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Abstract: The main distresses of asphalt pavements in seasonal frozen regions are due to the effects
of water action, freeze-thaw cycles, traffic, and so on. Fibers are usually used to reinforce asphalt
mixtures, in order to improve its mechanical properties. Basalt fiber is an eco-friendly mineral
fiber with high mechanical performance, low water absorption, and an appropriate temperature
range. This paper aims to address the freeze-thaw damage characteristics of asphalt mixtures (AC-13)
reinforced with eco-friendly basalt fiber, with a length of 6 mm. Based on the Marshall design method
and ordinary pavement performances, including rutting resistance, anti-cracking, and moisture
stability, the optimum asphalt and basalt fiber contents were determined. Test results indicated
that the pavement performances of asphalt mixture exhibited a trend of first increasing and then
deceasing, with the basalt fiber content. Subsequently, asphalt mixtures with a basalt fiber content
of 0.4% were prepared for further freeze-thaw tests. Through the comparative analysis of air voids,
splitting strength, and indirect tensile stiffness modulus, it could be found that the performances
of asphalt mixtures gradually declined with freeze-thaw cycles and basalt fiber had positive effects
on the freeze-thaw resistance. This paper can be used as a reference for further investigation on the
freeze-thaw damage model of asphalt mixtures with basalt fiber.

Keywords: asphalt mixture; basalt fiber; freeze-thaw cycle; damage characteristics

1. Introduction

The asphalt pavement has been widely used in flexible pavement constructions, with a rapid
growing trend [1,2]. Asphalt mixture is generally considered to be a complex porous material that
includes bitumen, aggregates, fillers, as well as voids [3,4]. However, due to some environmental
factors, there are many distresses in asphalt pavements, such as spalling, crumble, pavement pothole,
etc., especially in the seasonal frozen regions [5]. Therefore, researchers have been trying to modify
asphalt mixtures and explore its freeze-thaw damage.

Fibers additives, such as cellulose fiber, polyester fiber, mineral fiber, etc., have been added into
bitumen and proved to be an effective reinforcement material for asphalt mixtures [6–9]. Basalt fiber,
as a novel kind of eco-friendly mineral fiber, was produced from basalt rocks with high mechanical
properties, low water absorption, and its by-product can be directly degraded in the environment,
without any harm [10]. Wang et al. [11,12] added basalt fiber into asphalt materials and evaluated
their fatigue resistance by using direct tension, as well as fatigue tests. By means of an X-ray computed
tomography technology (i.e., CT technology) and finite-element method, basalt fiber can release stress
concentrations in critical areas and reduce fatigue damages. Gu et al. [13] compared and discussed
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basalt fiber and commonly used fibers and found that basalt fiber has a superior reinforcement effect
on the high-temperature anti-rutting ability of bitumen mastic. Qin et al. [14] tested the reinforcement
effects of basalt fibers, with lengths of 3, 6, and 9 mm asphalt mastics, with respect to the lignin
fiber and the polyester fiber. Through leakage, penetration, strip-tensile and DSR tests, basalt fiber,
especially, with a length of 6 mm, has excellent comprehensive performances, due to a steady three
dimensional (3D) networking structure in bitumen mastics. Zhang et al. [15] carried out repeated
and multi-stress creep tests and used Abaqus for analyzing the high-temperature performance of
asphalt mastics. Then Zhang et al. [16,17] conducted the numerical simulations in Abaqus for the
compressive creep and bending creep tests, for the purpose of analyzing the distribution effect
and reinforcement mechanism of basalt fiber. Wang et al. [18] explored the optimization design of
styrene-butadiene-styrene (SBS)-modified asphalt mixtures, with basalt fiber, with the assistance of
a central composite design method. Test results indicated that asphalt mixtures, with basalt fiber, of
0.34% and a length of 6 mm, exhibited superior Marshall properties. Previous studies indicated that
basalt fiber was effective in improving the mechanical properties of asphalt materials.

In recent years, experiments about the freeze-thaw cycle effects on asphalt mixtures, were
also investigated by many researchers [19–21]. Xu et al. [22] employed the computed tomography
(CT technology) to obtain and analyze internal images of asphalt mixtures, under different freeze-thaw
cycles and investigated the influences of freeze-thaw cycles, on the evolution of internal air voids.
Moreover, Xu et al. [23] studied the effects of freeze-thaw cycles on the thermodynamic characteristics
of asphalt mixtures, based on the information entropy theory, CT, and digital image processing (DIP)
technologies. The effects of freeze-thaw cycles on the permeability of asphalt mixtures have also
been evaluated by means of a flow state, as well as water conductivity of asphalt mixtures [24].
Yan et al. [25] investigated the stone mastic asphalt (SMA) mixtures under the action of freeze-thaw
cycles and evaluated the freeze-thaw resistance based on the Marshall design indicators and water
stability. Badeli et al. [26] conducted the rapid freeze-thaw cycle test for asphalt mixture, using
thermomechanical tests. Yi et al. [27] established the generalized Maxwell and Drucker-Prager model
to evaluate the viscoelastic-plastic damage, under the condition of freeze-thaw cycles. Uniaxial
compressive strength tests were carried out to investigate the mechanism of the freeze-thaw failure of
asphalt mixtures. Nevertheless, efforts done for asphalt mixture with basalt fiber, under freeze-thaw
cycles, are still limited in this area.

In this paper, asphalt mixtures (AC-13) reinforced with an eco-friendly basalt fiber with a length
of 6 mm, were first designed by the Marshall design method, in order to determine the optimum
asphalt content. Then optimum basalt fiber content could be also obtained, according to the ordinary
pavement performances, such as rutting resistance, the indirect tensile stiffness modulus, and moisture
stability. Subsequently, freeze-thaw cycle tests were performed for control and test groups of asphalt
mixtures and the freeze-thaw damage characteristics were evaluated by a comparative analysis.

2. Materials and Methods

2.1. Raw Materials

In this paper, bitumen of AH-90 was used, which was produced by the PetroChina Liaohe
Petrochemical Company (Panjin, China). The basic physical performances of the AH-90 bitumen
are presented in Table 1. Andesite mineral aggregates, which came from a local quarry in the Jilin
Province, were chosen. Limestone powder was selected as the mineral filler for the bitumen mixture.
The physical parameters of the aggregates and the filler are given in Tables 2 and 3. Basalt fiber
(shown in Figure 1) was obtained from the Jiuxin Basalt Industry Co., Ltd. (Changchun, China),
the physical performances of which are listed in Table 4.
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Table 1. Basic physical properties of the bitumen.

Properties Measurement Technical Criterion

Penetration @ 25 ◦C, 100 g, 5 s (0.1 mm) 88 80–100
Softening point (◦C) 47 ≥44

Ductility @ 10 ◦C, 5 cm/min (cm) 43.5 ≥30
@ 15 ◦C, 5 cm/min (cm) 153 ≥100

Flash point (◦C) 318 ≥245
Solubility (trichloroethylene, %) 99.8 ≥99.5

Density @ 15 ◦C (g/cm3) 1.05 −
RTFOT

Mass loss (%) 0.22 ±0.8
Penetration ratio @ 25 ◦C (%) 66 ≥57

Ductility @ 10 ◦C, 5 cm/min (cm) 28 ≥8
@ 15 ◦C, 5 cm/min (cm) 89.3 ≥20

Table 2. Physical properties of the aggregates.

Sieve Size (mm) 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075

Apparent density (g/cm3) 2.803 2.781 2.774 2.760 2.713 2.720 2.699 2.647 2.700

Table 3. Physical properties of the limestone powder.

Properties Apparent Density (g/cm3) Hydrophilic Coefficient Sieving Test

Size (mm) Passing (%)

Values 2.728 0.76
0.6 100
0.15 95.3

0.075 82.5

Table 4. Physical properties of the basalt fibers.

Properties Color Length Diameter Specific
Gravity

Tensile
Strength

Elastic
Modulus

Elongation
at Break

Units − mm µm g/cm3 MPa GPa %

Value Golden
brown 6 13 2.56 3200 >40 3.2

Figure 1. The golden-brown 6 mm long basalt fibers that were used in the study.
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2.2. Sample Preparation

Traditional dense-graded asphalt mixture is a frequently-used asphalt mixture and is applied
widely in the asphalt pavement construction in China [28]. The standard Marshall design method was
adopted to prepare the asphalt mixture specimens [29]. Figure 2 presents the gradation curve of the
asphalt mixture (AC-13) used in this study, the upper and lower limits, and selected median values
of AC-13 are shown in Figure 2. In this paper, basalt fibers with a length of 6 mm was added into
the asphalt mixtures, at four proportions of 0.2%, 0.3%, 0.4%, and 0.5% by a mass of asphalt mixture,
respectively. According to the JTG E20-2011 [30], the detailed preparation procedures are presented as
follows:

(i) The pre-heated aggregates mixed together with basalt fibers, in a mixing pot, for 90 s, in order to
uniformly disperse the basalt fibers in aggregates.

(ii) The pre-heated bitumen AH-90 was weighted and poured into the mixing pot and the mixture
was blended for 90 s.

(ii) The pre-weighted limestone powder was added into the mixing pot and then blended for 90 s.
(iv) Marshall specimens of AC-13, of a diameter 101.6 mm and a height of 63.5 mm, were prepared

by compacting 75 blows on each side, and square slab specimens with dimensions of 300 mm ×
300 mm × 50 mm, were prepared with the help of the wheel rolling [31].

Figure 2. Gradation of the asphalt mixture (AC-13).

2.3. Testing Procedure

Figure 3 illustrates the research outline of this paper. First, raw materials of the asphalt mixtures
were chosen, such as bitumen, aggregates, mineral powder, and the basalt fiber, listed in Section 2.1.
Then, basalt fibers, of length 6 mm, were added into the asphalt mixtures, in different proportions
of 0%, 0.2%, 0.3%, 0.4%, and 0.5% corresponding to the mass of the asphalt mixture, respectively.
The optimum asphalt content for these asphalt mixtures could be determined by the Marshall design
method described in Section 3.1. Subsequently, through ordinary pavement performances, including
rutting resistance, anti-cracking, and moisture stability, the optimum basalt fiber content could be
obtained (Section 3.2). Afterwards, the freeze-thaw cycle test was conducted for the asphalt mixtures,
with the optimum basalt fiber content and without basalt fiber. Through the comparative analysis of
air voids, splitting strength and indirect tensile stiffness modulus, the effects of the freeze-thaw cycles
on the asphalt mixtures, could be addressed (Section 3.3).



Materials 2018, 11, 2488 5 of 17

Figure 3. The research outline of this paper.

2.4. Experimental Methods

2.4.1. Marshall Design Method

Nowadays, the Marshall design method is used, extensively, in the asphalt pavement design
and is also employed by the Chinese specification JTG E20-2011 [30]. The basic concepts of the
Marshall mix-design method were originally developed by Bruce Marshall of the Mississippi Highway
Department, around 1939, and then refined by the U.S. Army [32,33]. The Marshall design method
seeks to select the optimum bitumen content at a desired density that satisfies the minimum
stability and the range of flow values [29]. Compared to other design methods like the Superpave
method, the Marshall design method is a proven method and requires relatively light, portable,
and inexpensive equipment.

In this study, asphalt mixtures reinforced with basalt fiber were prepared on the basis of the
Marshall design method and specimens were also tested, in order to obtain the Marshall design
parameters, i.e., bulk density (ρf), air voids (VA), voids in mineral aggregates (VMA), voids filled with
asphalt (VFA), Marshall stability (MS), as well as the flow value (FV). In accordance with rule T0709
JTG E20-2011, bulk density (ρf) can be determined through weighing the asphalt mixture specimens
in air and water, following Equations (1) and (2). Afterwards, the VA, VMA, and VFA can be also
calculated by using Equations (3)–(5).

γf = ma/(mf − mw), (1)

ρf = γf × ρw, (2)

VA = [1 − γf/γTMD] × 100, (3)

VMA = [1 − γf × Ps/γsb] × 100, (4)

VFA = [(VMA − VA)/VMA] × 100, (5)

where ρw and ρf are the density of water and bulk density of specimens; ma, mw, and mf represent the
mass of the specimens in air, water, and the saturated surface dry mass, respectively; γf is the bulk
specific gravity; γTMD is the theoretical maximum specific density which can be measured by vacuum
sealing method; Ps is the aggregate content percent by weight of mixture; γsb is the bulk specific gravity
of aggregates.
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The Marshall test was performed to obtain the stability and flow values, according to rule T0709
in the JTG E20-2011 [30]. First, the prepared Marshall specimens (as described in Section 2.2) were
conditioned in the water bath, at 60 ◦C, for half an hour. Afterwards, a force was applied on the side
face, until the peak load. According to the indicator of the Marshall apparatus, the Marshall stability
and flow could be obtained and recorded.

2.4.2. High-Temperature Rutting Test

The rutting test is usually used for the high-temperature performance of asphalt mixtures and the
test (shown in Figure 4a, China Highway Engineering Instrument Institute, Beijing, China) was carried
out in accordance with rule T0719 in the JTG E20-2011 [30]. The detailed experimental procedures
were as follows:

(i) Square slab specimens were placed in a dry environment of 60 ± 0.5 ◦C, for at least 5 h.
(ii) A rubber tire with a length of 50 mm was brought to the asphalt mixture slabs, for an hour, at

a rolling speed of 42 ± 1 cycle/min, and the pressure of the loaded rubber tire was constant,
i.e., 0.7 ± 0.05 MPa.

(iii) Then the rutting deflection could be measured vertically, per 20 s, by means of a linear variable
differential transformer (LVDT).

(iv) The dynamic stability (DS) was defined by Equation 6 to quantitatively analyze the
high-temperature rutting resistance. The rutting test was performed for three replicate specimens
and the tested specimen is shown in Figure 4b.

DS = 15 × N/(d60 − d45), (6)

where N is the rolling speed of the rubber tire and N is generally set as 42 cycle/min, d45 and d60 are
the deflections at 45 min and 60 min, respectively.

Figure 4. Rutting test in this paper: (a) Rutting test; and (b) slab specimens.

2.4.3. Low-Temperature Indirect Tensile Stiffness Modulus Test

The low-temperature tensile property is generally considered as an indicator for evaluating
the anti-cracking ability and the indirect tensile stiffness modulus (ITSM) test (Cooper Research
Technology Ltd., Ripley, UK) was adopted and conducted, according to the standard AASHTO TP-31,
which is shown in Figure 5a [34]. A universal testing machine was used to perform the ITSM test.
First, the Marshall specimens were put in an environment at 5 and 20 ◦C, for at least 5 h. Second,
three replicate specimens were measured for ITSM and the load shown in Figure 5b was applied.
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The detailed parameters of the load can be found in a previous study [34]. Then the indirect tensile
stiffness modulus (Sm) could be obtained by calculation, as follows:

Sm = F × (µ + 0.27)/(h × Z), (7)

where F is the maximum loading (N); µ is the Poisson ratio, and µ = 0.25 and 0.35, at 5 and 20 ◦C; h is
the specimen height (mm); Z is the horizontal deformation (mm).

Figure 5. Indirect tensile stiffness modulus test: (a) indirect tensile stiffness modulus (ITSM) test;
and (b) schematic diagram of the load.

2.4.4. Moisture Stability Test

Freeze-thaw splitting test (shown in Figure 6, Nanjing Tuoxing Instrument Institute, Nanjing,
China) is considered to be effective for analyzing the moisture stability of asphalt mixture and it has
been widely used in many studies [22–24]. In accordance with rule T0729 in the JTG E20-2011 [30],
the freeze-thaw splitting test was carried out at 25 ◦C, by the following steps:

(i) Marshall specimens were prepared and then divided into two groups, namely, the test group and
the control group.

(ii) The test group was pretreated in a special condition, first, placed in water by vacuum saturation,
after that put in the normal pressure condition.

(iii) Subsequently, the pretreated test group was conditioned at a low temperature of −18 ◦C for
about 16 h, after that were placed in water at a temperature of 60 ◦C, for one day.

(iv) Both, the test and the control groups were immersed into water of 25 ◦C, for at least 2 h.
(v) The Marshall specimen was placed, centrally, in the Marshall apparatus and a loading force with

a speed of 50 mm/min was loaded onto the specimen, until the specimen was broken.

The splitting tensile strength could be calculated by Equations (8) and (9):

RT1 = 0.006287 × PT1/h1, (8)

RT2 = 0.006287 × PT2/h2, (9)

where RT1 and RT2 are the control group and the test group, respectively; PT1 and PT2 are the maximum
loads of the control and the test groups; h1 and h2 are the heights of the control and the test groups.
Furthermore, the freeze-thaw splitting tensile strength ratio (TSR) could be obtained as follows:

TSR =
(

RT2 /RT1
)
× 100, (10)
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where RT1 and RT2 are the control group and the test groups, respectively.

Figure 6. The freeze-thaw splitting test in this paper.

3. Results and Discussion

3.1. Determination of the Optimum Asphalt Content Using the Marshall Design Method

Asphalt mixtures with different basalt fiber proportions of 0% (control), 0.2%, 0.3%, 0.4%, and 0.5%
by mass, were prepared, and were denoted by group 1 (control), 2, 3, 4, and 5, respectively. Then,
the optimum asphalt content for these asphalt mixtures needed to be obtained, using the Marshall
design method [29,35]. For each group, a range of the asphalt-aggregate ratios from 4.0% to 6.0%
with an increment of 0.5%, was designed and tested by the Marshall design method. Figure 7 shows
the Marshall design results of the asphalt mixtures (control group 1), including bulk specific gravity,
VA, VMA, VFA, as well as MS and FV. Therefore, the optimum asphalt content (OAC) of the asphalt
mixture, without the basalt fiber (control group 1) could be determined through the maximum density,
maximum Marshall stability, and target air voids, and the OAC value was 5.03%. Afterwards, the OAC
values of the other four groups of asphalt mixtures (i.e., group 2, 3, 4 and 5) could also be obtained and
the OAC results are listed in Table 5. From Table 5, it could be seen that the OAC of different asphalt
mixtures gradually increased with the basalt fiber content. This trend agrees with the results obtained
in previous research, which may be attributed to the fact that basalt fiber has a larger specific surface
area and the fibers can also absorb the light components in bitumen [9,36].

Figure 7. Cont.
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Figure 7. The Marshall design results of asphalt mixture without basalt fiber: (a) Bulk specific gravity;
(b) VA; (c) VMA; (d) VFA; (e) MS; and (f) FL.

Table 5. Optimum asphalt content of asphalt mixtures with different basalt fiber contents.

Group 1 (Control) 2 3 4 5

Basalt Fiber Content (%) 0.0 0.2 0.3 0.4 0.5
Optimum Asphalt Content (%) 5.03 5.16 5.27 5.35 5.42

3.2. Optimum Basalt Fiber Content Based on the Pavement Performances

3.2.1. High-Temperature Rutting Resistance

The rutting test was conducted at 60 ◦C for the asphalt mixtures with different basalt fiber contents,
at the corresponding OAC values. Figure 8 shows the high-temperature rutting test results of the
five groups. It could be clearly seen that the dynamic stability results demonstrated a rising trend,
first, and then came down, when the basalt fiber content was increased, gradually. Furthermore,
the dynamic stability reached the largest value, at a basalt fiber content of 0.4%. Compared to the
control group, the dynamic stability results of the test groups were improved by, approximately, 25.3%,
48.7%, 82.5%, and 62.1%, respectively. Ordinarily, a larger DS value means a preferable anti-rutting [18].
Accordingly, the basalt fiber was proved to be able to well improve the rutting resistance of the asphalt
mixture. This is because the basalt fiber was uniformly dispersed in the asphalt mixture and there was
a spatial networking structure. Meanwhile, the basalt fiber could absorb some light components of
bitumen to improve its viscosity [13]. Thus, the stability of the asphalt mixture can be reinforced by the
addition of basalt fiber. However, it should be noted that the reinforcement of the basalt fiber slightly
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decreased. This may be attributed to the coagulated basalt fiber or the uneven dispersion of the basalt
fiber in the bitumen, leading to weak points.

Figure 8. High-temperature rutting test results.

In addition, one-way analysis of variance (ANOVA) results using the Statistical Product and
Service Solutions (SPSS) software (24.0, International Business Machines Corporation, New York,
NY, USA) for high-temperature rutting test, are listed in Table 6. Tukey’s HSD (honest significant
difference) test was used to perform the post hoc multiple comparisons and the results are listed in
Table 7. From Tables 6 and 7, the F-value was larger than F0.01(4,10) = 5.99, indicating that the basalt
fiber content had a significant influence on the high-temperature property of the asphalt mixture,
which was also proved by Tukey’s HSD results.

Table 6. One-way analysis of variance (ANOVA) for high-temperature rutting test.

Analysis Sum of Squares Degree of Freedom Mean Square F-Value Significance

Between groups 8498025.6 4 2124506.4 836.8 **
Within groups 25388.0 10 2538.8

Total 8523413.6

Note: “**” is significant at the 0.01 level.

Table 7. Tukey’s honest significant difference (HSD) test results for high-temperature rutting test.

Within Groups 1 vs. 2 1 vs. 3 1 vs. 4 1 vs. 5 2 vs. 3 2 vs. 4 2 vs. 5 3 vs. 4 3 vs. 5 4 vs. 5

Mean difference −663 −1278 −2164 −1628 −615 −1501 −965 −886 −350 536
Significance ** ** ** ** ** ** ** ** ** **

Note: “**” is significant at the 0.01 level.

3.2.2. Low-Temperature Indirect Tensile Stiffness Modulus

An indirect tensile stiffness modulus (ITSM) test was conducted at 5 and 20 ◦C, to investigate the
low-temperature properties of the asphalt mixture with basalt fiber. The indirect tensile stiffness
modulus could be calculated by Equation (7), based on the test data. Subsequently, the low-
temperature indirect tensile stiffness modulus test results are plotted in Figure 9.

As shown in Figure 9, it could be observed that when the basalt fiber content increased
continuously, the ITSM values also presented the variation trend of first increasing and then decreasing.
Generally, the indirect tensile stiffness modulus is an indicator to evaluate the low- temperature
anti-cracking ability, and a larger ITSM value of the asphalt pavement stands for a better anti-cracking
ability. As shown in Figure 9, the low-temperature anti-cracking performance was improved with the
addition of basalt fiber. With respect to the control group, the ITSM values increased by 11.2%, 18.1%,
22.5%, and 17.8% at 5 ◦C and 15.0%, 26.9%, 38.2%, and 30.7% at 20 ◦C, when adding basalt fiber of
0.2%, 0.3%, 0.4%, and 0.5% concentrations. In addition, it was evident that the ITSM had the most
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significant effect when the basalt fiber content was 0.4%. This variation trend might have been caused
by the spatial networking structure of the basalt fiber, in the asphalt mixture. The absorption between
bitumen and basalt fiber lead to a higher proportion of structural bitumen, improving the interfacial
bond strength. Meanwhile, the addition of the basalt fiber could also prevent a further expansion
of the cracks. The decreasing ITSM may be also attributed to the uneven dispersion of basalt fiber
in bitumen.

Figure 9. Low-temperature indirect tensile stiffness modulus test results: (a) At 5 ◦C; and (b) at 20 ◦C.

In addition, one-way analysis of variance (ANOVA) results, using the SPSS software for
low-temperature ITSM test are listed in Table 8. Tukey’s HSD (honest significant difference) test
was used to perform post hoc multiple comparisons and Tukey’s HSD results are listed in Table 9.
From Tables 8 and 9, the F-value was larger than the F0.01(4,10) = 5.99, indicating that the basalt fiber
content had a significant influence on the low-temperature property of the asphalt mixture, which was
also proved by Tukey’s HSD results.

Table 8. One-way analysis of variance (ANOVA) for low-temperature ITSM.

Analysis Sum of Squares Degree of Freedom Mean Square F-Value Significance

5 ◦C
Between groups 13339074.0 4 3334768.5 4338.8 **
Within groups 7686.0 10 768.6

Total 13346760.0

20 ◦C
Between groups 2992568.4 4 748142.1 613.6 **
Within groups 12192.0 10 1219.2

Total 3004760.4

Note: “**” is significant at the 0.01 level.

Table 9. Tukey’s HSD test results for low-temperature ITSM.

Within Groups 1 vs. 2 1 vs. 3 1 vs. 4 1 vs. 5 2 vs. 3 2 vs. 4 2 vs. 5 3 vs. 4 3 vs. 5 4 vs. 5

5 ◦C
Mean difference −1348 −2177 −2705 −2145 −829 −1357 −797 −528 32 560

Significance ** ** ** ** ** ** ** ** ** **

20 ◦C
Mean difference −499 −898 −1275 −1024 −399 −776 −525 −377 −126 251

Significance ** ** ** ** ** ** ** ** ** **

Note: “**” is significant at the 0.01 level.
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3.2.3. Moisture Stability Properties

The freeze-thaw splitting test was carried out at test temperature of 25 ◦C, so as to explore the
effect of basalt fiber on the moisture stability of the asphalt mixture. The freeze-thaw splitting tensile
strength ratio (TSR) was used as an indicator calculated by the Equation 10 and the test results are
illustrated in Figure 10.

In Figure 10, the TSR values exhibited, approximately, similar variation trends to the DS and the
ITSM. The TSR values of test groups were improved by 3.1%, 10.6%, 13.0%, and 10.9%, compared
with the control group, and the test group 4 with a basalt fiber content of 0.4% had the highest TSR
value. This was expected, due to the absorption effect between the bitumen and the basalt fiber,
the adhesion capability between the bitumen and the aggregates were improved, significantly, so that
there was a difficulty in the exfoliation of the aggregates, under the effect of water. Simultaneously,
basalt fiber with a high modulus and strength formed a spatial networking structure in the asphalt
mixture, playing the role of reinforcement and toughening.

Figure 10. Moisture stability results of the freeze-thaw splitting test.

In addition, one-way analysis of variance (ANOVA) results, using the SPSS software for moisture
stability tests are listed in Table 10. Tukey’s HSD (honest significant difference) test was used to perform
post hoc multiple comparisons and Tukey’s HSD results are listed in Table 11. From Tables 10 and 11,
the F-value was larger than the F0.01(4,10) = 5.99, indicating that the basalt fiber content had a significant
influence on the moisture stability of the asphalt mixture, which was also proved by Tukey’s
HSD results.

Table 10. One-way analysis of variance (ANOVA) for moisture stability.

Analysis Sum of Squares Degree of Freedom Mean Square F-Value Significance

Between groups 259.1 4 64.8 1134.6 **
Within groups 0.571 10 0.057

Total 259.7

Note: “**” is significant at the 0.01 level.

Table 11. Tukey’s HSD test results for moisture stability.

Within groups 1 vs. 2 1 vs. 3 1 vs. 4 1 vs. 5 2 vs. 3 2 vs. 4 2 vs. 5 3 vs. 4 3 vs. 5 4 vs. 5

Mean difference −2.55 −8.77 −10.71 −8.97 −6.22 −8.16 −6.42 −1.94 −0.20 1.74
Significance ** ** ** ** ** ** ** ** - **

Note: “−” indicates insignificant correlation, “**” is significant at the 0.01 level.

In view of the pavement performances of the control and the test groups, when the basalt fiber
increased, the rutting resistance, the anti-cracking and the moisture stability of the asphalt mixture
were first improved and then slightly decreased, in which the pavement performances were improved,
significantly, by adding basalt fiber of about 0.4%. Therefore, excessive basalt fiber content is not
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recommended and the optimal basalt fiber content was chosen as 0.4% and the corresponding optimum
asphalt content was set as 5.35, in this study. The selected basalt fiber content and asphalt content were
used to further investigate the water-temperature influences on asphalt mixtures.

3.3. Comparative Analysis of Damage Characteristics of the Asphalt Mixture under the Freeze-thaw Cycles

Asphalt mixtures modified by basalt fiber content of 0.4% and asphalt mixtures without basalt
fiber, were prepared at the corresponding optimum asphalt content, and were divided into the test
group and the control group, respectively. Before the test, the control and the test groups were
immersed into water and under vacuum (98.0 kPa), for 15min, and soaked under atmospheric pressure,
for 30 min. Then, the freeze-thaw cycles were carried out on both groups, in which the freezing
condition was set as −18 ◦C, for 16 h, and the thaw condition was in water, at 60 ◦C for 8 h. After 0, 1,
3, 6, 9, 12, and 15 freeze-thaw cycle air voids, the splitting test, at 15 ◦C, and the ITSM test, at 10 ◦C,
were carried out for further comparative analysis.

3.3.1. Analysis of Air Voids

Air voids of the control and the test groups were measured and could be calculated by CT and
DIP technologies. The CT, DIP technologies, and statistical methods were adopted for the control
and the test groups, before and after the freeze-thaw cycles. The process could include the following
steps: (1) CT image scanning; (2) image enhancement; (3) image denoising; (4) threshold cutting and
binarization of images; and (5) air voids calculation. Figure 11 shows the air voids results of both the
control and the test groups, under different freeze-thaw cycles.

As shown in Figure 11, it can be clearly observed that the air voids results of asphalt mixtures
gradually increased as the freeze-thaw cycles increased. Furthermore, the rising trend of air voids of
the asphalt mixtures was significant but the variation presented a slow trend when the freeze-thaw
cycles exceeded 9 cycles. It is worth noting that the initial air voids of the control group, without the
basalt fiber, were slightly lower than that of test group with basalt fiber. This was because it was
relatively difficult to compact the asphalt mixtures with basalt fiber, due to the higher elastic modulus
and reinforcement effect of basalt fiber. Under the action of the freeze-thaw cycles, the internal structure
of the asphalt mixtures was damaged due to the volume expansion and temperature stress. Before the
nine freeze-thaw cycles, the air voids first extended and then the adjacent air voids were coalesced in
the asphalt mixture, leading to the significant variation trend, however, the expansion and formation
of air voids became slow after the nine freeze-thaw cycles. In addition, the air voids of the test group
were significantly lower than that of the control group. It was also evident that the basalt fiber formed
a spatial networking structure, playing the role of reinforcement and toughening.

Figure 11. Comparative results of air voids of the control and the test groups, under different
freeze-thaw cycles.
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3.3.2. Analysis of Splitting Strength

Splitting strength of the control and the test groups could be obtained by the Equation 3, according
to rule T0716 of the JTG E20-2011 [30]. Figure 12 illustrates the splitting strength results of both the
control and the test groups, under the various freeze-thaw cycles.

As illustrated in Figure 12, the splitting strength values presented a decreasing trend with the
freeze-thaw cycles and the splitting strength gradually decreased, slowly. Accordingly, the freeze-thaw
cycle had a great effect on the mechanical properties of the asphalt mixture. This was because the
adhesion capability between the bitumen and the aggregates became weaker and weaker, under the
continuous action of the freeze-thaw cycles, resulting in a damaged internal structure of the asphalt
mixture. Moreover, by a comparative analysis of the control and the test groups, the strength values of
the test group were higher than those of the control group, under the same freeze-thaw cycles.

Figure 12. Comparative results of the splitting strength of the control and the test groups, under
different freeze-thaw cycles.

3.3.3. Analysis of Indirect Tensile Stiffness Modulus

The indirect tensile stiffness modulus of the control and the test groups could be calculated
by the Equation 7 and the experimental procedure referred to in Section 2.4.3. Figure 13 plots the
indirect tensile stiffness modulus results of both the control and the test groups, under different
freeze-thaw cycles.

Figure 13. Comparative results of the indirect tensile stiffness modulus of the control and the test
groups, under different freeze-thaw cycles.

As plotted in Figure 13, the indirect tensile stiffness modulus results presented an, approximately
similar, decreasing variation trend to the splitting strength in Figure 12. It was expected that indirect
tensile stiffness modulus is also considered to be an indicator of the mechanical performance of the
asphalt mixture and is connected with the bearing capacity of traffic loads. The freeze-thaw cycles
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had a negative effect on the mechanical properties of the asphalt mixtures. Meanwhile, the addition
of basalt fiber into the asphalt mixture could significantly enhance the anti-cracking and mechanical
properties of the asphalt mixtures, leading to a reinforcement mechanism.

4. Conclusions

The primary objective of this paper was to study the damage characteristics of asphalt mixtures
(AC-13), reinforced with an eco-friendly basalt fiber, with a length of 6 mm, under the condition of
freeze-thaw cycles. The optimum asphalt content and the optimum basalt fiber content were obtained
by the Marshall design method and ordinary pavement performances. Then, the freeze-thaw cycle
tests were performed for the control and the test groups of asphalt mixtures. The following conclusions
could be drawn:

• The optimum asphalt content gradually increased with the addition of the basalt fiber content.
• Based on ordinary pavement performances, when adding basalt fiber, the pavement performances

of the asphalt mixture exhibited a trend of first, increasing and then deceasing in performance.
This was due to a spatial networking structure by the basalt fiber in the asphalt mixture. However,
excessive basalt fiber was not good for asphalt mixture.

• Basalt fibers with higher content would be difficult to disperse, unevenly, in the bitumen, leading
to weak points. Therefore, higher basalt fiber content is not recommended and the optimum
basalt fiber content could be determined as 0.4% for further freeze-thaw cycle tests, according to
the pavement performances of the asphalt mixtures.

• The freeze-thaw cycles had a negative effect on the mechanical properties of the asphalt mixtures.
Adding basalt fibers into asphalt mixture could significantly improve the freeze-thaw resistance
and the mechanical performance of the asphalt mixture, leading to a reinforcement mechanism.
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