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Abstract

Boosted Regression Trees (BRT) is one of the modelling techniques most recently applied

to biodiversity conservation and it can be implemented with presence-only data through the

generation of artificial absences (pseudo-absences). In this paper, three pseudo-absences

generation techniques are compared, namely the generation of pseudo-absences within tar-

get-group background (TGB), testing both the weighted (WTGB) and unweighted (UTGB)

scheme, and the generation at random (RDM), evaluating their performance and applicabil-

ity in distribution modelling and species conservation. The choice of the target group fell on

amphibians, because of their rapid decline worldwide and the frequent lack of guidelines for

conservation strategies and regional-scale planning, which instead could be provided

through an appropriate implementation of SDMs. Bufo bufo, Salamandrina perspicillata and

Triturus carnifex were considered as target species, in order to perform our analysis with

species having different ecological and distributional characteristics. The study area is the

“Gran Sasso—Monti della Laga” National Park, which hosts 15 Natura 2000 sites and repre-

sents one of the most important biodiversity hotspots in Europe. Our results show that the

model calibration ameliorates when using the target-group based pseudo-absences com-

pared to the random ones, especially when applying the WTGB. Contrarily, model discri-

mination did not significantly vary in a consistent way among the three approaches with

respect to the tree target species. Both WTGB and RDM clearly isolate the highly contri-

buting variables, supplying many relevant indications for species conservation actions.

Moreover, the assessment of pairwise variable interactions and their three-dimensional

visualization further increase the amount of useful information for protected areas’ manag-

ers. Finally, we suggest the use of RDM as an admissible alternative when it is not possible

to individuate a suitable set of species as a representative target-group from which the

pseudo-absences can be generated.
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Introduction

In conservation biology, one of the most important activities is monitoring population abun-

dances and distribution, both for animals and plants. Studying changes over time in an animal

distribution means understanding its temporal dynamics, also assessing management effec-

tiveness [1]. As reported by Marsh and Trenham [2], there are many different monitoring

techniques to evaluate animal population dynamics, and the data obtained can be used to iden-

tify endangered species or real and potential diffusion of invasive and pest species [3–6]. An

important role in the conservation of populations is played by the protected areas (PAs). Many

conservationists celebrate the expansion of protected territories and the increasing attention

paid to biodiversity, but they often disagree on how to manage parks and reserves. In recent

years, the development of several modelling approaches has allowed ecologists to better

understand the potential diffusion of animals and plants and predict their distribution within

changing environmental scenarios [7], and this represents a promising tool in biodiversity

conservation issues.

During the last decade, the use of different SDMs (Species Distribution Models) to assess

the actual and potential distribution of species has gained increasing popularity among ecolo-

gists [8–10]. This growing interest in the implementation of ecological modelling within distri-

butional issues arises from both the increasing availability of occurrence data for a huge

number of taxa gathered in public institutions and private collections [11–13], and the recent

development of new modelling approaches (e.g. Machine Learning) which allow researchers

to model complex ecological responses (e.g. [14, 15]).

In recent studies, different modelling techniques have been applied to the same target spe-

cies, comparing their predictive performance and their capacity to account for complex rela-

tionships among the ecological, climatic and spatial predictors which are assumed to have a

significant role in shaping the species’ distribution [16–19]. One of the most recently debated

issues about ecological modelling applications is how to deal with the “absences” [10, 17, 20–

23]. In fact, most of the available data on species’ occurrences are represented by ensembles of

presence records, often collected by different researchers in different timeframes, and only for

a relatively small number of species systematic surveys have been carried out, so as to permit a

reliable assessment of the presence and absence sites within a certain area. Some approaches

permitting to build presence-absence models using presence data sets through the generation

of artificial absence data, referred to as ‘pseudo-absences’, were recently introduced in

machine-learning techniques [19, 24, 25].

Among them, Boosted Regression Trees (BRT) [15, 16] is one of the modelling techniques

most recently applied to conservation issues (e.g. [24, 26–28]). BRT results from the combina-

tion of regression trees, which belong to the decision tree group of models, and boosting tech-

nique, which allows modellers to produce a large number of simple tree models and then

combine them so as to optimize predictive potential [15]. The BRT technique is capable of

properly fitting complex functions, which reflect the complexity of the ecological processes

shaping the species’ distribution; it can select the most relevant variables within the set of

input predictors and model the interactions among them, if present [15]. Furthermore, BRT

can handle categorical as well as continuous input variables, it includes algorithms which allow

the creation of a large number of models from which a final optimized model can be obtained,

and it has been reported to assure good performances with a low to moderate number of

occurrence data [15, 17]. Several approaches to generate pseudo-absences have been tested

in recent years [19, 24]. In the present study we focused on three of them within the BRT

modelling technique and compared their predictive performance and robustness on three

amphibian species, differing in their distribution and ecological requirements (see Materials
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and methods). In addition, we provide suggestions on how to deal with the pseudo-absences

when modelling the distribution of species needing conservation actions. Notwithstanding

several studies using simulated species to test metrics for model validation have been published

recently (e.g. [20, 29, 30]), we intentionally chose to use a database referring to reliably assessed

presences for the species considered, in order to address more specifically the potentialities

and drawbacks that conservationists should consider when applying the SDM approach to bio-

diversity conservation and reserve planning.

For this aim, a target group comprising three amphibian species occurring in Central Apen-

nines, having different distributional and ecological characteristics, was considered for our

analyses: Salamandrina perspicillata (Savi, 1821) and Triturus carnifex (Laurenti, 1768), both

endemic to the peninsular Italy; Bufo bufo (Linnaeus, 1758), widespread across Europe.

Amphibians represent, in fact, a taxon that often need a better integrated approach for conser-

vation actions, since this class of vertebrates is undergoing a rapid decline with high rates of

species loss [31]. Finally, amphibians are rarely well-represented in conservation plans [32]

and suffer from “high-level” studies, resulting in little research and few guidelines on practical

conservation measures [33], notwithstanding their undoubted ecological role.

Materials and methods

Target species and study area

Three target species were considered for our research:

• Bufo bufo (Linnaeus, 1758), considered “Vulnerable” in IUCN Italy Red List [34], is a gener-

alist species, widely distributed across Europe and part of Asia and North Africa;

• Salamandrina perspicillata (Savi, 1821), included in Annex II of the EU Habitats Directive

and considered “Least Concern” in IUCN Italy Red List [35], is an endemic salamander of

Apennines, particularly linked to intact woodland habitats and streams;

• Triturus carnifex (Laurenti, 1768), included in Annex II of the EU Habitats Directive and

considered “Near Threatened” in IUCN Italy Red List [36], is an endemic newt of peninsular

Italy related to lentic ecosystems.

Presence records for each species and target-group background data [25] (S1 Dataset) were

derived from the database generated in Iannella [37]. The study area includes the “Gran Sasso-

Monti della Laga” National Park (GSML National Park) (Fig 1), a 1.432 km2-wide PA in the

central Apennines (Italy), which hosts 15 “Natura 2000” sites (ftp://ftp.minambiente.it/PNM/

Natura2000/.TrasmissioneCE_2015/).

The choice of the study area was based on both the availability of reliable data and the intent

of our analysis to investigate the applicability of SDMs to conservation issues (e.g. manage-

ment of PAs). Indeed, an extensive survey on the whole GSML National Park territory was car-

ried out by specialists in 2013, funded in the context of the EU project “Natura 2000”; the

resulting data on all the amphibian presence sites in the Park are comprised in Iannella [37].

The presence data used in this study represent therefore reliable records at GPS resolution,

and allow to assume detectability as constant across all the dataset [20]. For each species, only

presence data falling within the study area were used, since the use of presence data from other

areas and the following projection of the resulting model to a target study area may generate

greater uncertainties [38].

Spatial autocorrelation within presence records of each species and within the aggregated

presence data was tested using a 1 × 1 km grid, derived from the 10 × 10 km UTM grid,

through Moran’s I test. The 1 × 1 km grid was chosen in order to avoid the loss of any relevant

Pseudo-absences generation in BRT for amphibian conservation
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fine-scale spatial and environmental information available in the dataset used. Each record

was reported in geographical coordinates (UTM-WGS84 reference system); spatial analysis

and distribution maps were generated with ESRI ArcGis 10.0 software.

Environmental variables

The set of environmental predictors used comprises: a) nineteen bioclimatic variables (BIO1--

BIO19) [39] and b) elevation data (ALT), downloaded from the Worldclim database (http://

www.worldclim.com/current/); c) two topographic variables, namely SLOPE, representing the

incline of the surface, and ASPECT, representing the “exposure”, which is the compass direc-

tion that a topographic slope faces [40]. The latter two variables are expressed in degrees and

were derived from a Digital Elevation Model originating from the elevation data, using the

“surface tool” in ArcGis Spatial Analyst. All these variables were used with a spatial resolution

of 30 arc-seconds (0.93 x 0.93 = 0.86 km2 at the equator), in conformity with the high precision

of the spatial information contained in the presence dataset.

Model building

The Boosted Regression Trees (BRT) technique was implemented in our study in three differ-

ent ways:

1. pseudo-absences for each target species established on the presence points of the other

amphibian species occurring in the study area, thus setting up a “non-overlapping target-

Fig 1. Study area. “Gran Sasso-Monti della Laga” (GSML) National Park. The highest peaks of the main

districts are indicated by the black triangles.

https://doi.org/10.1371/journal.pone.0187589.g001
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group background” [25]. Using this approach, hereafter named UTGB (unweighted target-

group background), to select pseudo-absence points, eventual bias in sampling design

would be similar for all the target species, and this may produce better modelling results

[25].

2. pseudo-absences for each target species established on the presence points of the other

amphibian species occurring in the study area (see above), implementing a weighting

scheme so that the sum of the weights on the pseudo-absences equals the sum of those on

the presence points [24, 41]. Assuming that D is the total number of presence points in the

dataset, pk = total of the n-presence points of k-species, ak = number of target-group

pseudo- absences for the k-species, then ak = D—pk; therefore, the weight Wik of the i-
pseudo-absence point of the k-species will be Wik = pk / ak, so that ∑Wik × aik = pk.

This approach is hereafter named WTGB (weighted target-group background).

3. pseudo-absences generated through random selection of points from the whole study area

except the occurrence localities of the target species, selecting a number of random pseudo-

absences equal to the number of presence records, since this ratio between presences and

pseudo-absences seems to assure good accuracy in BRT models [24]. Four replicates of the

random pseudo-absences generation process, hereafter RDM, were performed, and predic-

tions from the corresponding models were then averaged.

A total of 320 amphibians’ presence records formed the starting data set. For each target

species, Table 1 shows the number of presence records and the number of pseudo-absences

used to build models through the UTGB, WTGB and RDM approaches.

All the BRT models were built in R [42] version 3.2.3 (https://cran.r-project.org/bin/

windows/ base/old/3.2.3/) using the package “gbm” version 2.1.1 [43] and the additional func-

tion “gbm.step” provided by J. Elith and J.R. Leathwick in Elith, Leathwick [15]. In BRT, the

regularization parameters which most influence variable selection and model performance are

mainly three: a) the shrinkage parameter, also named “learning rate”, limiting the contribution

of the single trees which are added in sequence to the model through the boosting algorithm;

b) the “tree complexity”, indicating the order of the interactions between the predictors that

would be modelled, so that if tree complexity equals 2 a model with up to two-way interactions

will be built. Learning rate and tree complexity influence the number of trees required to reach

the optimal model performance [15]; c) the “bag fraction”, representing the proportion of data

which are randomly drawn without replacement from the full data set at each iteration and

used to build the current model; this parameter introduces stochasticity in BRT model build-

ing, thus reducing overfitting and improving accuracy [15, 44].

Table 1. Presence and pseudo-absence data for the three target species.

Species Presence data Pseudo-absences

UTGB and WTGB* RDM

Bufo bufo 73 247 73

Salamandrina perspicillata 24 296 24

Triturus carnifex 55 265 55

For each target species are indicated the number of presence data and the number of pseudo-absences used within the three different implementations of

the Boosted Regression Trees model.

*UTGB and WTGB were aggregated in a single column since for both methods the number of pseudo-absences of the k-species is ak = D—pk, with D total

number of occurrences in the dataset and pk number of occurrences of the k-species

in WTGB each pseudo-absence has a weight Wik = pk / ak.

https://doi.org/10.1371/journal.pone.0187589.t001
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BRT models were produced using the following parameterization setting: learning

rate = 0.001 in order to allow each model to reach at least 1000 trees, following a “rule of

thumb” for balancing model complexity and performance [15, 45]; tree complexity = 5; bag

fraction = 0.5 or 0.75, depending on which one results in the best model performance for each

single species.

Model evaluation

The debate on which methods are appropriate to evaluate the performance of SDMs, particu-

larly when dealing with models built on presence-background data [20, 21], is ongoing and

still controversial, since there is lack of clear guidelines to test different aspects of the modelling

outcomes [22]. In this paper, discrimination capability of the models obtained was evaluated

by means of two metrics, the AUC, namely the area under the receiver operating characteristic

(ROC) curve [46], and the TSS (i.e. True Skill Statistic) [47]. AUC is a threshold-independent

statistic used in ecological modelling to assess the capability of a model to discriminate

between positive (presences) and negative (absences) instances [14, 17]. Even though the use

of AUC to evaluate discrimination performance of SDMs has been questioned [29, 48], this

metric is used in several recent papers, dealing with biodiversity conservation (e.g. [26–28]) or

other research fields [49, 50], even when the authors themselves state that the absence data

they use may not reflect real absences [28]. We used AUC as discrimination metric for the

BRT models obtained because, even though it should not be used to compare models for dif-

ferent species in presence-background models [29], it can still be used to compare different

modelling approaches applied to the same species at the same extent [48], which is one of the

main purposes of this paper. The function “gbm.step” allowed us to calculate the AUC score

and the deviance, namely a loss function used in BRT models to measure the loss in predictive

performance consequent on suboptimal models [15], within a 10-fold cross-validation frame-

work. More generally, deviance represents a measure of calibration for models with continu-

ous outputs [51].

Statistical significance of differences in the AUC and deviance values resulting from the

cross-validated BRT models was tested for each target species and each pseudo-absence gener-

ation approach. With regard to UTGB and WTGB, we considered the values of AUC and devi-

ance within each of the ten cross-validation folds in the final optimized model (n = 10 for each

metric for both methods), while for the RDM approach we considered the mean cross-vali-

dated AUC and deviance values for each of the four replicates performed (n = 4 for each met-

ric). First, we evaluated normality (intra-species, intra-model) through Shapiro-Wilk test and

homoscedasticity (intra-species, inter-model) through Levene’s test. When both normality

and homoscedasticity were confirmed, we performed two-tailed t-tests between each pair of

modelling approaches for a same species, in order to assess possible significant differences in

AUC and/or deviance among UTGB, WTGB and RDM. When normality or homoscedasticity

were not verified, we performed the non-parametrical Wilcoxon-Mann-Whitney tests for the

same purpose. The results of all the tests were evaluated considering a critical p-value of 0.05.

TSS, instead, defined as sensitivity+specificity-1, is a threshold-dependent measure of dis-

crimination widely used for SDMs resulting in binary presence-absence outputs [47, 51, 52].

Therefore, it is particularly useful for the application of SDMs to spatial prioritization of areas

for conservation measures, since reserve managers often prefer a binary representation of the

areas predicted as suitable or not for the target species, even though Guillera-Arroita et al.

(2015) [20] showed that binary discretization of the continuous output of SDMs often reduce

their predictive power. We used the R package “ecospat” version 2.1.1 [53] to calculate the

TSS, for each target species and each pseudo-absence generation approach, along increasing

Pseudo-absences generation in BRT for amphibian conservation
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threshold values (increment of 0.01 each time), comparing the binary presence-pseudoabsence

values of each target species with the predictions resulting from the corresponding BRT

model. Once calculated the TSS along increasing threshold values, we reported the values of

TSS for two of the thresholds most widely used to convert continuous model outputs into

binary ones, namely the threshold that maximises TSS and the one corresponding to the 10th

percentile estimate for training presences [20, 52, 54].

Maps representing the modelled distribution of the target species were generated from the

BRT projections over the whole study area in raster format, indicating the relative likelihood

of occurrence (output of a presence-background model built on unbiased data characterized

by constant detectability [20]) at each pixel within a continuous scale 0–1. Within the RDM

approach, the raster outputs resulting from the four replicates were averaged. In order to better

compare the models resulting from the different approaches, the continuous raster outputs

were made discrete by considering 5 equally distributed classes of increasing relative likelihood

of occurrence (i.e. 0–0.2; 0.2–0.4; 0.4–0.6; 0.6–0.8; 0.8–1.0), and then areas for each class were

calculated in ArcMap 10.0.

Relative contributions, expressed as percentages and computed considering the number of

times a certain variable is selected for splitting during tree building, weighted by the conse-

quent squared improvement in the model and averaged over all trees [15], and pairwise inter-

action sizes, indicating the effect of two predictors interacting each other on the response

variable [15], were assessed for each BRT model. Finally, partial dependence plots, which

report the variation of relative likelihood of occurrence consequent upon the variation in the

selected predictors, were generated using SYSTAT 13 statistical software for the three predic-

tors showing the highest relative contributions.

Results

Presence data for each of the three target species showed no spatial autocorrelation (Moran’s

I = 0.108, p-value = 0.161, z-score = 1.402 for B. bufo, Moran’s I = 0.069, p-value = 0.219, z-

score = 1.228 for S. perspicillata and Moran’s I = -0.200, p-value = 0.314, z-score = -1.007 for T.

carnifex); the absence of spatial autocorrelation was confirmed also when the whole dataset

was tested (Moran’s I = 0.044, p-value = 0.162, z-score = 1.395).

The values of the cross-validated AUC and deviance resulting from each BRT model are

reported in Table 2.

B. bufo shows AUC scores lower than 0.7 in both UTGB and WTGB, with only a slight

improvement in the RDM approach. S. perspicillata attains AUC scores higher than 0.8 in all

the three pseudo-absences generation approaches, reaching the maximum score in WTGB.

Finally, T. carnifex shows AUC scores higher than 0.7 in UTGB and WTGB, but there is an

apparent increase of discrimination within the RDM approach, with an AUC score of approxi-

mately 0.9.

Table 2. AUC and deviance for each pseudo-absence generation method and each target species.

Species UTGB WTGB Averaged RDM

cv AUC ± SE cv deviance ± SE cv AUC ± SE cv deviance ± SE mean cv AUC ± SE mean cv deviance ± SE

Bufo bufo 0.646 ± 0.035 1.036 ± 0.026 0.631 ± 0.035 0.621 ± 0.010 0.729 ± 0.026 1.234 ± 0.041

Salamandrina perspicillata 0.833 ± 0.043 0.426 ± 0.051 0.882 ± 0.027 0.166 ± 0.019 0.854 ± 0.057 0.920 ± 0.181

Triturus carnifex 0.783 ± 0.035 0.784 ± 0.034 0.757 ± 0.047 0.409 ± 0.019 0.899 ± 0.021 0.831 ± 0.092

Values of the cross-validated AUC and deviance, together with their respective standard errors, are shown for each species and each pseudo-absences

generation approach.

https://doi.org/10.1371/journal.pone.0187589.t002
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Considering the cross-validated deviance, all the three species show a noticeable reduction

of deviance in WTGB with respect to the UTGB and RDM, with the latter approach always

resulting in the highest deviance values.

The Shapiro-Wilk tests confirmed the null hypothesis of normality for all the ‘intra-species

intra-model’ samples (p> 0.05) for both AUC and deviance. The Levene’s tests performed

considering the AUC confirmed the null hypothesis of homoscedasticity for all the ‘intra-spe-

cies inter-model’ samples (p> 0.05); with regard to deviance, the null hypothesis of homosce-

dasticity was rejected for T. carnifex and S. perspicillata (W = 6.595, p = 0.0059 for T. carnifex;

W = 12.22, p = 0.0003 for S. perspicillata), while it was confirmed for B. bufo (W = 2.6633,

p = 0.09).

Since both normality and homoscedasticity were confirmed for all the AUC samples, we

performed the two-tailed t-tests for each possible pair of pseudo-absence generation methods

for each target species, resulting in no statistically significant difference in AUC (p> 0.05) for

all pairs except RDM-WTGB for B. bufo (t = 2.251, p = 0.0451), RDM-UTGB for T. carnifex
(t = 2.824, p = 0.0154) and RDM-WTGB for T. carnifex (t = 3.284, p = 0.0097). The two-tailed

t-tests performed for B. bufo, (since both normality and homoscedasticity were verified) con-

sidering the deviance values resulted in statistically significant differences among all the three

modelling approaches (UTGB-WTGB, t = 14.774, p = 7.06e-9; UTGB-RDM, t = -4.0691,

p = 0.0075; WTGB-RDM, t = -14.547, p = 0.0004). For S. perspicillata and T. carnifex, instead,

since homoscedasticity was not confirmed by the Levene’s tests, we performed the Wilcoxon-

Mann-Whitney tests. Significant differences in deviance among the three pseudo-absence

generation techniques were confirmed for both S. perspicillata (UTGB-WTGB, W = 99, p =

2.16e-5; UTGB-RDM, W = 3, p = 0.014; WTGB-RDM, W = 0, p = 0.002) and T. carnifex
(UTGB-WTGB, W = 100, p = 0.0002; WTGB-RDM, W = 0, p = 0.0058), with only the pair

UTGB-RDM for T. carnifex showing no significant difference (W = 16, p = 0.635).

The values of TSS and the corresponding thresholds for the two threshold-selection meth-

ods considered (see Materials and methods) are shown in Table 3, while plots showing the TSS

variation in response to different thresholds are reported in S2 Fig and S3 Fig.

The boxplots in Fig 2 represent the scores of AUC, TSS ‘10th percentile’ and TSS max for

each species and each pseudo-absence generation approach, while those in Fig 3 result from

the corresponding deviance values.

Table 3. Values of the TSS and the corresponding thresholds resulting from the two threshold-selection methods ‘10th percentile estimate for

training presences’ and ‘TSS max’.

TSS 10th percentile

UTGB WTGB RDM

Threshold TSS Threshold TSS Threshold TSS

Bufo bufo 0.19116 0.47254 0.4352 0.4476 0.51926 0.79862

Salamandrina perspicillata 0.14411 0.81696 0.49443 0.80465 0.67554 0.77422

Triturus carnifex 0.17475 0.65317 0.45433 0.62554 0.81107 0.84283

TSS max

UTGB WTGB RDM

Bufo bufo 0.25 0.568 0.47 0.5597 0.48749 0.81532

Salamandrina perspicillata 0.12 0.90878 0.45 0.89527 0.41341 0.8826

Triturus carnifex 0.17 0.65317 0.41 0.63911 0.57357 0.96877

For each target species and each pseudo-absences generation approach are shown the values of the TSS, corresponding to the two threshold-selection

methods ‘10th percentile estimate for training presences’ and ‘TSS max’, and the relative thresholds.

https://doi.org/10.1371/journal.pone.0187589.t003
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In Fig 4 are shown, for each target species, the modelled distributions obtained from

UTGB, WTGB and RDM; the latter represents the distribution averaged over the four repli-

cates performed, while the single maps for each replicate are shown in S1 Fig. Relative likeli-

hood of occurrence is reported, as default, in a continuous format, with increase in the

likelihood values represented through a blue-to-red scale. In Table 4, instead, the extent of the

areas corresponding to each of the five classes of relative likelihood of occurrence is reported

for each species. Some interesting patterns emerge considering Fig 4 and Table 4. The models

built on the UTGB show for all the target species a clear predominance of areas included in the

classes 0–0.2 and 0.2–0.4, especially for S. perspicillata, whose modelled distribution is mainly

restricted to areas surrounding the known occurrence localities. On the contrary, the models

built through the WTGB revealed an increase in the extent of areas corresponding to the three

Fig 2. Boxplots representing the AUC scores for each target species within the three modelling approaches tested. For

UTGB and WTGB, boxplots were built considering the AUC values from each of the ten cross-validation folds in the final optimized

model, while for RDM boxplots were built considering the mean cross-validated AUC values resulting from each of the four

replicates performed. The small squares within the boxes represent the mean AUC value, the horizontal bars within the boxes

represent the median and the whiskers represent the standard error. Triangles represent the values of TSS at 10th percentile, while

stars represent the value of the maximum TSS.

https://doi.org/10.1371/journal.pone.0187589.g002
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central classes (from 0.2–0.4 to 0.6–0.8). As well as for WTGB, predictions resulting from the

averaged RDM models are clearly more shifted towards the three central classes with respect

to the UTGB models. In RDM models, the extent of areas corresponding to the two upper clas-

ses (0.6–0.8 and 0.8–1.0) is higher than that resulting from WTGB for all the three target spe-

cies, even though the class 0.8–1.0 shows low percentages over the total area. The averaged

RDM covers all the five classes, still returning higher percentages for the low-middle classes

(from 0–0.2 to 0.4–0.6).

Table 5 reports, for each target species and for each modelling approach tested, the three

variables showing the highest relative contribution scores. Overall, topographic and precipita-

tion-related predictors seem to primarily influence the models for all the three target species.

Nonetheless, the three approaches tested show some differences in the combinations of most

influential predictors and in the contribution scores of these latter, particularly for B. bufo. In

fact, it presents the most changeable range of influential predictors: even though ASPECT

resulted as the most contributing variable in all the three approaches tested, its contribution

score is not relevantly higher than the others, and the second and third most influential predic-

tors are different among the three approaches.

Figs 5–7 show, for each target species and for each modelling approach, the partial depen-

dence plots, which report the variation of relative likelihood of occurrence consequent upon

the variation in the predictors indicated in Table 5.

Fig 3. Boxplots representing the deviance scores for each target species within the three modelling

approaches tested. For UTGB and WTGB, boxplots were built considering the deviance values from each of the

ten cross-validation folds in the final optimized model, while for RDM boxplots were built considering the mean

cross-validated deviance values resulting from each of the four replicates performed. The small squares within the

boxes represent the mean deviance value, the horizontal bars within the boxes represent the median and the

whiskers represent the standard error.

https://doi.org/10.1371/journal.pone.0187589.g003
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Fig 4. Modelled distribution of each target species. Maps result from (left to right): 10-fold cross-validated

Boosted Regression Trees (BRT) model built on non-overlapping target-group background (UTGB); 10-fold

cross-validated BRT model built on weighted non-overlapping target-group background (WTGB); average

over 4 replicates of 10-fold cross-validated BRT model built on pseudo-absences drawn at random excluding

presence localities (RDM). Within the maps resulting from RDM, the shown pseudo-absences were taken

from one of the replicates, only for graphical purposes.

https://doi.org/10.1371/journal.pone.0187589.g004

Table 4. Extent of predicted areas for the three species and three methods tested.

Species Relative likelihood of

occurrence

UTGB WTGB RDM (AVG)

Extent

(ha)

Percentage on total

area

Extent

(ha)

Percentage on total

area

Extent

(ha)

Percentage on total

area

Bufo bufo 0–0.2 37,838 26.42 0 0.00 4,355 3.04

0.2–0.4 100,890 70.46 13,745 9.60 45,924 32.07

0.4–0.6 4,464 3.12 129,148 90.19 67,202 46.93

0.6–0.8 0 0.00 298 0.21 24,811 17.33

0.8–1 0 0.00 0 0.00 900 0.63

Salamandrina

perspicillata

0–0.2 131,910 92.12 54,715 38.21 56,955 39.78

0.2–0.4 8,477 5.92 61,866 43.21 30,328 21.18

0.4–0.6 2,326 1.62 19,507 13.62 20,815 14.54

0.6–0.8 478 0.33 7,102 4.96 23,812 16.63

0.8–1 0 0.00 0 0.00 11,282 7.88

Triturus carnifex 0–0.2 116,843 81.60 54,199 37.85 70,662 49.35

0.2–0.4 23,264 16.25 41,928 29.28 25,391 17.73

0.4–0.6 3,065 2.14 35,718 24.94 23,173 16.18

0.6–0.8 19 0.01 11,347 7.92 17,572 12.27

0.8–1 0 0.00 0 0.00 6,394 4.47

Extent and corresponding percentage of the total study area for each class of relative likelihood of occurrence, as result in the BRT models obtained from

the three pseudo-absence generation approaches compared. Areas are reported in hectares.

https://doi.org/10.1371/journal.pone.0187589.t004
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Some interesting results emerge from Fig 6: all the three models return the same pattern of

relative likelihood of occurrence for the topographic variables SLOPE and ASPECT for S. per-
spicillata, whose curves follow a common trend. In fact, relative likelihood raises with increas-

ing values of SLOPE and conversely it is higher for low values of ASPECT (i.e. north-east

facing exposure). Also the three models obtained for T. carnifex (Fig 7) show a similar trend of

relative likelihood of occurrence considering the predictor SLOPE. Relative likelihood tends to

be higher for low values of this predictor, and then decreases rapidly towards low likelihood

values as SLOPE increases. The only case in which the models obtained do not seem to define

a clear pattern is for B. bufo. ASPECT is the first contributing variable for all the models, but

with a different variation trend for the relative likelihood of occurrence in RDM compared to

UTGB and WTGB (Fig 5). On the contrary, the plots for BIO8 resulting from UTGB and

WTGB show a similar shape. The other most contributing variables for B. bufo vary among the

three approaches tested.

Modelled pairwise interaction size for each target species and for each of the three

approaches compared are reported in Table 6. These interactions were calculated for each of

the possible pairs which can be formed within the set of the three most contributing variables

emerging from the obtained BRT models (see Table 5).

There seem to be few strong pairwise interactions modelled within the three approaches

compared. Nevertheless, Fig 8 shows the three-dimensional partial dependence plot resulting

from the pair SLOPE-ASPECT within the averaged RDM for S. perspicillata as an example of

additional information which could be extrapolated for conservation purposes from the assess-

ment of the predictors interactions. It is visible from the 3D plot that a combination of north-

eastern exposure and slope steeper than 10 degrees represents the environmental conditions

corresponding to the highest relative likelihood of occurrence for this species.

Discussion

Implementations of SDMs driven by a careful selection of the modelling techniques, with the

best trade-off between the costs of setting up an appropriate database and the robustness of

model predictions, may optimize information obtainable from the available data, thus improv-

ing the conservation planning process. In this context, the results presented in this paper pro-

vide useful information on which of the three pseudo-absence generation approaches

Table 5. Variables contribution for the three species and three methods tested.

Species Relative contribution

UTGB WTGB Averaged RDM

Variable Score (%) Variable Score (%) Variable Score (%)

Bufo bufo ASPECT 13.76 ASPECT 17.50 ASPECT 13.40

BIO8 12.23 BIO8 12.36 BIO13 11.89

BIO14 9.59 BIO4 9.78 BIO17 11.18

Salamandrina perspicillata SLOPE 19.89 SLOPE 36.76 SLOPE 41.31

ASPECT 19.74 ASPECT 19.79 ASPECT 26.76

BIO12 13.50 BIO12 12.59 BIO12 5.39

Triturus carnifex SLOPE 33.13 SLOPE 43.98 SLOPE 24.27

BIO12 10.80 BIO12 9.80 BIO12 13.51

ASPECT 7.33 ASPECT 7.37 BIO16 9.47

For each target species are reported the three variables showing the highest relative contribution within the BRT models resulting from the three modelling

approaches compared, and their corresponding percentage scores.

https://doi.org/10.1371/journal.pone.0187589.t005
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considered (UTGB, WTGB and RDM) is more appropriate to model the potential distribution

of species having different ecological and distributional characteristics, and needing conserva-

tion measures.

First, the RDM approach significantly ameliorates AUC scores for B. bufo and T. carnifex
with respect to UTGB and WTGB, and the increased model discrimination within RDM is

indicated also by the higher TSS with both ‘TSS max’ and ‘TSS 10th percentile’ thresholds. Con-

trarily, the models built for S. perspicillata do not show significant differences among the three

pseudo-absence generation approaches neither with regard to AUC nor considering TSS. Such

Fig 5. Partial dependence plots for B. bufo. Partial dependence plots of the three variables showing the highest relative

contribution scores within B. bufo models resulting from the three modelling approaches tested. On x-axis are shown the values of

the predictors, and their units of measurement are indicated below the plots; on y-axis is reported the relative likelihood of

occurrence.

https://doi.org/10.1371/journal.pone.0187589.g005
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differences may be ascribed to the distributional and ecological characteristics of the three tar-

get species; B. bufo and T. carnifex are widely distributed species [34, 36], while S. perspicillata
shows stricter habitat requirements [35] resulting in a narrower potential distribution, as

emerges also from all the BRT models obtained for this species (see Fig 4). Thus, for S. perspi-
cillata both UTGB and RDM would be probably environmentally distant from presence sites

[48], facilitating the discrimination task of the model and consequently leading to high dis-

crimination metrics scores for all the three approaches tested. Differently, for B. bufo and T.

carnifex the increase of model discrimination within the RDM approach may be due to the

Fig 6. Partial dependence plots for S. perspicillata. Partial dependence plots of the three variables showing the highest

relative contribution scores within S. perspicillata models resulting from the three modelling approaches tested. On x-axis are

shown the values of the predictors, and their units of measurement are indicated below the plots; on y-axis is reported the relative

likelihood of occurrence.

https://doi.org/10.1371/journal.pone.0187589.g006
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fact that the probability of selecting pseudo-absence sites environmentally distant from the

occurrence localities would be greater when drawing pseudo-absences randomly than when

considering as pseudo-absences the presence points of the other species included in the target

group, since sites suitable for the presence of other amphibians may have environmental char-

acteristics which would permit also the presence of these two species having broader environ-

mental tolerance. These results are also coherent with previous studies reporting that SDMs

built for generalist species tend to show worse discrimination than those for species which are

more restricted in environmental and geographic space [17, 48, 55].

Fig 7. Partial dependence plots for T. carnifex. Partial dependence plots of the three variables showing the highest relative

contribution scores within T. carnifex models resulting from the three modelling approaches tested. On x-axis are shown the

values of the predictors, and their units of measurement are indicated below the plots; on y-axis is reported the relative likelihood

of occurrence.

https://doi.org/10.1371/journal.pone.0187589.g007
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Contrarily to what emerges for model discrimination, the results of the ‘inter-model’ two-

tailed t-tests performed for B. bufo and of the ‘inter-model’ Wilcoxon-Mann-Whitney tests

performed for S. perspicillata and T. carnifex, coupled with the boxplots shown in Fig 3, clearly

indicate that the WTGB approach significantly ameliorates model calibration with respect to

UTGB and RDM for all the three target species. Moreover, the absence of significant differ-

ences in model discrimination between the UTGB and WTGB approaches agrees with results

presented in the Appendix S5 of Elith and Graham [41], indicating that balancing the weights

of presences and pseudo-absences has no effect on discrimination capability of BRT models, as

long as the selection of the most influential variables is not modified in the weighted model

with respect to the unweighted one.

Thus, the weighting scheme balancing presences and pseudo-absences emerges as particu-

larly suitable to optimize calibration when using target-group-based pseudo-absences, both for

widespread species (as B. bufo) and species which are restricted in geographical and/or envi-

ronmental space (as S. perspicillata).

Further interesting information emerging from Fig 3 refers to the much larger range of

deviance within the RDM models obtained for each species with respect to the range of devi-

ance within the corresponding UTGB and WTGB models; this pattern highlights the higher

degree of uncertainty intrinsic to the generation of randomly drawn pseudo-absences.

Considering the discretized areas of relative likelihood of occurrence predicted by UTGB

and WTGB, it clearly emerges a more conservative pattern for the UTGB (predominance of

predictions in the lower classes) than for the WTGB approach. This finding corroborates what

stated in Elith and Graham [41], i.e. the fact that an unweighted model with many more

pseudo-absences than the available presences produces predictions showing predominantly

low values, while the application of weights on pseudo-absences produces predictions more

equally distributed across the response range.

The predictions obtained from the averaged RDM models show a further shift towards cen-

tral and higher classes of relative likelihood of occurrence, covering the whole response range.

Even though this trend does not provide information about the RDM predictive accuracy, the

fact that it emerged for all the target species (ranging in a “steno-to-euryecious” habit gradient)

may suggest that RDM suffers from a “niche-width and prevalence effect” less than the others

two modelling approaches. Nevertheless, the relative likelihood of occurrence resulting from

Table 6. Pairwise interaction size for the three species and three methods tested.

Species Pairwise interaction size

UTGB WTGB Averaged RDM

Variables Score Variables Score Variables Score

Bufo bufo ASPECT-BIO8 2.72 ASPECT-BIO8 1.72 BIO13-BIO17 4.68

BIO14-BIO8 1.31 ASPECT-BIO4 0.20 ASPECT-BIO17 2.59

ASPECT-BIO14 0.41 BIO8-BIO4 0 ASPECT-BIO13 2.21

Salamandrina perspicillata SLOPE-ASPECT 26.17 SLOPE-BIO12 15.97 SLOPE-ASPECT 12.50

ASPECT-BIO12 16.08 ASPECT-BIO12 10.07 SLOPE-BIO12 1.18

SLOPE-BIO12 4.64 SLOPE-ASPECT 7.29 ASPECT-BIO12 0.71

Triturus carnifex SLOPE-BIO12 3.96 SLOPE-BIO12 21.31 SLOPE-BIO16 10.96

ASPECT-SLOPE 0.58 SLOPE-ASPECT 0.89 SLOPE-BIO12 8.55

BIO12-ASPECT 0.13 ASPECT-BIO12 0.80 BIO12-BIO16 0.45

Pairwise interaction scores, for each target species and each modelling approach, within each of the possible pairs formed by the three variables showing

the highest relative contribution scores in the corresponding BRT models.

https://doi.org/10.1371/journal.pone.0187589.t006
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the RDM models is not always shifted towards higher classes; in fact, the predominance of the

central class (0.4–0.6) found in B. bufo seems to actually reflect the distributional characteris-

tics of a generalist species, as B. bufo is [34].

Fig 8. Pairwise interaction size. Plotted pairwise interaction between SLOPE and ASPECT resulting from the averaged RDM

model for S. perspicillata. Areas in blue-violet represent the combined range of values for which relative likelihood of occurrence

is higher.

https://doi.org/10.1371/journal.pone.0187589.g008
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The closeness among the relative contribution scores of the three most influential predic-

tors (i.e. no apparent highly discriminant variable) for B. bufo within each of the three model-

ling approaches further suggests the euryecious habits of this species, whereas larger gaps

emerged for S. perspicillata and T. carnifex. In fact, SLOPE is the most contributing variable

within all the models obtained for these two species, with ASPECT and the annual precipita-

tion (BIO12) interchanging each other as the second and third most influential predictors.

Interestingly, large gaps in the relative contribution score between the most contributing pre-

dictor and the second and third emerged in particular from WTGB models with respect to

UTGB. This finding suggests that when many more pseudo-absences than presences are gen-

erated, a weighted scheme permits to more easily identify the predictors which most shape the

species distribution. This further confirms that the weighted scheme improves the use of tar-

get-group-based pseudo-absences, since it ameliorates both calibration and isolation of highly

contributing variables.

The high contribution of SLOPE for S. perspicillata in all the three modelling approaches

matches previous observations by other authors [56], who suggest a connection between slopes

and presence of rocks and logged trees, used by this species as a daylight refugia with anti-

predatory function. Results obtained for ASPECT also agree with previous researches [57],

confirming the trend of S. perspicillata to live in cool and wet environments with north

exposure.

On the other hand, T. carnifex is usually found in ponds and creeks’ bends [58], which are

environments usually requiring none or moderate slope, thus explaining the strong contribu-

tion of this variable and the corresponding trend of relative likelihood of occurrence found in

all the models built.

With regard to B. bufo, the lack of consensus on the most contributing predictors among

the three modelling approaches may be due, as already suggested above, to the ubiquitous atti-

tudes of this species [59, 60], which is known to be the most euryecious amphibian in Europe

[58, 61], and to the consequent difficulty of modelling the variables effect on relative likelihood

of occurrence. Moreover, many presence points may be biased by migrating adults or juvenile

dispersal, or by occasional reports in urban environments. As a consequence, the “valleys” and

“peaks” showed by some of the partial dependence plots obtained for B. bufo, rather than rep-

resenting actual effects of the predictors, could be the result of how data are distributed within

the predictors range of values. In fact, when only few data fall in some portions of a predictor

range, BRT might overfit the response to the available sample, thus producing confounding

effects [41].

Finally, specific attention should be paid to pairwise interactions: since they efficiently rep-

resent the effect of two variables interacting each other, the results obtained in our case-study

may have great implications in conservation and PAs’ planning. A clear example comes from

the useful information provided for S. perspicillata, for which high values of slope, combined

with a certain range of orientation, produced higher relative likelihood of occurrence (see Fig

8) than these two variables can produce alone. It is therefore presumable that territories with

north-eastern aspect and with high degrees of slope are particularly suitable for S. perspicillata,

and therefore may be prioritised in the context of biodiversity conservation and/or PAs man-

agement plans.

Conclusions

PAs are spatially defined entities aiming to preserve a certain arrangement of biotic elements,

whose accurate knowledge is fundamental to correctly manage the PAs themselves. The appli-

cation of ecological modelling to investigate the distribution of such biotic elements needs
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fine-scale data, in order to better describe the specific relationships between the target species

and the range of environments characterising a certain area.

Results of the present work suggest some useful guidelines to efficiently apply the BRT

modelling technique within conservation studies based on presence-background data sets.

First, when occurrence data for a set of species assumed suitable as target-group are available,

the WTGB approach represents an appropriate choice to optimize model performance with

regard to calibration and identification of highly contributing predictors. Nevertheless, since

structured data sets comprising presence records for an entire target-group are rarely available,

the use of RDM approach could be an adoptable alternative when only presence records for

the target species are available. In fact, models built through the RDM approach showed good

discrimination power, highlighted by both AUC and TSS scores, and the capability of clearly

isolate highly contributing variables from the set of input predictors. Still, a clear calibration

deficit with respect to the UTGB and WTGB models built for the same species resulted as the

main flaw of the RDM. When using this approach, we recommend, following Barbet-Massin,

Jiguet [20], the generation of a number of random pseudo-absences close to that of the avail-

able presence points, since in this way the resulting modelled distribution would reflect the

areas where the target species is highly likely to occur (i.e. maximising specificity); this is an

appropriate result for conservation studies.

Results obtained for B. bufo from all the three pseudo-absences generation approaches

tested, with respect to both discrimination and calibration, confirmed that modelling the dis-

tribution of generalist species is a difficult task even when using robust modelling techniques.

So, when dealing with such species it is particularly important both to verify the way occur-

rence records were collected and to carefully interpret model predictions, always keeping in

mind that a consistent and homogeneous set of carefully assessed presence points provides

greater meaningfulness to any pseudo-absences generation technique.

Supporting information

S1 Dataset. Dataset of the presence and pseudo-absence points for the three target species.

Zip archive with.csv files, one for each target species, reporting the coordinates of the respec-

tive presence and target-group-based pseudo-absence points. Coordinates are in decimal

degrees, UTM-WGS84 reference system.

(ZIP)

S1 Fig. Modelled distribution of all the target species for each of the four replicates of

RDM approach. Maps, for all the species considered, resulting from each of the 4 replicates of

10-fold cross-validated BRT model built on pseudo-absences drawn at random excluding pres-

ence localities (RDM). The first, second, third and fourth replicate for each species are indi-

cated, respectively, with r1, r2, r3 and r4.

(TIF)

S2 Fig. True Skill Statistic (TSS) plots for UTGB and WTGB approaches. Plots showing the

variation of the True Skill Statistic (TSS) resulting from the UTGB and WTGB, as a function

of increasing threshold values. Curves for each species result from the 10-fold cross-validation

process used in the two BRT approaches.

(TIF)

S3 Fig. True Skill Statistic (TSS) plots for RDM approach (left panel: average, right panel:

all replicates). Plots showing the variation of the True Skill Statistic (TSS) resulting from the

RDM, as a function of increasing threshold values. On the left panel are shown the curves

resulting from the averaged 4-replicates, 10-fold cross-validated RDM models, while in the
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right panel are shown, with the same color legend for the three species, the curves for each of

the four replicates.

(TIF)
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