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A B S T R A C T

Although individuals at clinical high risk (CHR) for psychosis exhibit a psychosis-risk syndrome involving attenuated
forms of the positive symptoms typical of schizophrenia (SZ), it remains unclear whether their resting-state brain intrinsic
functional networks (INs) show attenuated or qualitatively distinct patterns of functional dysconnectivity relative to SZ
patients. Based on resting-state functional magnetic imaging data from 70 healthy controls (HCs), 53 CHR individuals
(among which 41 subjects were antipsychotic medication-naive), and 58 early illness SZ (ESZ) patients (among which 53
patients took antipsychotic medication) within five years of illness onset, we estimated subject-specific INs using a novel
group information guided independent component analysis (GIG-ICA) and investigated group differences in INs. We
found that when compared to HCs, both CHR and ESZ groups showed significant differences, primarily in default mode,
salience, auditory-related, visuospatial, sensory-motor, and parietal INs. Our findings suggest that widespread INs were
diversely impacted. More than 25% of voxels in the identified significant discriminative regions (obtained using all 19
possible changing patterns excepting the no-difference pattern) from six of the 15 interrogated INs exhibited mono-
tonically decreasing Z-scores (in INs) from the HC to CHR to ESZ, and the related regions included the left lingual gyrus of
two vision-related networks, the right postcentral cortex of the visuospatial network, the left thalamus region of the
salience network, the left calcarine region of the fronto-occipital network and fronto-parieto-occipital network. Compared
to HCs and CHR individuals, ESZ patients showed both increasing and decreasing connectivity, mainly hypo-connectivity
involving 15% of the altered voxels from four INs. The left supplementary motor area from the sensory-motor network
and the right inferior occipital gyrus in the vision-related network showed a common abnormality in CHR and ESZ
groups. Some brain regions also showed a CHR-unique alteration (primarily the CHR-increasing connectivity). In sum-
mary, CHR individuals generally showed intermediate connectivity between HCs and ESZ patients across multiple INs,
suggesting that some dysconnectivity patterns evident in ESZ predate psychosis in attenuated form during the psychosis
risk stage. Hence, these connectivity measures may serve as possible biomarkers to predict schizophrenia progression.

1. Introduction

Schizophrenia (SZ) is a severe and disabling mental disorder, character-
ized by positive symptoms (including hallucinations, delusions, and thought
disorders), negative symptoms (including poor motivation, anhedonia, and
social withdrawal), and cognitive impairments. Prior to the onset of

psychosis, a prodromal period lasting from a few weeks to several years ty-
pically occurs for most SZ patients (Cannon, 2015). Individuals at clinical
high-risk (CHR) for psychosis (Klosterkotter et al., 2001; Miller et al., 2003;
Yung et al., 2005) exhibit a psychosis-risk syndrome principally defined by
the presence of attenuated forms of the positive symptoms characteristic of SZ
(McGlashan et al., 2010). Approximately 35% of individuals meeting CHR
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criteria transitions to psychosis within 2.5 years of initial ascertainment in
longitudinal studies (Cannon et al., 2008; Fusar-Poli et al., 2012). The ma-
jority of CHR individuals who convert to psychosis develop a disorder in the
SZ spectrum (Fusar-Poli et al., 2013; Woods et al., 2009). Yet, relatively few
brain imaging studies directly compare CHR individuals with early illness SZ
(ESZ) patients to determine whether functional brain abnormalities evident in
ESZ are present in attenuated form, or in qualitatively distinct patterns, in the
psychosis-risk syndrome. This knowledge gap is evident in the realm of brain
intrinsic functional networks (INs) that reflect correlated activity among
distributed brain regions. INs have shown promise as neuropsychiatric bio-
markers for mental disorder diagnoses in general (Lee et al., 2013; Sporns,
2014), and specific patterns of IN dysconnectivity have been reported in SZ
(Calhoun et al., 2009; Du et al., 2015b; Du et al., 2016b; Fitzsimmons et al.,
2013; Sheffield and Barch, 2016). Although the heterogeneity of clinical
outcomes for CHR individuals might lead to patterns of IN dysconnectivity
that are qualitatively distinct from those observed in ESZ, the fact that the
psychosis-risk syndrome is largely defined by attenuated forms of SZ positive
symptoms leads us to hypothesize that CHR individuals may primarily show
similar but attenuated IN dysconnectivity relative to ESZ patients. If true, this
would suggest that the IN dysconnectivity patterns seen in SZ predate the
onset of full-blown psychosis, albeit in a less severe manner. Moreover, given
that most CHR individuals have had minimal or no prior exposure to anti-
psychotic medication, the presence of attenuated IN dysconnectivity in CHR
individuals would provide strong evidence that the dysconnectivity findings
in SZ patients are not secondary to the confounding effects of antipsychotic
drugs. Accordingly, the current study sought to directly compare IN dys-
connectivity patterns in CHR individuals and ESZ patients.

In order to extract INs from resting-state functional magnetic re-
sonance imaging (fMRI) data, researchers have used one of two general
analytic approaches: model-based and data-driven analyses (Li et al.,
2009; van den Heuvel and Hulshoff Pol, 2010). Among model-based
approaches, the most widely used is the region of interest (ROI)-based
method (Biswal et al., 1995), which measures functional connectivity
(correlation or coherence) among different ROIs or between a specified
“seed” ROI and all other voxels in brain. Most previous IN studies of
CHR individuals employed an ROI-based method seeded by thalamus
(Anticevic et al., 2015), superior temporal gyrus (Yoon et al., 2015),
posterior cingulate cortex (Shim et al., 2010), medial prefrontal cortex
and anterior insula (Wotruba et al., 2014), Broca's area (Jung et al.,
2012), or cerebellum (Wang et al., 2016). These studies computed
correlations between the mean time series in a specific ROI and the time
series of other voxels in brain. The identified IN abnormalities of CHR
individuals were primarily located in the frontal lobes (Anticevic et al.,
2015; Jung et al., 2012; Wang et al., 2016; Wotruba et al., 2014; Yoon
et al., 2015), temporal lobes (Yoon et al., 2015), thalamus (Anticevic
et al., 2015), sensory motor cortex (Anticevic et al., 2015) and Heschl's
gyrus (Anticevic et al., 2015), some of which also showed an inter-
mediate degree of abnormality in the CHR syndrome compared to first
episode psychosis (Jung et al., 2012; Yoon et al., 2015). One limitation
of such studies is that results depend on a somewhat arbitrary definition
of a specific ROI, including delineation of its shape, extent, and precise
location (Du et al., 2012; Liu, 2011). Furthermore, such studies typi-
cally only focus on several predefined ROIs and thus do not evaluate IN
patterns across the whole brain.

In contrast to ROI-based method, data-driven approaches estimating
INs do not require specification of predefined ROIs. These increasingly
popular approaches include spatial independent component analysis
(ICA) (Calhoun and Adali, 2012; Calhoun et al., 2001; Du et al., 2016a;
Du and Fan, 2013), principle component analysis (PCA), and clustering
methods (Du et al., 2014; van den Heuvel et al., 2008). In particular,
ICA is a widely used approach that has shown great promise in iden-
tifying network-based biomarkers of psychiatric disorders such as SZ
(Calhoun et al., 2011; Du et al., 2015b; Garrity et al., 2007; Khadka
et al., 2013; Meda et al., 2014; Ongur et al., 2010). Spatial ICA on
individual-subject's fMRI data decomposes an fMRI data-converted
matrix (time points × voxels) as a linear combination of multiple

independent components (ICs), of which meaningful ICs can be re-
garded as INs. Advantages of ICA, relative to ROI-based methods, in-
clude that it does not require selecting prior ROIs and that it can si-
multaneously estimate multiple INs from whole-brain data. Different
from ROI-based method which represents each IN as functional con-
nectivity between different ROIs, ICA regards each spatial IC as an IN
where voxels with higher Z-scores tend to have higher intra-con-
nectivity (or co-activation). For multi-subject studies, group ICA ap-
proaches (Calhoun and Adali, 2012) enable estimation of individual-
subject components, some of which are identified as meaningful INs,
based on group-level ICs. Traditional group ICA typically used either
PCA-based or regression-based (e.g., dual regression) back-reconstruc-
tion (Calhoun et al., 2001; Erhardt et al., 2011). However, these
methods cannot guarantee independence of individual-subject compo-
nents. More recently, we have proposed a new back-reconstruction
method called group information guided ICA (GIG-ICA) (Du et al.,
2016a; Du and Fan, 2013; Du et al., 2015b). GIG-ICA utilizes a multi-
objective function optimization algorithm to simultaneously optimize
the independence among each subject's components as well as the
correspondence between each group-level component and its associated
subject-specific component, consequently resulting in more accurate
networks.

In the present study, using resting-state fMRI data from CHR in-
dividuals, ESZ patients, and healthy controls (HCs), we estimate whole-
brain multiple INs for each subject using the GIG-ICA method and then
investigate all possible network changing patterns in each IN. We hy-
pothesize that ESZ patients would show dysconnectivity (either hypo-
or hyperconnectivity) across multiple INs relative to HC individuals. We
further hypothesize that CHR individuals would generally show similar,
but attenuated, dysconnectivity across many INs in which ESZ patients
show dysconnectivity, consistent with their attenuated positive symp-
toms relative to ESZ patients. However, given that dysconnectivity in
some INs may emerge after the onset of schizophrenia, we expect to
find some INs that showed dysconnectivity in ESZ patients but normal
connectivity in CHR individuals. Our overarching goal is to perform a
comprehensive whole-brain investigation of resting-state connectivity
across multiple INs in order to identify and directly compare the
resting-state dysconnectivity patterns in ESZ and in the psychosis-risk
syndrome.

2. Materials and methods

2.1. Subjects

We analyzed resting-state fMRI data from 70 HCs, 53 CHR in-
dividuals, and 58 ESZ patients. Subject demographic and clinical in-
formation are presented in Table 1. There were no significant differ-
ences among the three groups in age or gender (see Table 1). CHR
individuals were recruited from a psychosis-risk research clinic at the
University of California, San Francisco (UCSF). Individuals recruited to
the CHR group met the Criteria of Prodromal Syndromes (COPS) based
on a Structured Interview for Prodromal Syndromes (SIPS) (Miller
et al., 2003) administered by trained clinicians. The COPS comprises
three non-mutually exclusive syndromes (McGlashan et al., 2010): At-
tenuated Positive Symptom Syndrome (APSS), Brief Intermittent Psy-
chotic Syndrome (BIPS), and/or Genetic Risk and Deterioration Syn-
drome (GRD). In our study, the majority (49/53, 92.5%) of CHR
subjects met COPS criteria for APSS. Supplementary Table S1 shows the
number and percentage of CHR subjects with each syndrome. Ratings of
symptom severity in CHR individuals were obtained using the Scale of
Prodromal Symptoms (SOPS) (McGlashan et al., 2010), an embedded
scale within the SIPS. Most of the CHR subjects (41/53; 77%) were
antipsychotic medication-naive at the time of scanning. ESZ patients
within five (mean ± standard deviation = 2.08 ± 1.37) years of ill-
ness onset were recruited from an early psychosis clinic at UCSF and
from community clinics. Diagnosis of schizophrenia or schizoaffective
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disorder in ESZ subjects was verified using the Structured Clinical In-
terview for DSM-IV (SCID) (First et al., 1995) and symptom severity
was assessed using the Positive and Negative Syndrome Scale (PANSS)
(Kay et al., 1987). Most of the ESZ patients (53/58; 91%) were taking
antipsychotic medication at the time of testing. HC subjects were re-
cruited from the community and did not meet current or lifetime cri-
teria for major Axis I psychiatric disorders based on the SCID. The same
data were analyzed using dynamic connectivity analysis in our previous
study (Du et al., 2017a).

2.2. MRI scan acquisition

All brain images were acquired on a 3 T Siemens TIM Trio scanner
at the UCSF Neuroimaging Center. Resting-state scans were acquired
using whole-brain echo-planar imaging (EPI) sequences. Rest scans
lasted 6 min, during which 180 functional images were obtained (32
axial slices, 3.5 mm slice thickness, 1.05 mm inter-slice gap, TR = 2 s,
TE = 29 ms, flip angle = 75°, FOV = 24 cm, 64 × 64 matrix). Subjects
were instructed to rest with their eyes closed and to stay awake.

2.3. MRI data preprocessing

FMRI data from each subject were preprocessed using Statistical
Parametric Mapping (SPM8) (http://www.fil.ion.ucl.ac.uk/spm). The
first ten volumes were discarded to allow for T1 equilibration effects,
and the remaining volumes in the run were then slice-time corrected
and realigned to the first volume to correct for head motion. In terms of
head motion, translations were< 4 mm and rotations did not exceed 4°
in all axes over the entire fMRI run for all included subjects. There were
no significant group differences (p > 0.05, tested by analysis of var-
iance) in the motion parameters displayed in Table 1. Subsequently, the
images were spatially normalized to the Montreal Neurological Institute
(MNI) EPI template, resliced to 3 mm× 3 mm × 3 mm voxels, and
smoothed with a Gaussian kernel with a full-width at half-maximum
(FWHM) of 6 mm.

2.4. Estimating intrinsic functional networks using GIG-ICA

We applied GIG-ICA (Du et al., 2016a; Du and Fan, 2013; Du et al.,
2017b; Du et al., 2015b) to the preprocessed fMRI data of all subjects to
estimate each subject's INs, resulting in INs with correspondence across

subjects while also retaining subject-specific network features. Our
method primarily involved the following three steps. First, based on the
temporally-concatenated fMRI data of 181 subjects, ICA with the In-
fomax algorithm (Bell and Sejnowski, 1995) was used to estimate the
group-level ICs. In order to decrease the influence of random in-
itializations, we performed ICASSO (Himberg et al., 2004; Ma et al.,
2011) with 20 ICA runs followed by selection of the most reliable ICA
run to obtain reliable group-level ICs. Before the group-level ICA,
subject-level and group-level PCAs (Calhoun et al., 2001; Erhardt et al.,
2011) were applied to reduce the dimensionality of the fMRI data. In
this study, the number of ICs was set to 30 based on previous work
(Abou-Elseoud et al., 2010; Du et al., 2015b), and the number of
principle components used in the subject-level PCAs was specified as a
greater number (i.e., 60) as recommended (Erhardt et al., 2011). Thus,
30 group -level ICs were obtained and Z-scored. It is worth noting that
the sign of each resulting group-level IC is arbitrary. In our study, we
computed the skewness of each IC and flipped the IC if its skewness was
negative. Consequently, the positive Z-scores in each IC represented the
voxels contributing the most to the associated network. Second, we
manually identified the meaningful group-level networks after carefully
inspecting all group-level ICs' spatial maps. If the primary activation of
one IC's spatial map is located in gray matter, smooth and continuous
(Allen et al., 2014; Du et al., 2016a), we preferred to regard it as an
interesting functional network. Also, we referred to networks reported
in previous studies (Du and Fan, 2013; Du et al., 2015b; Smith et al.,
2009; Zuo et al., 2010) to further confirm. The removed noise-related
group-level ICs reflected head motion, physiological noise, and influ-
ence of scanner. Third, the remaining meaningful group-level ICs were
characterized as the group-level INs and then used to calculate the
subject-specific INs based on a multi-objective function optimization
algorithm (Du and Fan, 2013). GIG-ICA automatically yields Z-scored
the subject-specific INs. Finally, a regression model (Du et al., 2016a)
was utilized to estimate the corresponding time courses (reflecting
fluctuations) of the individual INs for each subject's fMRI data.

It is known that for each voxel in a given individual IN, a positive Z-
score indicates that the time series (after preprocessing) in the voxel has
a positive correlation with the time course of the IN; in contrast a ne-
gative Z-score represents that the time series in the voxel has a negative
correlation with the time course of the IN. Therefore, for one specific
IN, a region containing voxels with high positive Z-scores (taking a
region only including two voxels as an example, Z-scores of two

Table 1
Subject demographic and clinical characteristics.

HCs
(n = 70)

CHR individuals
(n = 53)

ESZ patients
(n = 58)

Mean SD Mean SD Mean SD

Age (years) 21.9 5.6 20.4 4.5 21.8 3.8
PANSS positive symptoms – – – – 13.7 4.8
PANSS negative symptoms – – – – 17.4 6.6
PANSS general symptoms – – – – 32.9 8.9
SOPS positive symptoms – – 9.4 4.5 – –
SOPS negative symptoms – – 12.2 5.8 – –
SOPS general symptoms – – 8.1 4.5 – –
SOPS disorganization symptoms – – 5.4 3.4 – –
Maximum translation motion displacement (mm) 0.8 0.6 1.1 1.4 1.2 1.3
Maximum rotation motion displacement (degree) 0.8 1.0 1.0 0.9 0.9 0.8

n % n % n %
Male 41 59% 32 62% 38 65%
Subjects taking antipsychotic medication – – 12 23% 53 91%
Names of primary antipsychotic drugs – Abilify, Seroquel, Risperdal, Zyprexa, Risperdal Abilify, Seroquel, Clozapine, Risperdal, Zyprexa, Risperdal
Name of primary antidepressant drugs – Prozac Prozac

SD, standard deviation; HCs, healthy controls; CHR, clinical high-risk; ESZ, early illness schizophrenia; PANSS, Positive and Negative Syndrome Scale; SOPS, Scale of Prodromal
Symptoms. p-value = 0.7 for gender examined by Chi Square test; p-value = 0.2 for age examined by analysis of variance. The maximum translation motion displacement was computed
as the maximum translation across all axes (x-axis, y-axis and z-axis) and the whole scanning. The maximum rotation motion displacement was computed as the maximum rotation across
the pitch, roll and yaw and the whole scanning.
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voxels = 10 and 9) tends to have stronger co-activation (i.e., positive
correlation) within the IN compared to a region containing voxels with
low positive Z-scores (e.g., Z-scores of two voxels = 2 and 1). In such
case, the mean of the Z-scores in one region can reflect the co-activation
extent of the region. In fact, if a region contains voxels with greater
negative Z-scores (e.g., Z-scores of two voxels =−10 and −9) relative
to the other region (e.g., Z-scores of two voxels = −2 and −1), the
former also tends to have stronger co-activation than the later. In this
study, considering that the positive Z-scores contributing the most in-
clude important spatial maps in each IN, we focused on investigating
group differences in voxels primarily associated with positive Z-scores
to simplify the subsequent analyses. It is also worth pointing out that if
one region includes both higher and lower positive Z-scores (e.g., Z-
scores of two voxels = 10 and 1) compared to the other region (e.g., Z-
scores of two voxels = 2 and 8), we cannot determine which region has
greater co-activation using Z-scores. Therefore, in this work, we applied
two-sample t-tests (rather than analysis of variance) to identify brain
regions including voxels with consistent changing patterns between
groups.

2.5. Identifying significant discriminative regions in intrinsic functional
networks

Based on the estimated subject-specific INs, we investigated differ-
ences in each corresponding IN across the three groups in order to
examine the network abnormalities of the ESZ and CHR group relative
to each other and to the HC group. For each IN, we performed three
analysis steps that include (1) extracting important voxels positively
contributing to the network (i.e., voxels primarily involving positive Z-
scores) and generating a network mask, (2) identifying regions based on
all possible 19 inter-group changing patterns in the network mask, and
(3) investigating group differences in the co-activation of each sig-
nificant discriminative region. We describe the detailed processing on
each IC as follows.

In the first step, for each voxel, a right-tailed one-sample t-test
(p < 0.01 with Bonferroni correction, i.e., p < 0.01/the number of
voxels in a brain mask = 0.01/69078 = 1.45e−7) was applied to the
voxel's Z-scores from the corresponding subject-specific INs of all 181
subjects to identify voxels whose Z-scores were positive in most of the
subjects, resulting a network mask. The subsequent second and third
steps were performed on the voxels in the network mask. Additionally,
we tested if our strategy may fail to find group differences in some
important voxels (or regions) showing positive Z-scores in one group
(e.g., HC) but not showing positive Z-scores in other groups (e.g., CHR
and ESZ). So, we examined whether performing one-sample t-tests on
each group separately may generate significantly different network
masks compared to performing one-sample t-tests on all the three
groups. For each group (e.g., HC), voxel-wise right-tailed one-sample t-
tests were applied on the corresponding individual-subject's networks.
The parameter (p < 0.01 with Bonferroni correction, i.e., p < 0.01/
the number of voxels in brain mask = 0.01/69078 = 1.45e−7) used
in one-sample t-tests on each group's subjects was as same as the
parameter of one-sample t-tests on all subjects of three groups. We then
combined the three masks obtained separately from the three groups in
order to compare them with the mask obtained using the whole dataset.

In the second step, we defined 19 non-overlapping patterns (see
Fig. 1) that reflect all possible significant differences among the three
groups based on statistical analysis results from two-tailed two-sample
t-tests, and then identified regions including voxels coinciding with
each pattern. Specifically, for each significant voxel in the network
mask identified, we performed two-tailed two-sample t-tests
(p < 0.05) on its Z-score for three pairs of groups (HC vs. CHR, CHR
vs. ESZ, and HC vs. ESZ) and then examined whether its Z-score ex-
hibited one of 19 characteristic patterns. Among the 19 patterns, two
patterns (Fig. 1A–B) corresponded to strictly decreasing and strictly
increasing Z-scores from HC to CHR to ESZ. For example, for the strictly

decreasing pattern, t-value > 0 was required for both the HC vs. CHR
test and the CHR vs. ESZ test, reflecting significant decreases in Z-scores
from the healthy condition to the psychosis-risk state and from the risk-
state to full-blown schizophrenia. Four patterns (Fig. 1C–F) involved
situations where the ESZ or HC group was significantly lower or sig-
nificantly higher than the other two groups. For example, in the ESZ-
decreasing pattern, t-value > 0 was required for both the HC vs. ESZ
and CHR vs. ESZ comparisons, with no significant difference between
the HC and CHR groups. Six additional patterns (Fig. 2G–L) were CHR-
unique alteration related patterns in which the CHR group had sig-
nificantly lower or higher Z-scores than the other two groups. For ex-
ample, in terms of the CHR-decreasing pattern 1 (Fig. 2G), we required
t-value > 0 for the HC vs. CHR comparison as well as t-value < 0 for
the CHR vs. ESZ comparison, with no significant difference between the
ESZ and HC groups. There were also six patterns (Fig. 1M–R) in which
only one pair of groups showed a group difference. Taking the HC >
ESZ pattern for an example, t-value > 0 for the HC vs. ESZ comparison
and no group differences for other comparisons were required. Finally,
a no-difference pattern (Fig. 2S) was possible, where all three groups
showed no significant differences (i.e., p > 0.05 for all comparisons).
Regarding each pattern, the associated voxels were identified and then
corrected (p < 0.05) for multiple comparisons using Monte Carlo si-
mulation (N = 1000) (Ledberg et al., 1998) to obtain regions each of
which were spatially continuous. Thus, each remaining region was re-
quired to have a size greater than a given voxel number that was de-
termined by the threshold p < 0.05 and the network mask from the
voxel-wise one-sample t-tests using 1000 Monte Carlo simulations.
Except for the last pattern representing no significant difference across
groups, we named the identified regions as significant discriminative
regions (SDRs) within the associated INs. In our work, we applied two-
tailed two-sample t-tests to define the changing patterns because we
cannot make a hypothesis that one group (e.g., HC) shows higher (or
lower) Z-scores in network than the other group (e.g., CHR). We are
testing for the possibility of the relationship in both directions (i.e., the
possibility of one group shows higher and lower Z-scores than the other
group).

In the third step, for each SDR including voxels with the same
pattern in a specific IN, we tested whether its co-activation differed
significantly among the HC, CHR and ESZ groups. Based on the results
from the above mentioned voxel-wise two-sample t-tests of different
voxels in one SDR, we applied a Fisher's combined probability test
(Fisher, 1925) to measure the group difference of each SDR's co-acti-
vation, resulting in a combined p-value for any comparison between
two groups (e.g., HC vs. CHR). Since Fisher's combined probability test
was proposed originally under an assumption of independence among
separate tests, we also performed a non-parametric combination
method including 10,000 permutations as a supplement. The non-
parametric combination procedure works even when independence is
untenable (Winkler et al., 2016). The detailed steps for the non-para-
metric combination method are described in the Supplementary mate-
rials. If the combined p-value of one comparison between two groups
was smaller than 0.05/3, we regarded the co-activation in SDR sig-
nificantly different between the two groups. Additionally, since the
mean Z-score within voxels of each SDR can be used to reflect co-ac-
tivation strength in the SDR, we calculated the Pearson correlation
between the co-activation strengths of each SDR within one specific IN
and the symptom severity ratings (in Table 1) for the CHR group and
the ESZ group to explore the association between network measures
and symptoms. The significance level was set to p < 0.05 for the
correlation analyses.

The whole analysis framework is shown in Fig. 2.
We also tested if medication has significant effects on the identified

measures showing group differences. First, we converted all anti-psychotic
data to their respective chlorpromazine (CPZ) dosage equivalents (Danivas
and Venkatasubramanian, 2013; Woods, 2003) for ESZ patients with avail-
able dose-level medication data. Only one ESZ patient had no CPZ data. We
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then used a non-parametric Spearman's rank correlation method to evaluate
the association between the CPZ equivalent and the co-activation (reflected
by the mean Z-score) of each SDR (p < 0.05 with Bonferroni correction, i.e.,
p-value threshold= 0.05/the number of all SDRs) for ESZ patients. Spear-
man's rank correlation analysis was applied due to the non-normality of the
CPZ variable. For CHR subjects, we did not perform correlation analysis on
the CPZ equivalents due to the small number of the medicated CHR subjects
and the relatively noisy property of CPZ equivalents. Instead, we examined
difference in the co-activation of each SDR between the CHR individuals
without medication treatment and the CHR individuals taking medication
using a two-tailed two-sample t-test (p < 0.05 with Bonferroni correction,
i.e., p-value threshold= 0.05/the number of all SDRs).

3. Results

3.1. Brain intrinsic functional networks

Thirty reliable group-level ICs were estimated from the fMRI data of
181 subjects. Fifteen group-level ICs were then identified as noise-re-
lated components and removed (see Supplementary Fig. S1), leaving 15
group-level INs that were employed to guide the computation of sub-
ject-specific INs. The remaining 15 group-level INs are shown in the
Supplementary Fig. S2. It is seen that for those networks, the spatial
maps with positive Z-scores provided more important information than
the spatial maps with negative Z-scores due to that the skewness of each

Fig. 1. The 19 possible non-overlapping changing patterns
defined for each voxel within each intrinsic functional
network (IN) based on the results of two-tailed two-sample
t-tests on Z-scores (p < 0.05) for three pairs of groups (i.e.,
HC vs. CHR, HC vs. ESZ, and CHR vs. ESZ comparisons).
The requirements used to identify each pattern are dis-
played. Group difference in Z-scores identified by a two-
tailed two-sample t-test between a pair of groups
(p < 0.05) is denoted by a red line.
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IN was positive. As stated in the method section, for each group-level
IN, the corresponding subject-specific IN was estimated for each subject
using GIG-ICA. Regarding each of the 15 INs, we show the t-value map
obtained by performing voxel-wise right-tailed one-sample t-tests on all
subjects' individual networks in Fig. 3. These 15 INs primarily consisted
of two default mode networks (DMNs) (IN 5 and IN 10), two fronto-
parieto-cerebellar networks (IN 2 and IN 9), three vision-related net-
works (IN 1, IN 3 and IN 4), a sensory-motor network (IN 12), a salience
network (IN 11), an auditory-related network (IN 6), a visuospatial
network (IN 7), an anterior insula network (IN 8), a fronto-occipital
network (IN 13), a fronto-parietal network (IN 14), and a fronto-par-
ieto-occipital network (IN 15).

As stated in the method section, for each IN, the voxels passing
multiple comparison correction of the one-sample t-tests on all subjects'
individual networks were included in its network mask. It is worth
noting that the brain regions (shown in the Section 3.2) identified using
the specific changing patterns in each IN located within the relevant
network mask. In the Supplementary Fig. S3, we show both the mask
obtained from the one-sample t-tests on all groups' individual networks
and the combined mask obtained from the one-sample t-tests on each

group's individual networks. For all INs, the two kinds of mask were
very similar while the slight difference was only on the edge of maps.
That indicates if voxels showed significant positive Z-scores in one
group, they also tended to show positive Z-scores in other groups. The
mask we used had slightly more voxels than the union mask of three
separate groups. Therefore, our analyses did not miss any important
voxels with positive Z-scores.

3.2. Significant discriminative regions in intrinsic functional networks

Given the specified 19 changing patterns shown in Fig. 1, the as-
sociated voxels in each IN were identified (see Supplementary Table
S2). We found that 12 voxels in the salience network (IN 11) exhibited
strictly decreasing trends, and only two voxels in the visuospatial net-
work (IN 7) showed strictly increasing trends, in Z-scores from the HC
group to the CHR group to the ESZ group. Few or no voxels belonged to
the CHR-decreasing pattern 2 (and 3) and the CHR-increasing pattern 2
(and 3). Excepting for the no-difference pattern that most of the voxels
were assigned to, the mostly occupied pattern was the HC > ESZ
pattern. After multiple comparison correction, 24 SDRs were identified

Fig. 2. The whole analysis framework. The steps include A: estimating subject-specific networks using GIG-ICA, B: performing voxel-wise right-tailed one-sample t-tests to identify a mask
for each network, C: performing two-tailed two-sample t-tests for three pairs (HC vs. CHR, HC vs. ESZ, and CHR vs. ESZ) on each voxel within the network mask to identify significant
discriminative region (SDR) with the same changing pattern, and D: investigating group difference in the co-activation of each SDR.
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to be relevant to the 18 discriminative changing patterns (excluding the
no-difference pattern). Detailed information of the 24 SDRs can be
found in Table 2 and Supplementary Table S3.

Fig. 4A shows the identified 24 SDRs and the results obtained from
comparing the co-activation of each SDR among groups. We also report
the relevant co-activation comparison results using the non-parameter
combination method in the Supplementary Fig. S4. It is shown that the
results in Figs. 4 and S4 were similar in terms of the combined p-values
and consistent after the multiple comparison correction. Regarding the
ESZ-decreasing pattern, there were four SDRs identified, which in-
cluded left Heschl's gyrus from the auditory-related network, right
precentral gyrus from the visuospatial network, left median cingulate of
the salience network, and left paracentral lobule from the sensory-
motor network. Evaluated by Fisher's combined probability test, we
found that the co-activation in each of the four SDRs was significantly
reduced in the ESZ group compared to both the HC and CHR groups,
suggesting that ESZ patients had greater hypo-connectivity than CHR
individuals in these SDRs. Regarding the ESZ-increasing pattern, we
found one SDR, i.e., right middle frontal gyrus from the salience net-
work, that showed relatively higher co-activation in the ESZ population
than the other groups. In addition, the HC-decreasing pattern was
evident in an SDR comprising left supplementary motor area from the
sensory-motor network that persisted after correction for multiple
comparisons. Its co-activation had enhanced strength for both CHR and
ESZ groups, relative to the HC group.

Numerous voxels in the INs indicated progressive Z-scores from the
healthy condition to psychosis risk to schizophrenia. Regarding the
HC > ESZ pattern, six SDRs from different networks were found.
These SDRs involved the left lingual gyrus of two vision-related net-
works, the right postcentral cortex of the visuospatial network, the left
thalamus region of the salience network, left calcarine region of the

fronto-occipital network and fronto-parieto-occipital network.
Interestingly, each of the six SDRs tended to display a strictly de-
creasing change in its co-activation from HCs to CHR individuals to ESZ
patients, assessed using the Fisher's combined probability test. In terms
of the HC < ESZ pattern, two SDRs were extracted. Evaluated by
combined p-values, the right inferior occipital gyrus in the vision-re-
lated network showed a common increased co-activation in ESZ and
CHR, while the right superior frontal gyrus in the fronto-parieto-cere-
bellar network had a progressive increasing alteration from HC to CHR
and from CHR to ESZ.

In our study, we also found that using the HC > CHR pattern, the
HC < CHR pattern, the CHR > ESZ pattern and the CHR < ESZ
pattern, 10 SDRs were identified, reflecting that the co-activation in
these regions of the CHR group was not intermediate between the HC
group and the ESZ group. Among the 10 SDRs, 8 SDRs in the CHR in-
dividuals showed enhanced co-activation compared to the other two
groups. Precuneus, posterior cingulate cortex and anterior cingulate
gyrus in the DMNs showed increased co-activation in the CHR group
compared to the other two groups, indicating the complexity of CHR
abnormality.

In summary, widespread INs were diversely impacted. Among the
voxels in the identified significant discriminative regions (obtained
using all 19 possible changing patterns excepting the no-difference
pattern), more than 25% of the voxels from six INs were identified with
the HC > ESZ pattern. In addition, the CHR > ESZ pattern was found
in 24% of the significant voxels from four INs, and the ESZ-decreasing
pattern was found in 15% of the significant voxels from four INs. Our
findings thus suggest that many brain regions of CHR individuals
showed an intermediate connectivity trend between the HC and ESZ
groups. Compared to the HC individuals, the reduced connectivity was
the primary type of dysconnectivity evident in ESZ individuals. Some

Fig. 3. A: t-value map of each of the 15 intrinsic functional
networks (INs). Each t-value map was obtained by performing
voxel-wise right-tailed one-sample t-tests (p < 0.01 with
Bonferroni correction) on the corresponding subject-specific INs
from the 181 subjects. B: t-value maps of all 15 INs, shown
together. Different INs are shown using different colors.
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brain regions also showed a CHR-unique connectivity (primarily CHR-
increasing alterations).

Furthermore, significant associations were identified between SDRs'
co-activation strengths and the symptom scores. As shown in Fig. 4B,
the co-activation of superior temporal gyrus region in the anterior in-
sula network was positively correlated with SOPS Disorganization
scores in the CHR group (r = 0.42, p-value = 0.01). The co-activation
of left supplementary motor cortex in the sensory-motor network was
negatively correlated with both PANSS Positive Symptom scores
(r = −0.32; p-value = 0.02) and Negative Symptom scores
(r = −0.27; p-value = 0.04) in the ESZ group; and the co-activation of
left calcarine region of the fronto-parieto-occipital network was nega-
tively correlated with SOPS Disorganization scores in the CHR group
(r = −0.37; p-value = 0.02). Strikingly, each of the three SDRs with
negative correlations with symptoms demonstrated a decreasing co-
activation trend from the HC to the CHR to the ESZ groups (Fig. 4A).
Regarding the ESZ group, the CPZ dosage equivalent did not have
significant association with the co-activation (measured by the mean Z-
score) in any of the identified SDRs showing a main effect of group
differences. The details can be found in Supplementary Table S4. For
the CHR group, our results (shown in Supplementary Table S5) suggest
that most (all but one) of the SDRs showed no significant differences in
the co-activation between the medicated and unmedicated CHR sub-
groups.

4. Discussion and conclusions

Individuals who meet clinical criteria for the psychosis-risk syn-
drome are neurobiologically vulnerable to developing a full-blown
psychotic disorder, particularly schizophrenia (Cannon et al., 2008;
Fusar-Poli et al., 2013; Fusar-Poli et al., 2012; Woods et al., 2009).
Abnormalities in several ICA-derived INs have been reported in schi-
zophrenia patients (Calhoun et al., 2009; Du et al., 2015b; Mattiaccio
et al., 2016; Ongur et al., 2010). In this study, our purpose was to

explore which brain regions in which networks were influenced by
psychosis risk; further, we sought to determine if CHR individuals have
similar network impairments as seen in SZ patients early in their illness
course.

Using the GIG-ICA method, our results revealed multiple altered INs
in the ESZ and CHR groups, which primarily included the DMN, sal-
ience, auditory-related, visuospatial, sensory-motor and parietal net-
works. Most of the identified INs have been previously associated with
cognitive, emotional, executive, sensory and motor functions (Bassett
and Bullmore, 2009; Bressler and Menon, 2010). Regarding different
INs, various brain regions exhibited abnormally reduced or enhanced
co-activation in both the ESZ and CHR groups. In total, 24 brain regions
showing group differences were identified from all INs.

Compared to HCs, ESZ patients exhibited diminished co-activation
strength in the majority (17) of these regions, although some regions
with increased co-activation strength in the ESZ patients were also
found. Our findings generally support prior studies that have pre-
dominantly shown reduced connectivity in SZ (Pettersson-Yeo et al.,
2011; Zhou et al., 2015), but are also in agreement with some previous
work reporting increased connectivity in SZ (Whitfield-Gabrieli et al.,
2009; Zhou et al., 2007).

There were some brain regions that showed a significant step-wise
worsening of dysconnectivity from HC to CHR to ESZ groups. In par-
ticular, the left lingual gyrus of two vision-related networks, the right
postcentral cortex of the visuospatial network, the left thalamus region
of the salience network, left calcarine region of the fronto-occipital
network and fronto-parieto-occipital network displayed a strictly de-
creasing change in its co-activation from HCs to CHR individuals to ESZ
patients, while the right superior frontal gyrus in the fronto-parieto-
cerebellar network had a progressive increasing alteration from HC to
CHR and from CHR to ESZ. Previous work has also found group dif-
ferences in thalamic connectivity (Anticevic et al., 2015; Seiferth et al.,
2008). While this pattern of results is consistent with the possibility of
progressive dysconnectivity as individuals develop the psychosis-risk

Table 2
The 24 significant discriminative regions (SDRs) extracted from the 15 intrinsic networks (INs). For each SDR, the associated network, its index (ID), the voxels' Z-score changing pattern
across groups, the number of included voxels, the volume in cubic millimeters, and the related brain regions are listed.

IN ID and IN name ID of SDR identified in
INs

Voxels' Z-score changing
pattern

Number of voxels Region volume
(mm3)

Brain region name

IN 1: Vision-related network SDR-1-1 HC > ESZ 104 2808 Lingual gyrus (L)
IN 3: Vision-related network SDR-3-1 HC < ESZ 80 2160 Inferior occipital gyrus (R)
IN 3: Vision-related network SDR-3-2 HC > CHR 116 3132 Lingual gyrus (R)
IN 4: Vision-related network SDR-4-1 HC > ESZ 125 3375 Lingual gyrus (L)
IN 4: Vision-related network SDR-4-2 HC < CHR 120 3240 Fusiform gyrus (R)
IN 5: Default mode network SDR-5-1 CHR > ESZ 140 3780 Precuneus and posterior cingulate

cortex (R)
IN 6: Auditory-related network SDR-6-1 ESZ-decreasing 112 3024 Heschl's gyrus (L)
IN 6: Auditory-related network SDR-6-2 CHR > ESZ 185 4995 Insula and rolandic operculum (L)
IN 7: Visuospatial network SDR-7-1 ESZ-decreasing 74 1998 Precentral gyrus (R)
IN 7: Visuospatial network SDR-7-2 HC > ESZ 106 2862 Postcentral gyrus (R)
IN 8: Anterior insula network SDR-8-1 HC < CHR 118 3186 Superior temporal gyrus (L)
IN 9: Fronto-parieto-cerebellar

network
SDR-9-1 HC < ESZ 98 2646 Superior frontal gyrus (R)

IN 10: Default mode network SDR-10-1 CHR > ESZ 154 4158 Anterior cingulate gyrus (R)
IN 10: Default mode network SDR-10-2 CHR < ESZ 127 3429 Superior frontal gyrus, medial (L)
IN 11: Salience network SDR-11-1 ESZ-decreasing 171 4617 Middle cingulum (L)
IN 11: Salience network SDR-11-2 ESZ-increasing 77 2079 Middle frontal gyrus (R)
IN 11: Salience network SDR-11-3 HC > ESZ 161 4347 Thalamus (L)
IN 11: Salience network SDR-11-4 CHR > ESZ 236 6372 Middle cingulum (L)
IN 12: Sensory-motor network SDR-12-1 ESZ-decreasing 81 2187 Paracentral lobule (L)
IN 12: Sensory-motor network SDR-12-2 HC-decreasing 135 3645 Supplementary motor area (L)
IN 12: Sensory-motor network SDR-12-3 HC < CHR 82 2214 Precentral and supplementary motor

area (L)
IN 13: Fronto-occipital network SDR-13-1 HC > ESZ 125 3375 Calcarine (L)
IN 14: Fronto-parietal network SDR-14-1 HC < CHR 142 3834 Precuneus (R)
IN 15: Fronto-parieto-occipital

network
SDR-15-1 HC > ESZ 142 3834 Calcarine (L)

Note: L, left; R, right. Regarding the SDR's ID, SDR-M-N means the Nth SDR in the Mth IN.
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syndrome and then transition to full-blown psychosis, this pattern could
also arise if only the small subgroup of CHR individuals who eventually
transition to psychosis exhibit abnormal dysconnectivity on par with
the ESZ patients. Unfortunately, sufficient clinical follow-up data were
not available to help distinguish between these possibilities.

Compared to both HC and CHR individuals, ESZ patients
demonstrated hypo-connectivity mainly in left Heschl's gyrus from the
auditory-related network, right precentral gyrus from the visuospatial
network, left median cingulate of the salience network, and left para-
central lobule from the sensory-motor network, but showed stronger
co-activation in the right middle frontal gyrus from the salience net-
work. Prior schizophrenia studies have similarly shown abnormalities
in left Heschl's gyrus (Shinn et al., 2013) associated with auditory
hallucinations (Javitt and Sweet, 2015). Our current results indicate
that these changes are not prominent in the psychosis-risk syndrome,
although it remains a possibility that they would be evident in the
subset of CHR individuals who eventually progress to full psychosis.

There were additional brain regions that exhibited similarly ab-
normal co-activation in CHR and ESZ groups, consistent with the
emergence of dysconnectivity in these regions prior to the onset of
psychosis and the possibility that they reflect the underlying vulner-
ability for schizophrenia rather than a mechanism involved in the pa-
thogenesis of the full-blown clinical syndrome. Both CHR and ESZ
subjects showed increased co-activation in the left supplementary
motor area of the sensory-motor network and the right inferior occipital
gyrus of the vision-related network, compared to HCs. Our findings are
consistent with prior work showing abnormal connectivity in CHR and
SZ groups in the sensory motor cortex (Anticevic et al., 2015) and oc-
cipital gyrus (Fryer et al., 2016).

It is worth noting that CHR-unique alterations (primarily the CHR-
increasing connectivity) were also evident in some brain regions, re-
flecting that the co-activation in these regions of the CHR group was not
intermediate between the HC group and the ESZ group. Our previous
study (Du et al., 2017a) using dynamic connectivity analysis on the
same data also found CHR-specific alterations relative to HCs and ESZ
patients. A Meta-analysis (Fusar-Poli et al., 2013) reported that al-
though the majority (73%) of CHR individuals who convert to psychosis
develops schizophrenic psychoses (including schizophrenia, schizo-
phreniform disorder and schizoaffective disorder), 11% of the con-
verted CHR individuals develops affective psychoses (including de-
pression with psychotic features and bipolar disorder with psychotic
features). In our study, ESZ patients included patients with schizo-
phrenia or schizoaffective disorder. So, these CHR-unique alterations
that were not present in ESZ patients may reflect brain function al-
terations that are closer to abnormalities in affective psychoses (e.g.,
bipolar disorder with psychotic symptoms). Our previous studies (Du
et al., 2017c; Du et al., 2015a; Du et al., 2015b) have found that there
are significant differences in functional connectivity among schizo-
phrenia, schizoaffective disorder and psychotic bipolar disorder. Un-
fortunately, in the study, we cannot verify this point due to lacking of
data from patients with affective psychoses.

In addition to the results of the group comparisons, clinical
symptom correlations were also found for some of the regions. In ESZ
patients, the co-activation of left supplementary motor cortex in the
sensory-motor network was negatively correlated with both PANSS
Positive and Negative Symptom scores. In CHR individuals, the co-ac-
tivation of the left calcarine sulcus in the fronto-parieto-occipital net-
work was negatively correlated with SOPS Disorganization Symptom

scores. Indeed, the co-activation of these regions also showed a de-
creasing trend from HCs to CHR individuals to ESZ patients, supporting
the possible role of these regions as biomarkers of clinical severity. We
also found that there was no significant association between the CPZ
dose equivalents of the ESZ patients and the co-activation of any SDR.
For the CHR subjects, most of the SDRs showed no significant differ-
ences in the co-activation between the medicated and unmedicated
CHR subgroups.

In summary, multiple INs showed significant changes in ESZ and
CHR individuals. Among all regions identified, the most prominent
group difference pattern involved reduced co-activation in the ESZ
patients. Furthermore, similar network abnormalities were evident in
individuals exhibiting the psychosis risk syndrome, although ESZ pa-
tients generally showed more severe changes. Many brain regions
showed a progressive change from HC to CHR individuals to ESZ pa-
tients. Some regions also presented CHR-unique alterations.
Additionally, co-activation strengths in some regions were associated
with symptom severity ratings. In general, CHR individuals had INs
with intermediate connectivity, falling between the normal con-
nectivity present in HC individuals and the dysconnectivity evident in
ESZ patients. Taken together, the IN abnormalities found in our study
warrant further study in longitudinal designs in order to more precisely
determine their roles in the pathogenesis of schizophrenia and other
psychotic disorders.

This study had several limitations, including some that could limit
the generalizability of our findings. First, a few parameters (e.g., the
number of ICs used in GIG-ICA and the thresholds used for multiple
comparisons correction) are adjustable and the specific settings we
chose may have influenced the pattern of results we observed. Second,
insufficient clinical follow-up data from our CHR participants prevented
us from examining whether any of the IN abnormalities identified are
predictive of conversion to psychosis. We will investigate this issue in
the future when more data are available. Third, due to the relatively
small sample sizes available for this study, we included a small number
of CHR individuals who were treated with antipsychotic medication.
Most of the ESZ patients analyzed took antipsychotic medication.
Although we did not find significant associations between the medi-
cation and the identified measures showing group differences, influence
of medication could be complex and deserves further investigation in
future. In addition, we did not assess and cannot address whether
treatment response or treatment resistance moderated functional con-
nectivity in the ESZ patients, since we did not assess the treatment re-
sponse information and also did not require stable doses of medication
for entry into the study. However, to the extent that many of the IN
abnormalities observed were evident in both ESZ and CHR individuals,
there is a diminished likelihood that the network abnormalities ob-
served in ESZ patients are the result of antipsychotic medication.
Finally, since we flipped the estimated group-level ICs to ensure that
their skewness was positive, in order to simplify the analyses for each
IN, we only focused on the voxels with positive Z-scores in most sub-
jects, i.e., those voxels that contributed the most to the networks (see
Fig. S2). We ignored the voxels with negative Z-scores, thus we did not
compute the co-activation within regions with negative Z-scores. We
also did not investigate the anti-correlation between regions with po-
sitive Z-scores and regions with negative Z-scores. As shown in Fig. S2,
the anti-correlation (e.g., the anti-correlation between the DMN and the
salience network in IN 11) may deserve further study.

Fig. 4. A: The significant discriminative regions (SDRs) identified from the 15 intrinsic functional networks (INs) and the co-activation (measured by the mean Z-score) of each SDR in the
associated IN for healthy control (HC), clinical high-risk (CHR), and early illness schizophrenia (ESZ) groups, separately. SDR-M-N means the Nth SDR in the Mth IN. Table 2 includes
more detailed information about these SDRs. SDRs identified using different changing patterns are shown using different colors, and the associated INs are shown in yellow color. The
Fisher's combined p-values corresponding to all comparisons between any pair of groups (HC vs. CHR, HC vs. ESZ, and CHR vs. ESZ) are shown in each subfigure's title. Each SDR's mean
Z-scores of all subjects in one group are shown using a boxplot. In each boxplot, the central line is the median; the square is the mean; and the edges of the box are the 25th and 75th
percentiles. The whiskers extend to 1 inter-quartile range, and each outlier is displayed with a “+” sign. B: Significant associations between the clinical symptom scores (in Table 1) and
the co-activation of SDRs.
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