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Despite the great progress that has been made in understanding cancer biology and the
potential molecular targets for its treatment, the majority of drugs fail in the clinical tri-
als. This may be attributed (at least in part) to the complexity of interstitial drug transport
in the patient’s body, which is hard to test experimentally. Similarly, recent advances in
molecular imaging have led to the development of targeted biomarkers that can predict
pharmacological responses to therapeutic interventions. However, both the drug and bio-
marker molecules need to access the tumor tissue and be taken up into individual cells
in concentrations sufficient to exert the desired effect. To investigate the process of drug
penetration at the mesoscopic level we developed a computational model of interstitial
transport that incorporates the biophysical properties of the tumor tissue, including its
architecture and interstitial fluid flow, as well as the properties of the agents. This model
is based on the method of regularized Stokeslets to describe the fluid flow coupled with
discrete diffusion-advection-reaction equations to model the dynamics of the drugs. Our
results show that the tissue cellular porosity and density influence the depth of penetra-
tion in a non-linear way, with sparsely packed tissues being traveled through more slowly
than the denser tissues.We demonstrate that irregularities in the cell spatial configurations
result in the formation of interstitial corridors that are followed by agents leading to the
emergence of tissue zones with less exposure to the drugs. We describe how the model
can be integrated with in vivo experiments to test the extravasation and penetration of
the targeted biomarkers through the tumor tissue. A better understanding of tissue- or
compound-specific factors that limit the penetration through the tumors is important for
non-invasive diagnoses, chemotherapy, the monitoring of treatment responses, and the
detection of tumor recurrence.

Keywords: interstitial transport, tissue penetration, drug/biomarker efficacy, regularized Stokeslets Method,
intravital fluorescence microscopy, mouse xenograft tumor model, tumor targeted agent, fluorescence molecular
imaging

INTRODUCTION
Systemic chemotherapy is one of the main anticancer treatments
used for most kinds of tumors that are clinically diagnosed. How-
ever, with a few exceptions, such as the treatment of chronic
myeloid leukemia with imatinib, the drugs that have shown high
promise for a cure in laboratory tests did not prove to be as success-
ful in the clinical setting. In fact, only about 10% of the drugs that
enter clinical trials are approved by the FDA (Petsco, 2010), and
the majority of potentially therapeutic compounds fail in Phase II
of the clinical trials. This means that the drugs are not effective in
treating the disease, even though they were potent in cell-culture
assays and animal model systems (Petsco, 2010). One of the rea-
sons for the Phase II drug failures may be attributed to the fact
that experimental models do not recreate the process of interstitial
drug transport in the tissues in the same way that it occurs in the

patient’s body. It is beyond question that even the most effective
anticancer drug will not show high efficacy if it cannot reach all
of the tumor cells in concentrations sufficient to exert a thera-
peutic effect. Moreover, it has been suggested (Minchinton and
Tannock, 2006) that the poor penetration of the tumor tissue by
drug particles may leave untreated certain cell populations capable
of initiating tumor recurrence and/or resistance.

Recent advances in molecular imaging allow for the develop-
ment of targeted imaging agents that are specific in binding to
intracellular or extracellular targets (biomarkers). They can pre-
dict the pharmacological responses to therapeutic interventions
and are being used during the diagnoses to determine the state
of the disease and to plan (personalized) treatment. Imaging bio-
markers that allow for the prediction and monitoring of patient
responses to a given therapy are becoming an essential component
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of drug development. Moreover, they can reduce the number of
patients needed to test novel targeted therapeutic agents by iden-
tifying non-responders early-on. However, the transport of such
biomarkers through the tumor tissue faces similar issues. In order
to be a useful predictor, targeted imaging agents need to access
the tumor tissue space and then be retained by individual cells
through binding and uptake (Morse and Gillies, 2010).

Drug penetration refers to the movement of drug molecules
from the bloodstream into the various tissues of the body (Minch-
inton and Tannock, 2006). After a drug is absorbed into the
bloodstream, it rapidly circulates through the body; however,
both the spatial and temporal distributions of the drug molecules
may be different in different tissues types and the extent of the
drug/biomarker particle penetration into the tissue depends on
both the biochemical properties of the particles and biophysical
properties of the tissues. For example, drugs that dissolve in water
(water-soluble drugs) tend to stay in the bloodstream and in the
fluid that surrounds the cells (interstitial fluid). Particles have dif-
ferent sizes and molecular weights and thus their penetration into
the tumor tissue may depend on whether their transport through
the interstitial space is dominated by their random motion (dif-
fusion) or motion due to the fluid flow (advection) (Jain, 1987;
Gade et al., 2009; Schmidt and Wittrup, 2009). The interstitial
transport of drug molecules may also be affected by the tumor
cellular structure (Grantab et al., 2006) and extracellular matrix
(ECM) assembly (Netti et al., 2000). We are particularly inter-
ested in the cellular architecture of tumor tissue, which may be
highly unorganized, irregular, and heterogeneous (Figure 1), and
in the role that the size of the extracellular space between the cells
plays in interstitial transport by both diffusion and interstitial fluid
advection. We will investigate the complex interplay between these
processes of extracellular transport and drug penetration.

Most in silico models applied to drug development use bio-
statistics and bio-informatics methods to screen large numbers of
therapeutic compounds. The pharmacokinetic (PK) properties of

the drugs are then determined by fitting the actual data to a the-
oretical compartmental model, followed by rigorous “goodness-
of-fit” test statistics (Michelson et al., 2006). Although numerous
computational methods have been developed for the in silico test-
ing of various properties of drug particles (known under the
acronym ADME-T: absorption, distribution, metabolism, excre-
tion, and toxicity (Beresford et al., 2002; Boobis et al., 2002; Ekins
and Rose, 2002; Kerns and Di, 2008; Huynh et al., 2009) they
do not consider the spatial aspects of drug PKs and treat all
organs as well-mixed compartments neglecting their natural het-
erogeneities. Thus, the poor penetration of the tumor tissue as
a limiting factor for drug efficacy is not currently included in a
typical ADME-T protocol.

Mathematical PK models that include tissue transport phe-
nomena are usually defined as continuous mixture models with
the tumor tissue being represented by a homogeneous material
(Baxter and Jain, 1989; Jackson and Byrne, 2000; Zhao et al., 2007;
Sinek et al., 2009; Shipley and Chapman, 2010). These models
showed importance of the kinetics of the drug supply from the
blood system, as well as its diffusive and advective transport, on
the concentration profiles of biochemical compounds, and the sig-
nificant impact of nutrient distribution on the drug’s therapeutic
efficacy. However, they have not addressed the heterogeneity of the
tumor cells, or the transport of individual drug/biomarker parti-
cles. These aspects will be incorporated in the mechanistic model
described in this paper that is based on the fluid-structure inter-
action method of the regularized Stokeslets (Cortez, 2001). We
take into account, explicitly, the cellular structure of the tumor tis-
sue, and investigate how the tumor tissue composition influences
the interstitial transport of chemical compounds. In particular, we
analyze the relationship between the cellular porosity and/or cel-
lular density of the tissue at the depth at which the drug/biomarker
particles penetrate it. Our computational results are also compared
to the experimental data showing the differences in the penetra-
tion and uptake of targeted imaging agents in tumors that express

FIGURE 1 |Tumor tissue structure as a barrier in drug and imaging agent
efficacy. (A) Schematics of the complex dynamics of drug/imaging molecule
movement through the tissue, including extravasation, diffusive and advective
transport, and internalization. (B) Three-dimensional multiphoton emission

(MPE) microscopy image reconstruction (400× magnification) of the human
MDAMB231/GFP xenograft tumor from the dorsal-skin fold window chamber.
(C) Horizontal view of (B) showing the depth in the tissue structure. Staining:
green-tumor cells, red-vasculature.

Frontiers in Oncology | Molecular and Cellular Oncology May 2013 | Volume 3 | Article 111 | 2

http://www.frontiersin.org/Molecular_and_Cellular_Oncology
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rejniak et al. Tissue architecture in treatment penetration and efficacy

the cell-surface receptor of interest (positive tumors) or not (neg-
ative tumors). This study will offer an insight into the potential
mechanisms preventing the adequate delivery of anticancer drugs.

MATERIALS AND METHODS
THE MATHEMATICAL MODEL
We consider here a small (a few hundred of microns in length) two-
dimensional patch of the tumor tissue (Ω) with explicitly defined
tissue morphology composed of individual tumor cells (Γ=

∑
Γi

where i= 1, . . ., Nb, and Nb is the number of cells) embed-
ded in the ECM and surrounded by interstitial space filled with
fluid (Ω\Γ, Figure 2). The reported experimental measurements
of the interstitial fluid velocities are in the order of 0.1–2 µm/s
(Chary and Jain, 1989; Swartz and Fleury, 2007), thus the sim-
ulated time needed for drug particles to transverse the modeled
tissue is in the order of a few minutes. Therefore, we treat all
cells as stationary, i.e., we assume that during the simulation time
the cells are immobile and will not grow, divide, or die (thus the
cell shapes and positions are fixed). Moreover, since the charac-
teristic cell-tissue length scale is in the order of 10–100 µm, the
corresponding Reynolds number is small (Re = ρLV /µ= 10−7 to
10−5, where ρ is the fluid density, µ is the fluid viscosity, and
L and V are the characteristic length and velocity scales, respec-
tively). Hence, the fluid flow can be approximated by the Stokes
equations:

µ ∆u (x) = ∇p (x)− f (x) , (1)

∇ · u (x) = 0, (2)

where p is the pressure, u is the fluid velocity, and
f= fin+ fbnd+ fcell, is the force applied to the domain edges ∂Ω(fin,
fbnd), and cell boundaries ∂Γ(fcell) to create the physiologically rel-
evant interstitial fluid flow and to keep the cells immobile. These
equations are solved using the classical fluid-structure interac-
tion method of the regularized Stokeslets (Cortez, 2001). In this
method, each force f concentrated at a single point x0 is smoothed
over a small ball of radius ε using a cut-off function φε, that
is f(x)= f0φε(x− x0). The cut-off function needs to be radially
symmetric, vary smoothly from its maximal value at the center
to zero at the surface, and satisfy the condition:

∫
φε(x)dx = 0.

FIGURE 2 |Tissue scheme in the model. Schematic representation of the
computational domain containing several tumor cells (blue circles)
surrounded by the interstitial fluid (black arrows) that is supplied from the
capillary located at the left border of the domain (red arrows). Adequate
forces (f in and f bnd) are chosen to create the physiological fluid flow and to
keep the boundaries of all tumor cells immobile (f cell).

We follow (Tlupova and Cortez, 2009) and use the function

φε =
2ε4

π(‖x‖2+ε2)
3 for which the regularized Stokes equations have

the exact solution. Other examples of suitable cut-off functions
can be found in Cortez (2001) and Tlupova and Cortez (2009)
together with their detailed derivation. Since the Stokes equations
are linear, one may represent the fluid flow as a direct summation
of the contributions from finitely many discrete forces fk, which
gives the following expression for the fluid velocity u that we will
use in all our simulations (N is the number of forces):

u(x) =

N∑
k=1

{
−

1

4πµ
fk

(
ln
(
r2
+ ε2)

−
2ε2

r2 + ε2

)

+
1

4πµ

1

r2 + ε2

[
fk · (x − xk)

]
(x − xk)

}
, (3)

where rk = ‖x − xk‖ . The regularization parameter ε has been
chosen to be equal to the cell boundary point separation that is
optimal for reducing the regularization error (Cortez et al., 2005;
Tlupova and Cortez, 2009). In this model we assume that the fluid
is supplied from the capillary located at the left boundary of the
domain, and penetrates the interstitial space around the tumor
cells (Ω\Γ) as shown in Figure 2.

The individual molecules (of the drug or imaging agents under
consideration) are modeled as a collection of discrete particles
yp that enter the tissue via the transmural influx from a capil-
lary (together with the interstitial fluid), and advance through
the tissue by a combination of advective transport, with the fluid
flow calculated using the regularized Stokeslets method, and dif-
fusion modeled as Brownian motion with a diffusion coefficient D
and a randomly chosen direction of movement -. Particle move-
ment (without cellular uptake) is confined to the extracellular
space (Ω\Γ) only. The advective transport satisfies this condition
since the fluid flow is zero at all cell boundaries. For the diffusive
movement we ensure that the particles do not cross the cell mem-
brane incidentally by maintaining their old positions whenever
the randomly chosen direction of movement would push the par-
ticles into the intracellular space (Eq. 4, parameter α). The process
of particle internalization by the cells is modeled separately by
trapping the particle by the near-by cell boundary receptor if the
particle comes close to the cell boundary (Xl within a small dis-
tance δ, Eq. 4). This is a very simplified way to model drug uptake,
and results in 100% binding rate. However, molecular binding
is usually not so efficient, and depends not only on the distance
between the receptor and the ligand but also on the chemical or
electrostatic forces between the two. The numerical procedure for
updating the positions of the drug/imaging agent particles is given
in Eq. 4,

yn+1
p =


Xl , if

∥∥∥yn
p − Xl

∥∥∥ ≤ δ &Xl ∈ ∂Γ,

δ << ε

yn
p + α

(
u(yn

p )∆t +
√

2D∆t -n
)

, otherwise

,

and α =


1, yn

p , yn+1
p ∈ Ω\Γ,

0, yn
p ∈ Ω\Γ, yn+1

p ∈ Γ,

0, yn
p ∈ Γ.

(4)
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and the physical and computational parameters of the model are
listed in Table 1.

The velocity in Eq. 3 can be used in two ways. First, for the
given forces one can directly compute the induced velocity at any
point in the domain. Second, since this equation is linear, one can
use an iterative method, such as the generalized minimal resid-
ual method (gmres), to determine the forces that will result in the
desired velocities at certain points in the domain (Cortez, 2001).
Thus, our final computational algorithm can be summarized as
follows: (1) use Eq. 3 to compute the forces (i) at the capillary
which will result in the desired fluid and drug supply; (ii) on all
cell boundaries to keep the cells immobile, and (iii) on the upper
and lower edges of the computational domain to impose a zero
flow there; (2) use Eq. 3 and the forces determined in (1) to com-
pute the fluid velocities at all points representing the drug/imaging
agent molecules; (3) use Eq. 4 to compute the new locations of all
of the particles due to their advective transport at the local fluid
velocity determined in (2), and their diffusive motion within the
extracellular space. (4) Determine the cellular uptake of the parti-
cles, if the particles move close to the cell membrane receptors
and the cells are capable of binding the particles. Repeat iter-
atively steps (2–4) to advance the particles through the tumor
tissue.

INTRAVITAL IMAGING OF Dmt-Tic-Cy5 USING THE DORSAL WINDOW
CHAMBER TUMOR XENOGRAFT MODEL
A dorsal window chamber (DWC) xenograft tumor model was
used to study the PKs of the tumor cell binding and uptake of the
δ-opioid receptor (δOR) targeted fluorescent agent Dmt-Tic-Cy5
(Josan et al., 2009). HCT116/δOR colon cancer cells engineered
to express the δOR on the cell-surface, or δOR negative HCT116
parental cells were mixed with rat GFP expressing microvessels and
aseptically inoculated within the exposed epidermis of the dorsal
chamber. Following tumor cell implantation, a glass cover was
placed in the chamber to cover the xenograft tumor. Ten days after
cell implantation, mice were intravenously injected with 100 µl
of 5% 10,000 MW Cascade Blue Dextran (Invitrogen, CA, USA)
in sterile H2O to verify microvessel patency. Then, 45 nmol/kg of
the δOR specific Dmt-Tic-Cy5 probe was injected into the tail

Table 1 | Model physical and computational parameters.

Parameter Symbol Value

Domain Ω 210×80 µm

Tissue cellular porosity ψ 40–90%

Tissue cellular density ξ 2–6 Cells per column

Interstitial fluid input flow u in (1, 0) µm/s

Fluid viscosity µ 2.5×103 µg/(mm.s)

Regularization parameter ε 0.5 µm

Discretization parameter 0.5 µm

Time step ∆t 0.1 s

Diffusion coefficient D 2.5×10−8 to 10−3 mm2/s

Direction and distance of motion - 0–360˚ and [0,
√

(2D∆t )]

Uptake rate 100%

Binding distance δ 0.5ε

vein. Confocal fluorescence microscopy images were continuously
acquired for a period of time, during and after the injection of
the probe, using an Olympus FV1000 (MPE) Multiphoton Laser
Scanning Microscope (Lisa Muma Weitz Advanced Microscopy
and Cell Imaging facility at USF) with 250×magnification and an
acquisition rate of 3570 pixels/min. The presence of Dmt-Tic-Cy5
was measured by excitation with a 635 nm wavelength laser and the
emitted light was detected using a 655–755 nm emission filter. All
procedures were carried out in compliance with the Guide for the
Care and Use of Laboratory Animal Resources (1996), National
Research Council, and were approved by the Institutional Ani-
mal Care and Use Committee (IACUC) at the University of South
Florida.

HISTOLOGICAL IMAGING OF HUMAN OVARIAN TUMOR
A sample of invasive ovarian tumor has been selected retrospec-
tively from the Moffitt Cancer Registry database. A section of the
formalin fixed and paraffin embedded (FFPE) tissue (4 µm thick)
has been stained with a hematoxylin and eosin stain (H&E). The
whole slide was scanned using the Aperio™ (Vista, CA, USA)
ScanScope XT with a 20×/0.8 NA objective lens at a rate of 3 min
per slide via Basler tri-linear-array. All procedures were carried
out in compliance with HIPAA regulations with patient consent
and were approved by the Institutional Review Committee (IRB #
Pro00003491) at the University of South Florida and the Moffitt
Cancer Center Scientific Review Committee (SRC # 16511). The
original H&E-stained histological image has been digitized using
the ImageJ software (NIH, USA) and in house Matlab routines.
The digitized version has been used for computational simula-
tions using the model described in Section “The Mathematical
Model.”

RESULTS
Experimental evidence (Gullino et al., 1965; Nugent and Jain, 1984;
Jain, 1987; Netti et al., 2000; Levitt, 2003; Grantab et al., 2006) has
shown that tissue histology, cell packing density, and the extent
of the ECM, and the amount of interstitial water can vary signifi-
cantly between cancers of various origins (breast, brain, ovary, and
lung). For example, in tumors grown in rats the interstitial intertu-
moral space can vary from around 35% in certain carcinosarcomas
and carcinomas, to around 65% in fibrocarcinomas and sarco-
mas (Jain, 1987). Our goal is to investigate how the structure and
cellular composition of tumor tissues influences the interstitial
transport of chemical compounds, such as drug or biomarker mol-
ecules. We will use a suit of idealized computational tissues with
various morphological parameters (cellular size, tissue porosity)
and different properties of drug particles (diffusion coefficient,
cellular absorption) to run computational simulations and com-
pare the depth and timing of the molecule distributions within the
tissue. This systematic exploration allows us to determine the rel-
ative importance of the physical parameters of both the tissue and
the drug required for effective interstitial transport. Finally, we will
compare our simulation outcomes with experimental results from
tumor cells grown in the DWC and treated with targeted imag-
ing agents to determine their spatial and temporal penetration
dynamics.

Frontiers in Oncology | Molecular and Cellular Oncology May 2013 | Volume 3 | Article 111 | 4

http://www.frontiersin.org/Molecular_and_Cellular_Oncology
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rejniak et al. Tissue architecture in treatment penetration and efficacy

PERMEATION IN IDEALIZED TISSUES OF REGULAR ARCHITECTURE
We began our study by examining idealized computational tis-
sues composed of identical regularly distributed circular cells. This
allowed us to analyze the properties of the mechanistic model
when tissue heterogeneity is ignored. Furthermore, we compared
these results with cases where the regular tissue structure is per-
turbed. Since the interstitial transport takes place in the void space
separating individual cells, the depth of tissue penetration depends
on the relative volume of all voids, which we quantify as tissue cel-
lular porosity, ψ. However, the particular pattern of the interstitial
fluid flow for the fixed porosity value relies on the actual space
between individual cells, and thus on the cell size and number
(density) within the tissue. In the case of idealized tissues with
regularly spaced circular cells we defined the tissue cellular den-
sity as the number of cells in each column, ξ. The subject of our
investigation is the permeation time and penetration depth of
the drug/biomarker particles transported by the interstitial fluid
flow through a tissue with given morphological parameters (ψ, ξ).
Figure 3 shows a collection of tissue samples with regularly distrib-
uted cells for the three porosity values of ψ= 40, 65, and 90%, and
the cellular densities of ξ= 2, . . ., 6 (the pattern of the interstitial
fluid flow in each case is shown in blue).

We examined a total of 30 cases of regular cellular patterns in
which the tissue’s cellular porosity varied between 40 and 90%,
and the tissue’s cellular density varied between two and six cells.
In each in silico tissue, all cells had identical radii determined in
such a way to reach the desired values of both the cellular poros-
ity of the tissue and its cellular density. Note that in each row in
Figure 3 the value of the tissue cellular porosity is fixed, and that
for an increasing number of cells that occupy each column (cases
ordered from left to right), the overall cellular density increases.
However, it is not immediately clear how the tissue permeability,
i.e., the extent of the interstitial fluid penetration of the tissue, is
related to the tissue cellular structure. In fact, we will show that
the less dense tissues may have lower permeation properties.

We first consider the advective transport only. In each case
under consideration we computed the interstitial fluid field
(Figure 3) that was a result of the steady fluid influx of the veloc-
ity uin

= (1, 0) µm/s (Swartz and Fleury, 2007) along a capillary
located at the left edge of the domain. Subsequently, we introduced
identical numbers of drug particles (Np= 4800) from uniformly
spaced capillary fenestration, and traced the drug particles trajec-
tories within the interstitial fluid flow during their transport. It is
not known a priori whether all of the particles will be able to trans-
verse the whole tissue patch, as there is the possibility that they may
be carried with the flow to some tissue spots where the intersti-
tial fluid velocity is very low or even zero (for example particles
located near the cell boundaries). Therefore, to be able to compare
the results across different tissue geometries we recorded the time
(that we call the permeation time) when a certain fraction of the
fastest drug particles (a quarter of all particles introduced to the
system) reaches a prescribed distance from the capillary (we chose
the distance of 120 µm, which requires the particles to travel 2/3
of the whole computational domain). The choice of both values,
the distance at which the permeation time is measured and the
fraction of particles to take into consideration are somewhat arbi-
trary, but our main goal is to compare the results between tissues
of different properties using unified criteria. We do not expect the
overall conclusions from our model simulations to be significantly
different if we choose a different fraction of particles or a differ-
ent distance from the capillary. The permeation time normalized
by the minimal value across all 30 tissue samples is presented in
Figure 4A as a surface plot. Here, the slowest permeation time
for the tissue of (ψ, ξ)= (40%, 6) is more than twofold longer
than the fastest permeation time for the tissue (ψ, ξ)= (40%, 2).
Figure 4B shows a plot of the maximal distances reached by the
drug particles at the fixed time equal to the minimal permeation
time from Figure 4A. Seven particular tissue samples are shown in
more detail (red points show final locations of drug particles at the
permeation times from Figure 4A, gray points show locations of

FIGURE 3 | Differences in the tissue’s cellular structure.
(A) Collection of tissue samples with regularly distributed cells with
various values of cellular porosity ψ (defined as a percentage of void
spaces in the tissue; here ψ=40, 65, 90%) and cellular density ξ

(determined by the number of cells in each column; here ξ=2, 3, . . ., 6).

Tumor cells are represented by circles and the interstitial fluid velocity
field initiated at the left edge of the domain is shown as blue arrows
pointing in the direction of fluid flow. (B) The interstitial space is
determined by the size (r ) of the cells and distance (d ) between the
neighboring cells.
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FIGURE 4 | Drug particle permeation times and depths for
advective flow in regularly packed tumor tissues. Surfaces showing
(A) the relative permeation time of drug particles (the time required for
a quarter of the supplied drug particles to reach 2/3 of the
computational domain length), and (B) the normalized depth of tissue
penetration at a fixed time for tissues of varying cellular porosity and

cellular density (ψ, ξ). Seven specific tissue configurations of indicated
cellular porosity and cellular density are shown in each case. The
locations of drug particles at a fixed time from (B) are shown in gray,
and their final positions at the permeation times from (A) are shown in
red. The green vertical lines indicate the fixed distance at which the
permeation time is recorded.

drug particles at the fixed time from Figure 4B). For the minimal
permeation time (lower right inset) both the red and gray particles
overlap.

As expected, for a given tissue cellular porosity the permeation
time increases with increasing tissue cellular density as a result
of the diminished space between neighboring cells (Figure 4A).
However, for the cases when the cell column occupancy is small
(ξ= 2, 3, 4) the tissues characterized by a lower cellular porosity,
and thus with a smaller separation between neighboring cells, are
traversed faster by the majority of the drug particles, and thus the
corresponding permeation times are lower. The global minimum
in permeation times occurs for the porosity ψ= 40% and cellular
density ξ= 2. For higher cellular densities (i.e., larger numbers
of cells occupying each column), the local minima in the perme-
ation times occur at the middle-rank of a given tissue porosity,
that is at ψ= 60%. This is also confirmed in Figure 4B, where
the larger traveled distances are observed in the cases of either
low cellular porosity or low cellular density (right lower corner
in Figure 4B). These results were obtained under the assumption

that the interstitial fluid influx uin from the capillary is identical
in all 30 in silico tissues considered here. As a consequence, the
fluid velocity in denser tissues is higher, since the same amount of
fluid is moving through a narrower space, and the drug molecule
permeation time is faster.

PERMEATION IN IDEALIZED TISSUES OF IRREGULAR ARCHITECTURE
Now we consider cases in which the cells are non-uniformly dis-
tributed within the tissue. We examined tissue geometries obtained
by shifting the locations of the tumor cells with respect to the reg-
ularly ordered tissues. Figure 5A shows a regularly (upper left
corner) and three irregularly packed tissues (upper right corner
and both pictures in the middle row), all with cellular porosi-
ties of ψ= 80% and cellular densities of ξ= 2 cells per column
(the irregular tissue geometries were obtained from the regular
ones by randomly shifting the cell centers around their initial
positions without cell overlap). These tissue irregularities result
in the asymmetrical flow of the interstitial fluid (fluid velocity
fields on the same grid are shown in blue in Figure 5A), and in
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FIGURE 5 | Comparison of drug particle traces and tortuosity in regular
and irregularly perturbed tissue geometries. (A) A regularly packed
tissue (upper left corner) and three cases of irregular geometries (upper
right corner and middle row), all with a cellular porosity of ψ=80% and
cellular density of ξ=2 cells, together with the resulting interstitial fluid
velocity fields and indicated distortion (dst). Bottom row: traces of drug
particles along the “corridors” with a higher interstitial fluid flow for the two
irregular geometries shown in the middle row. (B) The effective paths
of two representative drug particles (the same in each tissue) for a
pair of regularly and irregularly packed tissues: (ψ, ξ)= (40%, 2) and
(ψ, ξ)= (50%, 4). The length of each vector (blue) indicates the speed of a
particle at the given position. Insets show traces of several other drug
particles for the given tissue topology. The maximal tortuosity values (tor)
for each tissue are provided.

the formation of interstitial “corridors” characterized by higher
fluid flow. We quantify this distortion (on the scale of the whole
tissue patch) by comparing the differences in the whole velocity
fields between the irregularly and regularly packed tissues using the
L1-norm, dst= ||ureg− uirreg||1/(Nx×Ny), where Nx×Ny is the
number of grid points upon which the fluid velocity field is evalu-
ated (the distortion values for each tissue are shown in Figure 5).
These emergent fluid corridors are followed by drug particles dur-
ing their advective transport through the tumor interstitium (see
Figure 5A bottom row).

The actual microscopic paths followed by the fluid flow car-
rying the drug particles can be geometrically complex. Thus, we
use a quantitative metric of the drug particle path tortuosity in
order to illustrate the differences between the individual routes of
drug transport within the tissue. The path tortuosity τ is defined
here as a ratio of the effective path length (Le) to the shortest
straight-line distance (L) between the initial and final positions of
the moving particle, that is τ= Le/L. Note that the tortuosity of a
straight line is 1, of a circular path is infinity, and that it has been
estimated in Ramanujan et al. (2002) that the tortuosity of a well-
packed system of cells is τ=

√
2. Therefore, the determination

of the mean and maximal tortuosity of individual drug particle
paths can provide a better understanding of the void space com-
plexity inside the tumor tissue and the patterns of the interstitial
fluid flow. The average tortuosities under the advective flow taken
over all 30 different regular and 150 irregular tissues considered in
our simulations are similar (τ= 1.12± 0.05 and τ= 1.20± 0.07,
respectively). However, for every irregularly packed tissue we have
observed some drug particle paths of tortuosity above

√
2, and

the average maximal tortuosity in these tissues is τ= 1.64± 0.3.
Thus, the irregular tissue topology implies that some drug parti-
cles traverse across the tissues in a very complex way. Figure 5B
shows the representative traces of the same drug particles for two
pairs of tissues, one regularly and one irregularly packed. The case
of minimal overall permeation (ψ, ξ)= (40%, 2) is shown in the
left column, whereas the case of the highest average tissue tor-
tuosity (ψ, ξ)= (50%, 4) is presented in the right column. The
speed of each traced particle at every visited position inside the
tissue is indicated by the length of the vertical vector. These values
depend strongly on the cellular structure of the tissue, and oscillate
around the cell perimeters. However, in the case of regular tissues
these oscillations are periodic. Thus, when the particles are sup-
plied through uniformly spaced capillary fenestration, they can
cover the whole tissue width evenly. In contrast, in the irregular
tissues the drug particles may travel across the width of the tissue
by utilizing the fluid flow corridors, and even if the drug particles
initial locations along the capillary were distinct, they may end up
following the same path. Moreover, the speed of the drug particles
in these cases is very non-homogeneous (as seen in Figure 5B, left
lower image), and the tortuosities of many of the particles’ paths
are above

√
2, in contrast to the regular cases. This causes a non-

uniform exposure of the drug to the tumor cells. That is, some
tissue regions are penetrated by large numbers of drug particles,
whereas some tumor cells may not come in contact with sufficient
concentrations of the drug particles to experience their therapeu-
tic action. Such irregular interstitial flows also result in the faster
transport of some drug particles (compare the lengths of each path
shown in Figure 5B) and deeper penetration of the tissue when
compared to the cases of regular cellular packing. Our simula-
tions show that this phenomenon is more pronounced in tissues
of higher cellular density. On average, across irregular tissues of the
same cellular density and porosity, the permeation times are com-
parable to those in the regularly packed tissues (data not shown).
However, for tissues in which there are multiple paths of high
tortuosity, the permeation depth and time may be significantly
higher.
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PERMEATION UNDER A COMBINATION OF ADVECTIVE AND DIFFUSIVE
TRANSPORTS
Drug and imaging particles, like metabolites and other molecules,
are capable of random motion when suspended in a medium such
as interstitial fluid. The extent and speed of this intrinsic,diffusion-
type particle motility depend on the particle’s molecular mass
(Einstein relation). Here we consider a wide range of particle diffu-
sion coefficients that cover both the small molecules of metabolites
(such as oxygen or glucose), large nanoparticles (designed as car-
riers of therapeutic compounds), and all modalities in between
(Nugent and Jain, 1984; Pluen et al., 2001; Avgoustiniatos et al.,
2007; Schmidt and Wittrup, 2009). We tested six different val-
ues of particle diffusion coefficients in the range of 2.5× 10−8 to
10−3 mm2/s. As expected, we saw both transport phenomena: dif-
fusion driven particle dispersal (for the Péclet numbers of 0.04–4),
and advection-dominated particle relocation (for the Péclet num-
bers of 400–4000). The value of the Péclet number is a measure
of the ratio between the advective displacement of the particles
moved by the flow to the rate of the particle diffusion driven by
an appropriate gradient (Pe= L×U/D, where D is a diffusion
coefficient, and L and U are the characteristic values of length
and velocity, respectively used to determine the Reynolds num-
ber Re in The Mathematical Model section). We observed that for
small Péclet numbers (Pe= 0.04–4), the transport of particles was
clearly diffusion-dominated in all considered tissues, for all values
of tissue cellular density and porosity, and for both regularly and
irregularly spaced cells. In all cases the entire interstitium was cov-
ered by drug particles (examples shown in Figure 6, left subspace).
For the maximal Péclet number considered here (Pe = 4000), the
transport was advection-driven, and all drug particles followed
the high velocity corridors with minimal dispersion due to low
diffusive properties (examples shown in Figure 6, right column).
However for the values of the Péclet number of Pe = 40 and 400,
the transport of the drug particles had different characteristics

depending on the tissue structure. In the case of Pe = 40, only the
tissues of low cellular density (ξ= 2) showed dominant advective
transport. For the tissues with higher cellular densities the drug
particles only followed the fluid flow initially, and their diffu-
sive capacities became finally predominant (examples shown in
Figure 6). In the case of Pe = 400, only the tissues with a high cel-
lular density (ξ= 6) showed diffusive characteristics. For all other
tissues the transport was dominated by the interstitial fluid flow
(Figure 6). Moreover, the average tortuosity of the drug parti-
cle traces for advection-dominated transport (Pe = 4000, all tissue
samples) was equal to τ= 1.35 which is similar to the average
for the pure advection transport discussed above. In the cases
of a small Péclet number, the average tortuosity is an order of
magnitude larger: τ= 11.1 (with the mean value of τ= 17.9, 10.7,
4.7 for Pe = 0.04, 0.4, and 4, respectively).

COMPARISON WITH PERMEATION OF TARGETED IMAGING AGENTS
A direct comparison of our computational results with the drug
distribution in tumor tissues is difficult. The in vitro experiments
with either the 3D multicellular spheroids (Nederman et al., 1981;
Walenta et al., 2002; Bryce et al., 2009) or multilayered tissue
constructs (Kyle et al., 2004; Grantab et al., 2006; Modok et al.,
2007; Al-Abd et al., 2008) do not reproduce the in vivo conditions
faithfully (for example, the differences in interstitial pressure and
interstitial fluid flow patterns are usually not captured). The effects
of the drug actions on individual tumor cells in mouse models can
be captured ex vivo by using the immunohistochemical staining of
dead cells (Sun et al., 2012), or in vivo by using fluorescent drugs
(Ozols et al., 1979; Lankelma et al., 1999; Primeau et al., 2005).
However, intrinsically fluorescent drugs are scarce (doxorubicin,
adriamycin); therefore, we will compare the results of our simu-
lations to the penetration of fluorescent imaging agents targeted
to bind to the specific cell membrane receptors expressed by some
tumor cells.

FIGURE 6 | Classification of particle traces for a combination of advective
and diffusive transports. The model parameter space separated into
diffusion (left-top) or advection (right-bottom) dominated particle transport (the
separation shown in blue), shown for five representative tissue samples
selected out of 30 considered in this study. For the small Péclet numbers

(Pe=0.04–4) the transport is diffusion-dominated for all tissue topologies. For
the maximal considered Péclet number (Pe=4000) the transport is
convection-driven for all tissue architectures. In the case of the medium
Péclet numbers (Pe=40–400) the particle transport changes its
characteristics depending on the tissue architecture.
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Our experimental model of choice is the DWC that is surgically
implanted on a mouse dorsal-skin flap and allows for monitor-
ing the growth of xenograft tumors over time. When combined
with a targeted fluorescent imaging agent (Dmt-Tic-Cy5) we can
observe agent extravasation from the vascular system, its spread
through the interstitial space, cellular uptake by tumor cells that
express the target marker, and agent clearance from the tissue.
Two different tumors were implanted, one that expresses and a
second that does not express the targeted receptor. The tumors
were imaged at different time-points following the administra-
tion of the agent (Figure 7A), and the fluorescence intensities of
both tumor tissue types were recorded (Figure 7B). Clearly, the
tumor expressing the targeted receptor (δOR+, Figure 7A, top
row) showed the slow but steady accumulation of the fluores-
cent agent over the period of 24 h. For the tumor that did not
express the targeted receptor (δOR−, Figure 7A, bottom row) the
fluorescent agent was clearly visible in the mouse veins just after
injection (Figure 7A, bottom row, left image); however, since it
was not absorbed by the tumor cells, it cleared from the tumor
tissue in about 10 min (Figures 7A,B, bottom row middle image).
For simplicity, we called the latter case “untargeted,” since the
imaging agent was not able to bind to the target cell membrane
receptors.

The process of imaging agent molecule uptake via binding
to cell membrane receptors was incorporated into our compu-
tational model by trapping these particles that come very close
to the cell boundary points inside of the cell. The course of the
time for a simulation of the targeted agent with cellular uptake
is shown in Figure 7D. The top images show the individual par-
ticles inside of the cells (pink dots) and in the interstitial space
(red dots). The bottom images show the corresponding fluorescent
rendering that was created by dividing the whole computational
domain into small square grids and counting the particles inside.
The obtained particle concentration is presented as a heat map.
Figure 7E shows the time sequence from a simulation without cel-
lular uptake (untargeted). Both cases were run for the same tissue
structure of cellular density ξ= 5, cellular porosity ψ= 60%, and
Péclet number Pe = 40.

In order to compare the simulated and experimental results
we selected a small tissue section near the agent supply (vein) in
the untargeted case and far from the vein in the targeted case.
This is consistent with the way the experimental data was quan-
tified. Again, following the experimental procedure, we counted
all of the particles inside the selected reference window (indicated
by blue rectangles in Figures 7D,E) and normalized the obtained
counts by the maximal value from the whole time-course sep-
arately for each simulation. The quantification of the simulated
results is shown in Figure 7C. Our results show a trend similar to
the experimental data in the dynamics of both the targeted and
untargeted agents. However, this comparison has only a qualitative
value, because our computational model has not been tuned to the
experimental setup, and certain model parameters (such as agent
molecular binding or the level of intracellular agent saturation)
have not been calibrated to match those in the experiments. Both
the experimental and simulated data need to be analyzed further
in order to compare the results quantitatively.

CONCLUSION AND DISCUSSION
In this paper we investigated how the structure and distribution
of tumor cells influence the interstitial fluid flow and the delivery
of chemical compounds, such as drug or imaging particles. We
used a computational model based on the method of the regular-
ized Stokeslets of Cortez (2001) that allows for modeling both the
advective transport (with the interstitial flow due to the pressure
differences between the vascular system and the tumor tissue),
and the diffusive transport due to the Brownian motion of the
particles. While the method of regularized Stokeslets has been
used previously to model various swimming organisms (Flores
et al., 2005; Cisneros et al., 2007) and biofilm dynamics (Cogan
et al., 2005; Cogan, 2008, 2010), to our knowledge, it has not been
applied in the studies of interstitial transport through the tumor
tissues.

We focused in this paper on the interplay between both drug
advective and diffusive modes of transport and the structure of
the tissue, taking into account both the tissue cellular density and
the extent of the interstitial space between the individual cells.
The advective component of the interstitial penetration is espe-
cially important for the transport of particles characterized by
larger molecular weights, such as certain drug molecules or imag-
ing nanoparticles that usually have smaller diffusion coefficients.
This is in contrast to small molecules, such as oxygen or glu-
cose, which can move through the tissue solely by the diffusive
process.

The results presented in this paper show that tumor cell distri-
bution is characterized by tissue cellular porosity and its cellular
density influences the depth of a drug’s advective penetration
in a non-linear manner, with sparsely packed tissues showing
slower interstitial fluid flow and longer times of drug penetra-
tion when compared to more densely packed tissues. These results
were obtained under the assumption that the fluid influx from the
blood capillary is constant and the same in each case considered
here, that is for each in silico tissue geometry. For simplicity, we
directly imposed a specific fluid influx value on all our compu-
tational simulations. However, this parameter could be related
to experimentally measurable quantities, such as the pressure
differences between the capillary and the surrounding tissue or
the tumor tissue. We also showed that irregularities in tissue com-
position and cell spatial configuration result in the emergence
of tissue zones that have a lesser exposure to the drug mole-
cules. This, in turn, may result in drug concentrations insufficient
to provide therapeutic action. It has been suggested previously
(Minchinton and Tannock, 2006) that the poor penetration of
the tumor tissue by drug particles may leave some cell popu-
lations untreated and capable of initiating tumor regrowth or
recurrence.

Our simulations also showed that tissues of higher irregu-
lar architecture were characterized by faster transport of some
drug particles. Consequently, these particles were able to penetrate
deeper into the tumor tissue and exert their therapeutic effects on
a larger tissue area. Thus, we observed a certain dichotomy in our
simulations. The advection-dominated drug particle transport in
tissues of highly irregular architectures resulted in tissue regions
of permanent low drug exposure even near the vascular system,
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FIGURE 7 | Penetration of targeted and untargeted imaging agents:
comparison of simulated and experimental data. (A) Confocal
fluorescence microscopy images of target-expressing DWC tumors (top)
and non-expressing tumors (bottom) at time-points immediately following
the injection of the targeted fluorescent probe. (B) For both the targeted
and untargeted tumors, the bar graph represents the percentage of pixels
with fluorescence intensities above a threshold value higher than the low
background signal over a 25 min time-course, with 100% being equal to
largest number of pixels above the background in the time-course. (C) The

quantification of the simulated results from the section of the tissue
indicated as a blue window in (D,E). The simulated data has been
normalized as in (B) for comparison. (D) The time sequence from a
simulation with cellular uptake via receptor binding (targeted); the top
images show individual particles, and the bottom images show the
corresponding fluorescent rendering. (E) Time sequence from a simulation
without cellular uptake (untargeted). Both simulations were run for the
same tissue structure with a cellular density of ξ=5, cellular porosity of
ψ=60%, and Péclet number of Pe= 40.

and tissue regions far from the vascular system that were exposed
to the drug action temporally. Thus drugs of higher diffusivity
(smaller molecular size) were able to penetrate the tissue more
uniformly, potentially bringing an effective treatment to all cells,
but only near the vasculature. On the other hand, drugs of lower
diffusivity were able to reach distant parts of the tissue. As a result,
they could have an extended beneficial effect, but only if they can
be absorbed quickly by the cells, or have a longer half-life time in
order to allow for the drug accumulation to exert its lethal effects.
These kinds of physico-chemical properties of individual mole-
cules may be beneficial for the imaging agents that are not meant
to kill the cells, thus small concentrations accumulated inside the
cells may still fluorescently mark the tumor cells located farther

from the vasculature. However, in this case, the biomarkers need to
bind to the specific membrane receptors quickly and have longer
half-life times.

The research studies initiated in this paper are novel in the
areas of computational drug design and bio-medical modeling.
We proposed to investigate an important but overlooked area in
testing anticancer drug efficacy: the effective penetration of tumor
tissues by drug particles under various extrinsic conditions. Most
research approaches addressing drug efficacy have concentrated
on the molecular and genetic mechanisms of chemical com-
pounds, whereas the role of the tumor microenvironment as a
limiting factor in drug distribution has received much less atten-
tion. Moreover, the majority of in silico methods for assessing the
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FIGURE 8 | Penetration of drug particles through a digitized ovarian
tumor tissue. (A) An original H&E-stained histological image of ovarian tumor
tissue with a centrally located vein. (B) A small patch of tissue selected from
(A) and used for digitization. (C) A digitized version of the histological image

from (B) used for computational simulations. (D) The simulated interstitial
fluid flow (blue). (E) The resulting traces of the simulated particles
representing the drug or biomarker molecules. (F) The particle trace with
maximal tortuosity of 4.0025.

ADME-T properties (absorption, distribution, metabolism, excre-
tion, and toxicity) of pharmaceutical compounds do not consider
the spatial aspects of drug pharmacokinetics and pharmacody-
namics (PK/PD), but instead, treat the blood and all organs as
well-mixed compartments neglecting their natural heterogeneity.
It is interesting to note that the question of how the architecture of
natural or fabricated obstacles influences the interstitial transport
has been addressed in other scientific areas, including groundwa-
ter hydrology (Kang et al., 2010; Xie et al., 2011; Tsimpanogiannis
and Lichtner, 2012), vortex dynamics in superconductors (Nori,
1996; Reinchardt et al., 1997; Silhanek et al., 2010), fuel conver-
sion (Machado, 2012), and biofilm dynamics (Dillon and Fauci,
2000).

We focused in this study on analyzing the permeation proper-
ties of tissues characterized by different cellular architectures, but
with identical circular cells. However, as can be seen in Figure 1,
the realistic tumor tissues are far more complex. They are com-
posed of cells that vary not only in their spatial configuration,
but also in their size, shape, and receptor expression. In such
highly irregular tissues the patterns of interstitial transport can
be even more convoluted. To illustrate this, we applied our model
to a digitized histological sample from human breast cancer tis-
sue. Figure 8 shows the original histological image of a small
patch of tumor tissue, a digitized version of this image used
for computational simulations, and the resulting fluid field and
traces of the drug/biomarker particles. The maximal tortuosity is
reported.

We also presented a qualitative comparison of the results from
our model simulations with the data from the DWC experiments.
However, in order to achieve the quantitative results, the model
needs to be parameterized to reproduce the properties of a given
tumor and the properties of a given drug or (un)targeted imag-
ing agent. Fluorescently labeled probes, together with the DWC,
form an ideal model for taking in vivo measurements at vari-
ous time-points in the same animal. While certain measurements
of these probes can be obtained in vitro (such as association
and dissociation binding constants, mass and size, saturation lev-
els, and cellular uptake), the fluorescent microscopy of DWC
tumor xenografts enables observation of probe interactions within

a living tumor microenvironment. Mathematical modeling and
analysis of these fluorescence image acquisitions allows for the
estimation of the relative probe concentration in plasma and
tumor tissue, rate of probe extravasation and penetration into
the tumor, rate of cellular binding and internalization, and rate of
vessel clearance. The tissue architecture can be determined from
the ex vivo histological images as they are shown in Figure 8,
and then used to fit the model parameters, i.e., interstitial veloc-
ity and probe effective diffusion. This can be done by performing
multiple simulations with systematically varied parameters and
then comparing the simulated results to intravital or ex vivo
images.

The model presented here constitutes the basis for further
extensions that will increase the model’s realism by including sev-
eral factors specific to either the drug/biomarker or the microen-
vironment. We plan to explicitly model drug particle size, mass,
and electrical charge. Our oversimplified model of cellular uptake
will be extended to incorporate the mechanisms of cellular efflux
and influx, as well as the more elaborate models of molecular
binding, including receptor-ligand reaction kinetics. Our future
model extensions will also include models of different structures
of the ECM, such as the extracellular fiber distribution and align-
ment. One of the important aspects of modeling anticancer drug
actions is to integrate both cellular death and growth into the
model, and to simulate much longer time regimes in order to test
the tumor eradication or recurrence. The model could also be
extended into the full three-dimensional space [the appropriate
blob functions have been proposed previously (Cortez, 2001)].
The full version of this model will provide a tool for testing drug
efficacy by independently varying the drug and tissue parameters
over a wide range of values that are often difficult to replicate in
laboratory experiments.
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