine
Learning. Mob. Netw. Appl. 2020, 1–16. [CrossRef]

7. Alotaibi, S.; Mehmood, R.; Katib, I.; Rana, O.; Albeshri, A. Sehaa: A Big Data Analytics Tool for Healthcare Symptoms and
Diseases Detection Using Twitter, Apache Spark, and Machine Learning. Appl. Sci. 2020, 10, 1398. [CrossRef]

8. Yigitcanlar, T.; Kankanamge, N.; Preston, A.; Gill, P.S.; Rezayee, M.; Ostadnia, M.; Xia, B.; Ioppolo, G. How can social media
analytics assist authorities in pandemic-related policy decisions? Insights from Australian states and territories. Health Inf. Sci.
Syst. 2020, 8, 37. [CrossRef] [PubMed]

9. Agarwal, S.; Mittal, N.; Sureka, A. Potholes and Bad Road Conditions- Mining Twitter to Extract Information on Killer
Roads. In Proceedings of the ACM India Joint International Conference on Data Science and Management of Data, Goa, India,
11–13 January 2018.

10. Klaithin, S.; Haruechaiyasak, C. Traffic information extraction and classification from Thai Twitter. In Proceedings of the 2016
13th International Joint Conference on Computer Science and Software Engineering (JCSSE), Khon Kaen, Thailand, 3–15 July
2016; pp. 1–6. [CrossRef]

11. D’Andrea, E.; Ducange, P.; Lazzerini, B.; Marcelloni, F. Real-Time Detection of Traffic from Twitter Stream Analysis. IEEE Trans.
Intell. Transp. Syst. 2015, 16, 2269–2283. [CrossRef]

12. Kurniawan, D.A.; Wibirama, S.; Setiawan, N.A. Real-time traffic classification with Twitter data mining. In Proceedings of
the 2016 8th International Conference on Information Technology and Electrical Engineering (ICITEE), Yogyakarta, Indonesia,
5–6 October 2016; pp. 1–5.

13. AlOmari, E.; Katib, I.; Albeshri, A.; Mehmood, R. COVID-19: Detecting Government Pandemic Measures and Public Concerns
from Twitter Arabic Data Using Distributed Machine Learning. Int. J. Environ. Res. Public Health 2021, 18, 282. [CrossRef]
[PubMed]

14. Kankanamge, N.; Yigitcanlar, T.; Goonetilleke, A. How engaging are disaster management related social media channels? The
case of Australian state emergency organisations. Int. J. Disaster Risk Reduct. 2020, 48, 101571. [CrossRef]

15. Agarwal, A.; Toshniwal, D. Face off: Travel Habits, Road Conditions and Traffic City Characteristics Bared Using Twitter. IEEE
Access 2019, 7, 66536–66552. [CrossRef]

16. Assem, H.; Buda, T.S.; O’Sullivan, D. RCMC: Recognizing Crowd-Mobility Patterns in Cities Based on Location Based Social
Networks Data. ACM Trans. Intell. Syst. Technol. 2017, 8, 1–30. [CrossRef]

17. Cárdenas-Benítez, N.; Aquino-Santos, R.; Magaña-Espinoza, P.; Aguilar-Velazco, J.; Edwards-Block, A.; Cass, A.M. Traffic
Congestion Detection System through Connected Vehicles and Big Data. Sensors 2016, 16, 599. [CrossRef] [PubMed]

18. Al’Omari, E.; Mehmood, R. Analysis of Tweets in Arabic Language for Detection of Road Traffic Conditions. In Lecture Notes of
the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering; Springer Science and Business Media LLC.:
Berlin, Germany, 2018; Volume 224, pp. 98–110.

19. Al’Omari, E.; Mehmood, R.; Katib, I. Sentiment Analysis of Arabic Tweets for Road Traffic Congestion and Event Detection. In
Smart Infrastructure and Applications; Metzler, J.B., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 37–54.

20. Yigitcanlar, T.; Kankanamge, N.; Regona, M.; Maldonado, A.; Rowan, B.; Ryu, A.; DeSouza, K.C.; Corchado, J.M.; Mehmood, R.;
Li, R.Y.M. Artificial Intelligence Technologies and Related Urban Planning and Development Concepts: How Are They Perceived
and Utilized in Australia? J. Open Innov. Technol. Mark. Complex. 2020, 6, 187. [CrossRef]

21. Yigitcanlar, T.; Kankanamge, N.; Vella, K. How are Smart City Concepts and Technologies Perceived and Utilized? A Systematic
Geo-Twitter Analysis of Smart Cities in Australia. J. Urban Technol. 2021, 28, 135–154. [CrossRef]

22. Kankanamge, N.; Yigitcanlar, T.; Goonetilleke, A. Kamruzzaman Determining disaster severity through social media analysis:
Testing the methodology with South East Queensland Flood tweets. Int. J. Disaster Risk Reduct. 2020, 42, 101360. [CrossRef]

23. Alsulami, M.; Mehmood, R. Sentiment Analysis Model for Arabic Tweets to Detect Users’ Opinions about Government Services
in Saudi Arabia: Ministry of Education as a Case Study in Al Yamamah Information and Communication Technology Forum.
2018. Available online: https://www.researchgate.net/publication/324000226_Sentiment_Analysis_Model_for_Arabic_Tweets_
to_Detect_Users\T1\textquoteright_Opinions_about_Government_Services_in_Saudi_Arabia_Ministry_of_Education_as_a_
case_study (accessed on 1 March 2021).

http://doi.org/10.1016/j.ijinfomgt.2016.05.002
http://doi.org/10.1109/TITS.2015.2480157
http://doi.org/10.1016/j.cities.2018.07.001
http://doi.org/10.1007/s11036-020-01635-y
http://doi.org/10.3390/app10041398
http://doi.org/10.1007/s13755-020-00121-9
http://www.ncbi.nlm.nih.gov/pubmed/33078073
http://doi.org/10.1109/jcsse.2016.7748851
http://doi.org/10.1109/TITS.2015.2404431
http://doi.org/10.3390/ijerph18010282
http://www.ncbi.nlm.nih.gov/pubmed/33401512
http://doi.org/10.1016/j.ijdrr.2020.101571
http://doi.org/10.1109/ACCESS.2019.2917159
http://doi.org/10.1145/3086636
http://doi.org/10.3390/s16050599
http://www.ncbi.nlm.nih.gov/pubmed/27136548
http://doi.org/10.3390/joitmc6040187
http://doi.org/10.1080/10630732.2020.1753483
http://doi.org/10.1016/j.ijdrr.2019.101360
https://www.researchgate.net/publication/324000226_Sentiment_Analysis_Model_for_Arabic_Tweets_to_Detect_Users\T1\textquoteright _Opinions_about_Government_Services_in_Saudi_Arabia_Ministry_of_Education_as_a_case_study
https://www.researchgate.net/publication/324000226_Sentiment_Analysis_Model_for_Arabic_Tweets_to_Detect_Users\T1\textquoteright _Opinions_about_Government_Services_in_Saudi_Arabia_Ministry_of_Education_as_a_case_study
https://www.researchgate.net/publication/324000226_Sentiment_Analysis_Model_for_Arabic_Tweets_to_Detect_Users\T1\textquoteright _Opinions_about_Government_Services_in_Saudi_Arabia_Ministry_of_Education_as_a_case_study

Sensors 2021, 21, 2993 31 of 33

24. Suma, S.; Mehmood, R.; Albeshri, A. Automatic Detection and Validation of Smart City Events Using HPC and Apache Spark
Platforms. In Smart Infrastructure and Applications; Metzler, J.B., Ed.; Springer: Cham, Switzerland, 2020; pp. 55–78.

25. Suma, S.; Mehmood, R.; Albugami, N.; Katib, I.; Albeshri, A. Enabling Next Generation Logistics and Planning for Smarter
Societies. Procedia Comput. Sci. 2017, 109, 1122–1127. [CrossRef]

26. Mehmood, R.; Bhaduri, B.; Katib, I.; Chlamtac, I. (Eds.) Smart Societies, Infrastructure, Technologies and Applications. In
Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (LNICST); Springer: Cham,
Switzerland, 2018; Volume 224, p. 367.

27. Arfat, Y.; Usman, S.; Mehmood, R.; Katib, I. Big Data Tools, Technologies, and Applications: A Survey. In Smart Infrastructure and
Applications; Metzler, J.B., Ed.; Springer: Cham, Switzerland, 2020; pp. 453–490.

28. Arfat, Y.; Usman, S.; Mehmood, R.; Katib, I. Big Data for Smart Infrastructure Design: Opportunities and Challenges. In Smart
Infrastructure and Applications; Metzler, J.B., Ed.; Springer: Cham, Switzerland, 2020; pp. 491–518.

29. Arfat, Y.; Suma, S.; Mehmood, R.; Albeshri, A. Parallel Shortest Path Big Data Graph Computations of US Road Network Using
Apache Spark: Survey, Architecture, and Evaluation. In Smart Infrastructure and Applications; Metzler, J.B., Ed.; Springer: Cham,
Switzerland, 2020; pp. 185–214.

30. Usman, S.; Mehmood, R.; Katib, I. Big Data and HPC Convergence for Smart Infrastructures: A Review and Proposed Architecture.
In Smart Infrastructure and Applications; Springer: Cham, Switzerland, 2020; pp. 561–586.

31. Muhammed, T.; Mehmood, R.; Albeshri, A.; Katib, I. SURAA: A Novel Method and Tool for Loadbalanced and Coalesced SpMV
Computations on GPUs. Appl. Sci. 2019, 9, 947. [CrossRef]

32. Alyahya, H.; Mehmood, R.; Katib, I. Parallel Iterative Solution of Large Sparse Linear Equation Systems on the Intel MIC
Architecture. In Smart Infrastructure and Applications; Advanced Controllers for Smart Cities; Springer: Cham, Switzerland, 2020;
pp. 377–407.

33. Usman, S.; Mehmood, R.; Katib, I.; Albeshri, A.; Altowaijri, S.M. ZAKI: A Smart Method and Tool for Automatic Performance
Optimization of Parallel SpMV Computations on Distributed Memory Machines. Mob. Netw. Appl. 2019, 1–20. [CrossRef]

34. Usman, S.; Mehmood, R.; Katib, I.; Albeshri, A. ZAKI+: A Machine Learning Based Process Mapping Tool for SpMV Computations
on Distributed Memory Architectures. IEEE Access 2019, 7, 81279–81296. [CrossRef]

35. Alam, F.; Mehmood, R.; Katib, I.; Altowaijri, S.M.; Albeshri, A. TAAWUN: A Decision Fusion and Feature Specific Road Detection
Approach for Connected Autonomous Vehicles. Mob. Netw. Appl. 2019, 1–17. [CrossRef]

36. Mehmood, R.; Alam, F.; Albogami, N.N.; Katib, I.; Albeshri, A.; Altowaijri, S.M. UTiLearn: A Personalised Ubiquitous Teaching
and Learning System for Smart Societies. IEEE Access 2017, 5, 2615–2635. [CrossRef]

37. Yigitcanlar, T.; Corchado, J.; Mehmood, R.; Li, R.; Mossberger, K.; Desouza, K. Responsible Urban Innovation with Local
Government Artificial Intelligence (AI): A Conceptual Framework and Research Agenda. J. Open Innov. Technol. Mark. Complex.
2021, 7, 71. [CrossRef]

38. Alshareef, A.; Albeshri, A.; Katib, I.; Mehmood, R. Road Traffic Vehicle Detection and Tracking using Deep Learning with
Custom-Collected and Public Datasets. IJCSNS Int. J. Comput. Sci. Netw. Secur. 2020, 20. [CrossRef]

39. Schlingensiepen, J.; Schlingensiepen, J.; Mehmood, R.; Mehmood, R.; Nemtanu, F.C.; Nemtanu, F.C.; Niculescu, M.; Niculescu,
M. Increasing Sustainability of Road Transport in European Cities and Metropolitan Areas by Facilitating Autonomic Road
Transport Systems (ARTS). In Sustainable Automotive Technologies 2013; Advanced Microsystems for Automotive Applications
2016; Springer: Cham, Switzerland, 2014; pp. 201–210.

40. Muhammed, T.; Mehmood, R.; Albeshri, A.; Katib, I. UbeHealth: A Personalized Ubiquitous Cloud and Edge-Enabled Networked
Healthcare System for Smart Cities. IEEE Access 2018, 6, 32258–32285. [CrossRef]

41. Janbi, N.; Katib, I.; Albeshri, A.; Mehmood, R. Distributed Artificial Intelligence-as-a-Service (DAIaaS) for Smarter IoE and 6G
Environments. Sensors 2020, 20, 5796. [CrossRef] [PubMed]

42. Lau, R.Y. Toward a social sensor based framework for intelligent transportation. In Proceedings of the 2017 IEEE 18th International
Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), Macau, China, 12–15 June 2017; pp. 1–6.
[CrossRef]

43. Pandhare, K.R.; Shah, M.A. Real time road traffic event detection using Twitter and spark. In Proceedings of the 2017 International
Conference on Inventive Communication and Computational Technologies (ICICCT), Coimbatore, India, 10–11 March 2017;
pp. 445–449. [CrossRef]

44. Salas, A.; Georgakis, P.; Nwagboso, C.; Ammari, A.; Petalas, I. Traffic event detection framework using social media. In Proceedings
of the 2017 IEEE International Conference on Smart Grid and Smart Cities (ICSGSC); Institute of Electrical and Electronics Engineers
(IEEE): Piscataway, NJ, USA, 2017; pp. 303–307.

45. Garg, S.; Kaur, K.; Kumar, N.; Rodrigues, J.J.P.C. Hybrid Deep-Learning-Based Anomaly Detection Scheme for Suspicious Flow
Detection in SDN: A Social Multimedia Perspective. IEEE Trans. Multimed. 2019, 21, 566–578. [CrossRef]

46. Alam, F.; Mehmood, R.; Katib, I.; Albogami, N.N.; Albeshri, A. Data Fusion and IoT for Smart Ubiquitous Environments:
A Survey. IEEE Access 2017, 5, 9533–9554. [CrossRef]

47. Muhammed, T.; Mehmood, R.; Albeshri, A.; Alzahrani, A. HCDSR: A Hierarchical Clustered Fault Tolerant Routing Technique
for IoT-Based Smart Societies. In Smart Infrastructure and Applications; Springer: Cham, Switzerland, 2020; pp. 609–628.

48. Lin, C.; He, D.; Kumar, N.; Choo, K.-K.R.; Vinel, A.; Huang, X. Security and Privacy for the Internet of Drones: Challenges and
Solutions. IEEE Commun. Mag. 2018, 56, 64–69. [CrossRef]

http://doi.org/10.1016/j.procs.2017.05.440
http://doi.org/10.3390/app9050947
http://doi.org/10.1007/s11036-019-01318-3
http://doi.org/10.1109/ACCESS.2019.2923565
http://doi.org/10.1007/s11036-019-01319-2
http://doi.org/10.1109/ACCESS.2017.2668840
http://doi.org/10.3390/joitmc7010071
http://doi.org/10.22937/IJCSNS.2020.20.11.2
http://doi.org/10.1109/ACCESS.2018.2846609
http://doi.org/10.3390/s20205796
http://www.ncbi.nlm.nih.gov/pubmed/33066295
http://doi.org/10.1109/wowmom.2017.7974354
http://doi.org/10.1109/icicct.2017.7975237
http://doi.org/10.1109/TMM.2019.2893549
http://doi.org/10.1109/ACCESS.2017.2697839
http://doi.org/10.1109/MCOM.2017.1700390

Sensors 2021, 21, 2993 32 of 33

49. Aqib, M.; Mehmood, R.; Alzahrani, A.; Katib, I.; Albeshri, A.; Altowaijri, S.M. Smarter Traffic Prediction Using Big Data,
In-Memory Computing, Deep Learning and GPUs. Sensors 2019, 19, 2206. [CrossRef] [PubMed]

50. Aqib, M.; Mehmood, R.; Alzahrani, A.; Katib, I.; Albeshri, A.; Altowaijri, S.M. Rapid Transit Systems: Smarter Urban Planning
Using Big Data, In-Memory Computing, Deep Learning, and GPUs. Sustainability 2019, 11, 2736. [CrossRef]

51. Alsolami, B.; Mehmood, R.; Albeshri, A. Hybrid Statistical and Machine Learning Methods for Road Traffic Prediction: A Review
and Tutorial. In Smart Infrastructure and Applications: Foundations for Smarter Cities and Societies; Springer: Cham, Switzerland,
2020; pp. 115–133.

52. Kumar, N.; Chilamkurti, N.; Park, J.H. ALCA: Agent learning–based clustering algorithm in vehicular ad hoc networks. Pers.
Ubiquitous Comput. 2013, 17, 1683–1692. [CrossRef]

53. Miglani, A.; Kumar, N. Deep learning models for traffic flow prediction in autonomous vehicles: A review, solutions, and
challenges. Veh. Commun. 2019, 20, 100184. [CrossRef]

54. AlAmoudi, E.; Mehmood, R.; Albeshri, A.; Gojobori, T. A Survey of Methods and Tools for Large-Scale DNA Mixture Profiling.
In Smart Infrastructure and Applications; Advanced Controllers for Smart Cities; Springer: Cham, Switzerland, 2020; pp. 217–248.

55. Alotaibi, S.; Mehmood, R. Big Data Enabled Healthcare Supply Chain Management: Opportunities and Challenges. In Interna-
tional Conference on Smart Cities, Infrastructure, Technologies and Applications; Metzler, J.B., Ed.; Springer: Cham, Switzerland, 2018;
Volume 224, pp. 207–215.

56. Mehmood, R.; Graham, G. Big Data Logistics: A health-care Transport Capacity Sharing Model. Procedia Comput. Sci. 2015,
64, 1107–1114. [CrossRef]

57. Al-Dhubhani, R.; Mehmood, R.; Katib, I.; Algarni, A. Location Privacy in Smart Cities Era. In Lecture Notes of the Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST; Springer: Cham, Switzerland, 2018; Volume 224,
pp. 123–138.

58. Khanum, A.; Alvi, A.; Mehmood, R. Towards a Semantically Enriched Computational Intelligence (SECI) Framework for Smart
Farming. In Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST;
Springer: Cham, Switzerland, 2018; Volume 224, pp. 247–257.

59. Alkhamisi, A.O.; Mehmood, R. An Ensemble Machine and Deep Learning Model for Risk Prediction in Aviation Systems. In
Proceedings of the 2020 6th Conference on Data Science and Machine Learning Applications (CDMA), Riyadh, Saudi Arabia, 4–5
March 2020; pp. 54–59.

60. Garg, S.; Kaur, K.; Kumar, N.; Kaddoum, G.; Zomaya, A.Y.; Ranjan, R. A Hybrid Deep Learning-Based Model for Anomaly
Detection in Cloud Datacenter Networks. IEEE Trans. Netw. Serv. Manag. 2019, 16, 924–935. [CrossRef]

61. Liu, B. Sentiment Analysis and Opinion Mining. Synth. Lect. Hum. Lang. Technol. 2012, 5, 1–167. [CrossRef]
62. Sakaki, T.; Okazaki, M.; Matsuo, Y. Earthquake shakes Twitter users. In Proceedings of the 19th International Conference on

World Wide Web, Raleigh, NC, USA, 26–30 April 2010; pp. 851–860.
63. Sakaki, T.; Matsuo, Y.; Yanagihara, T.; Chandrasiri, N.P.; Nawa, K. Real-time event extraction for driving information from social

sensors. In Proceedings of the 2012 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent
Systems (CYBER), Bangkok, Thailand, 27–31 May 2012; pp. 221–226.

64. Kumar, A.; Jiang, M.; Fang, Y. Where not to go? In Proceedings of the 37th International ACM SIGIR Conference on Research &
Development in Information Retrieval; ACM: New York, NY, USA, 2014; Volume 2609550, pp. 1223–1226.

65. Semwal, D.; Patil, S.; Galhotra, S.; Arora, A.; Unny, N. STAR. In Proceedings of the 2nd IKDD Conference on Data Sciences; ACM:
New York, NY, USA, 2015; p. 7.

66. Tejaswin, P.; Kumar, R.; Gupta, S. Tweeting Traffic: Analyzing Twitter for generating real-time city traffic insights and predictions.
In Proceedings of the 2nd IKDD Conference on Data Sciences; ACM: New York, NY, USA, 2015; pp. 1–4.

67. Suma, S.; Mehmood, R.; Albeshri, A. Automatic Event Detection in Smart Cities Using Big Data Analytics. In Proceedings of the
Communications and Networking; Metzler, J.B., Ed.; Springer: Cham, Switzerland, 2018; Volume 224, pp. 111–122.

68. Atefeh, F.; Khreich, W. A Survey of Techniques for Event Detection in Twitter. Comput. Intell. 2013, 31, 132–164. [CrossRef]
69. Alkouz, B.; Al Aghbari, Z. SNSJam: Road traffic analysis and prediction by fusing data from multiple social networks. Inf. Process.

Manag. 2020, 57, 102139. [CrossRef]
70. Alkhatib, M.; El Barachi, M.; Shaalan, K. An Arabic social media based framework for incidents and events monitoring in smart

cities. J. Clean. Prod. 2019, 220, 771–785. [CrossRef]
71. Al-Smadi, M.; Qawasmeh, O. Knowledge-based Approach for Event Extraction from Arabic Tweets. Int. J. Adv. Comput. Sci.

Appl. 2016, 1, 483–490. [CrossRef]
72. Alsaedi, N.; Burnap, P. Arabic Event Detection in Social Media. LNCS 2015, 9041, 384–401.
73. Alabbas, W.; Al-Khateeb, H.M.; Mansour, A.; Epiphaniou, G.; Frommholz, I. Classification of colloquial Arabic tweets in real-time

to detect high-risk floods. In 2017 International Conference on Social Media, Wearable and Web Analytics (Social Media); Institute of
Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2017; pp. 1–8.

74. Kankanamge, N.; Yigitcanlar, T.; Goonetilleke, A.; Kamruzzaman, M. Can volunteer crowdsourcing reduce disaster risk?
A systematic review of the literature. Int. J. Disaster Risk Reduct. 2019, 35, 101097. [CrossRef]

75. Pandey, N.; Natarajan, S. How social media can contribute during disaster events? Case study of Chennai floods 2015. In
Proceedings of the 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI),
Jaipur, India, 21–24 September 2016; pp. 1352–1356. [CrossRef]

http://doi.org/10.3390/s19092206
http://www.ncbi.nlm.nih.gov/pubmed/31086055
http://doi.org/10.3390/su11102736
http://doi.org/10.1007/s00779-012-0600-8
http://doi.org/10.1016/j.vehcom.2019.100184
http://doi.org/10.1016/j.procs.2015.08.566
http://doi.org/10.1109/TNSM.2019.2927886
http://doi.org/10.2200/S00416ED1V01Y201204HLT016
http://doi.org/10.1111/coin.12017
http://doi.org/10.1016/j.ipm.2019.102139
http://doi.org/10.1016/j.jclepro.2019.02.063
http://doi.org/10.14569/IJACSA.2016.070663
http://doi.org/10.1016/j.ijdrr.2019.101097
http://doi.org/10.1109/icacci.2016.7732236

Sensors 2021, 21, 2993 33 of 33

76. Shafiabady, N.; Lee, L.; Rajkumar, R.; Kallimani, V.; Akram, N.A.; Isa, D. Using unsupervised clustering approach to train the
Support Vector Machine for text classification. Neurocomputing 2016, 211, 4–10. [CrossRef]

77. Ghahreman, N.; Dastjerdi, A.B. Semi-Automatic Labeling of Training Data Sets in Text Classification. Comput. Inf. Sci. 2011, 4, 48.
[CrossRef]

78. Xu, Z.; Li, J.; Liu, B.; Bi, J.; Li, R.; Mao, R. Semi-supervised learning in large scale text categorization. J. Shanghai Jiaotong Univ.
(Sci.) 2017, 22, 291–302. [CrossRef]

79. Triguero, I.; García, S.; Herrera, F. Self-labeled techniques for semi-supervised learning: Taxonomy, software and empirical study.
Knowl. Inf. Syst. 2015, 42, 245–284. [CrossRef]

80. Twitter. Tweet Objects. 2019. Available online: https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/intro-
to-tweet-json (accessed on 1 March 2021).

81. Messager, S.; Hann, A.C.; Goddard, P.A.; Dettmar, P.W.; Maillard, J.-Y. Use of the ’ex vivo’ test to study long-term bacterial
survival on human skin and their sensitivity to antisepsis. J. Appl. Microbiol. 2004, 97, 1149–1160. [CrossRef]

82. Loper, E.; Bird, S. NLTK: The Natural Language Toolkit. arXiv 2002, preprint, arXiv:cs/0205028.
83. WAS, S.P.A. Civil Defense in Riyadh Conducts Cooling Operations for Burnt Transformers in Al-Nafal Neighborhood. Available

online: https://www.spa.gov.sa/1821344 (accessed on 1 March 2021).
84. Saudi, A. 5 Injured in Al-Haramain Train Station Fire. 2019. Available online: Alarabiya.net (accessed on 1 March 2021).
85. Salamah, H. Watch rain in Makkah at dawn on Frida and a thunderstorm in Jeddah. Available online: youm7.com/story/2018/11/

23/4041930/ �
éK
Y«P

�
é

	
®�A«ð

�
éªÒm.

Ì'@Qj.
	
®Ó@QmÌ'A

�
J�
J. Ë AJ

	
P̄ A¢Ó

A£ñ

�
®�YëA

�
� (accessed on 1 March 2021).

86. INRIX. INRIX Global Traffic Scorecard. 2020. Available online: http://inrix.com/scorecard/ (accessed on 19 March 2021).
87. Alam, F.; Almaghthawi, A.; Katib, I.; Albeshri, A.; Mehmood, R. iResponse: An AI and IoT-Enabled Framework for Autonomous

COVID-19 Pandemic Management. Sustainability 2021, 13, 3797. [CrossRef]
88. Al-Dhubhani, R.S.; Cazalas, J.; Mehmood, R.; Katib, I.; Saeed, F. A Framework for Preserving Location Privacy for Continuous

Queries. In International Conference of Reliable Information and Communication Technology; Metzler, J.B., Ed.; Springer: Cham,
Switzerland, 2019; Volume 1073, pp. 819–832.

89. Ayres, G.; Mehmood, R. LocPriS: A Security and Privacy Preserving Location Based Services Development Framework. Lect.
Notes Comput. Sci. 2010, 6279, 566–575. [CrossRef]

http://doi.org/10.1016/j.neucom.2015.10.137
http://doi.org/10.5539/cis.v4n6p48
http://doi.org/10.1007/s12204-017-1835-3
http://doi.org/10.1007/s10115-013-0706-y
https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/intro-to-tweet-json
https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/intro-to-tweet-json
http://doi.org/10.1111/j.1365-2672.2004.02403.x
https://www.spa.gov.sa/1821344
Alarabiya.net
http://youm7.com/story/2018/11/23/%D8%B4%D8%A7%D9%87%D8%AF-%D8%B3%D9%82%D9%88%D8%B7-%D8%A3%D9%85%D8%B7%D8%A7%D8%B1-%D9%81%D9%89-%D8%A7%D9%84%D8%A8%D9%8A%D8%AA-%D8%A7%D9%84%D8%AD%D8%B1%D8%A7%D9%85-%D9%81%D8%AC%D8%B1-%D8%A7%D9%84%D8%AC%D9%85%D8%B9%D8%A9-%D9%88%D8%B9%D8%A7%D8%B5%D9%81%D8%A9-%D8%B1%D8%B9%D8%AF%D9%8A%D8%A9/4041930
http://youm7.com/story/2018/11/23/%D8%B4%D8%A7%D9%87%D8%AF-%D8%B3%D9%82%D9%88%D8%B7-%D8%A3%D9%85%D8%B7%D8%A7%D8%B1-%D9%81%D9%89-%D8%A7%D9%84%D8%A8%D9%8A%D8%AA-%D8%A7%D9%84%D8%AD%D8%B1%D8%A7%D9%85-%D9%81%D8%AC%D8%B1-%D8%A7%D9%84%D8%AC%D9%85%D8%B9%D8%A9-%D9%88%D8%B9%D8%A7%D8%B5%D9%81%D8%A9-%D8%B1%D8%B9%D8%AF%D9%8A%D8%A9/4041930
http://inrix.com/scorecard/
http://doi.org/10.3390/su13073797
http://doi.org/10.1007/978-3-642-15384-6_60

	Introduction
	Smart Cities, Tranportation, and Social Sensing
	Summary of the Proposed Work

	Literature Review
	Traffic Events Detection Using Social Data (Any Language)
	Traffic Events Detection Using Social Data (Arabic Language)
	Solution for Labeling Large Scale Dataset (Any Language)
	Research Gap, Novelty, Contributions, and Utilization

	Iktishaf+: Methodology and Design
	Tools and Libraries
	Data Collection and Storage Component (DCSC)
	Data Pre-Processing Component (DPC)
	Irrelevant Characters Removal
	Tokenizer and Normalizer
	Stop-Words Removal
	Stemmer

	Tweets Labeling Component (TLC)
	Automatic Labeling for Events Tweets
	Automatic Labeling for Irrelevant Tweets

	Feature Extractor Component (FEC)
	Tweets Filtering Component (TFC)
	Model Training
	Hyperparameter Tuning
	Classification Model Evaluation

	Events Detection Component (EDC)
	Spatio-Temporal Extractor Component (STEC)
	Text, Hashtag and Username
	Tweets Geo Attributes
	User Profile

	Reporting and Visualization Component (RVC)
	External and Internal Validation Component (EIVC)

	Analysis and Results
	Detected Events
	Validation of Detected Events
	Spatial Analysis
	Spatio-Temporal Analysis

	Evaluation: Tweet Filtering Classifiers
	Evaluation: Event Classifiers

	Conclusions and Outlook
	References

