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Some characteristics are reported of a triple-crystal diffractometer with a

(+, �, +) setting of Si(220) using mirage diffraction. The first crystal is flat, while

the second and third crystals are bent. Basically, the first crystal is used as a

collimator, the second as a monochromator and the third as the sample. The

third crystal also works as an analyzer. The advantages of this diffractometer are

that its setup is easy, its structure is simple, the divergence angle from the second

crystal is small and the energy resolution of the third crystal is high, of the order

of sub-meV.

1. Introduction
The refracted beam of an X-ray in a bent perfect crystal

propagates along a hyperbolic trajectory and comes back to

the incident surface in the Bragg geometry. The refracted

beam is referred to a beam representing the Poynting vector of

the X-ray in this paper. Authier (2001, p. 355) pointed out that

the behavior of the refracted beam in a bent crystal resembled

a mirage in optics. We call the diffracted beam coming out of

the crystal a mirage diffraction beam. Under anomalous

transmission conditions, the divergence angle of the refracted

beam is quite large compared with that of the incident beam.

The refracted beam can be regarded as a quasi-spherical wave,

even when the divergence angle of the incident beam is

smaller than 100 (Authier, 2001, p. 313). When mirage diffrac-

tion beams interfere with each other, this results in inter-

ference fringes, which are called mirage interference fringes

(Fukamachi et al., 2010). Such mirage interference fringes

were first observed by Zaumseil (1978). Mirage interference

fringes have been used for evaluation of the strain gradient in

a bent crystal (Jongsukswat et al., 2012).

In this paper, we will describe a triple-crystal diffractometer

using mirage interference fringes of Si(220) and some char-

acteristics of the diffractometer.

2. Theoretical basis

According to Gronkowski & Malgrange (1984), the trajectory

of the refracted beam in a bent crystal is given for the

symmetric Bragg geometry as

�z=tan �B þWsð Þ
2
� ½�xþ sðWsÞðW

2
s � 1Þ1=2

�
2
¼ 1; ð1Þ

for jWsj � 1, where sðWsÞ = �1 for Ws < �1 and sðWsÞ = 1 for

Ws > 1. �B is the Bragg angle, and x and z are the coordinates

parallel and normal to the crystal surface in the incident plane,

respectively, with the origin at the incident point of the X-ray

on the surface. The parameter Ws is the initial value of the

deviation from the Bragg condition W, which is defined by

W ¼ �� �B þ
j�0j

sin 2�B

� �� �
sin 2�B

Cð�h��hÞ
1=2
; ð2Þ

with � being the incident glancing angle and C the polarization

factor. �h ¼ j�hj expði’rÞ is the hth Fourier coefficient of the

X-ray polarizability and � is a parameter corresponding to the

strain gradient in the crystal, defined by

� ¼
�

Cð�h��hÞ
1=2 cos �B

@2ðh � uÞ

@x0@xh

: ð3Þ

Here, � is the X-ray wavelength, h the reciprocal vector

corresponding to the hth reflection and u the displacement

vector; x0 and xh are the coordinates in the directions of the

transmitted and diffracted beams, respectively. Under anom-

alous transmission conditions (Ws � �1), the trajectory of the

refracted beam has a hyperbolic form, as shown in Fig. 1 for

Ws� < 0. The eccentricity of the hyperbola is related to �. By

taking derivatives of equation (2), the divergence angle (��)

of the incident beam is related to the change of W as

j��j ¼ �W
Cð�h��hÞ

1=2

sin 2�B

�����
����� ð4Þ

when �B is fixed. In Fig. 1(a), the angle � between the refracted

beam and the surface is given by

tan � ¼
1� jr2j

1þ jr2j
tan �B: ð5Þ

Here the reflectivity (r) is defined by r ¼ jD
ð1Þ
h j=jD

ð1Þ
0 j with D

ð1Þ
0

and D
ð1Þ
h being the electric displacement vectors of the incident

and diffracted beams, respectively. The superscript on D

represents the branch index. For a non-absorbing crystal, r is

expressed by
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r ¼ expði’rÞ½�W � ðW2
� 1Þ1=2

�: ð6Þ

For W =�1, jrj2 = 1 and � = 0, and for W =�2, jrj2 = 0.07 and �
is approximately equal to �B. The angle amplification rate A

between the changes in � and � in reflection geometry is given

by Authier (2001, p. 313) as

A ¼
��

��

����
���� ¼ 2 cos2 �B sin2 �B

Cð�h��hÞ
1=2
ðW2 � sin2 �BÞðW

2 � 1Þ
1=2
: ð7Þ

Since A is between 104 and 106, even when �� is less than 100

and the incident beam can be regarded as a quasi-plane wave,

�� is nearly equal to the Bragg angle, and the refracted beam

can be regarded as a quasi-spherical wave if jWj is close to 1.

This means that this single crystal works as a lens. This angle

amplification can also be applied to a monochromator

reflecting X-rays with very small divergence angle as well as to

an analyzer with high energy resolution. Authier (1960)

obtained a highly collimated incident beam by using this angle

amplification in the transmission geometry so as to verify the

double refraction.

In Fig. 1(b) is shown a schematic illustration of interference

fringes between two mirage diffraction beams. The refracted

beams Sm1 and Sm2 correspond to the incident beams for the

values of W1 and W2, respectively, satisfying the relation

W2 ¼ �ðW
2
1 þ 3Þ1=2=2. In Fig. 1(c), trajectories are shown of

the refracted beams when Ws changes from�1.1 to�1.5 in the

case of the Si(220) reflection. The X-ray energy is 11 100 eV

and � is 1 mm�1.

The intensities of the mirage diffraction beams are

measured as a function of the distance x from the incident

point of the beam to the emission point of the mirage

diffraction beam. By using equation (1), the deviation (�W) of

the parameter of Ws from �1 is given by

�W ¼ Ws þ 1 ¼ 1� 1þ �2x2=4
� �1=2

: ð8Þ

It is possible to get the value of �W by measuring the

position of mirage interference fringes x. Fig. 2 shows the

diffraction geometry for an X-ray with energy E and glancing

angle �0. The thick solid line shows the dispersion surface in

the crystal for the Bragg angle �B in the Bragg arrangement.

Lo is the Lorentz point, La is the Laue point and c1 on the X

axis is the point corresponding to Ws = �1. The nomenclature

of the points Lo and La is adopted according to the books by

Pinsker (1977) and Authier (1960, pp. 68–71). The line T0
0

represents the dispersion surface in a vacuum and is parallel to

the asymptote T0 of the hyperbola of the dispersion surface in

the crystal. K0ð�0Þ is the wavevector of the incident beam

whose glancing angle is �0 and energy is E. We assume that the

perpendicular line v1 passing the tie point corresponding to

K0ð�0Þ crosses the dispersion surface at c1. The refracted beam

S1 excited at the point c1 runs parallel to the crystal surface.

The distance X0 from Lo to c1 is given by

X0 ¼
K0 �h

�� ��
2 cos �B

; ð9Þ

where K0 ¼ jK0ð�0Þj, C = 1 for 	 polarization and

ð�h��hÞ
1=2
¼ j�hj. When the glancing angle changes from �0 to

�0 � ��, the corresponding perpendicular line changes from v1

to v2 and the parameter Ws changes from�1 to�1þ �W. The

tie point in a vacuum moves from a1 to a2 and that in the

crystal moves from c1 to c2. From the tie point c2, the refracted

beam S2 is excited. In Fig. 2, the relation

j�WX0j ¼ �K�

�� �� sin �B ð10Þ

is obtained.

research papers

1268 Tomoe Fukamachi et al. � An X-ray diffractometer using mirage diffraction J. Appl. Cryst. (2014). 47, 1267–1272

Figure 2
Dispersion surface in a Bragg geometry. La is the Laue point, Lo the
Lorentz point and c1 the tie point for Ws = �1. The solid line T 00
represents the dispersion surface in a vacuum for an incident beam of
energy E and the solid curve the corresponding dispersion surface of
branches (1) and (2) in the crystal. The dot–dashed curve T0 represents
the asymptote of the dispersion surface in the crystal. The dashed line
represents the dispersion surface in a vacuum for an X-ray of energy
E� �E . The angle change �� gives the same change in �WX0 as the
change in the wavevector �KE gives when the energy changes from E to
E� �E. The relations jK0ð�0Þj ¼ jK0ð�0 � ��Þj and jK0ð�BÞj ¼

jK00ð�B þ ��BÞjþ j�KEj hold.

Figure 1
Schematic illustrations of beam geometries in a bent single crystal. (a)
The trajectory of the refracted beam in a bent crystal. (b) Trajectories of
mirage diffraction beams emitted from A2, showing interference fringes.
(c) Trajectories of the refracted beams for Ws from �1.1 to �1.5, when
the X-ray energy is 11 100 eV and � is 1.0 mm�1 for the Si(220) reflection.



3. Experimental
The experiment was carried out by using X-rays from

synchrotron radiation at BL-15C, KEK-PF, Tsukuba, Japan.

The optical system is shown in Fig. 3(d). The X-rays were 	
polarized and the energy was tuned to 11 100 � 0.5 eV by

using a double-crystal Si(111) monochromator. After Slit 1,

the first crystal was basically used as a collimator, the second

as a monochromator and the third as the sample, as shown in

Fig. 3(d). The first crystal was flat. The second and third

crystals were bent by applying force in the backward and

forward directions of gravity, as shown in Figs. 3(b) and 3(c),

respectively. The three plane parallel crystals were prepared

by non-disturbance polishing at Sharan Instrument Corpora-

tion. The crystals were 50 mm long, 15 mm wide and 0.28 mm

thick. The usual Bragg diffracted beam (1Ph) passed through

the second slit (Slit 2), and the first peak of the mirage

interference fringes (2Ph1im ) passed through the third slit (Slit

3). Here the left superscript on P represents either the first (1),

second (2) or third (3) crystal. The right superscript on Pm

represents a serial peak number of the mirage interference

fringes.

The mirage diffraction intensities of 2Phnim from the second

crystal are shown as a function of the distance x in Fig. 4(a),

where the glancing angle was fixed and � was 0.73 mm�1. The

intensities were measured by moving Slit 3 in front of the

scintillation counter SC2 in Fig. 3(d) after removing the third

crystal. The value of � was determined by measuring the

position of the third peak as reported by Jongsukswat et al.

(2012). The mirage diffraction intensities of 3Phnim from the

third crystal are shown as a function of x in Fig. 4(b), where the

glancing angle was fixed and � was 0.63 mm�1. The intensities

were measured by moving Slit 4 in front of the scintillation

counter SC1. The vertical width of Slit 2 was equal to 0.02 mm

and those of Slit 3 and Slit 4 were 0.04 mm.

Rocking curves of 1Ph from the first crystal and 2Ph from the

second crystal are shown in Fig. 5(a). The FWHM of the curve
1Ph is 900, which is twice as large as that of the curve 2Ph of 4.50 0.

The rocking curve of the first peak (2Ph1im ) of the mirage

interference fringes, with an FWHM of 3.80 0, is shown in

Fig. 5(b) (dots). It has an asymmetric form characteristic of the

rocking curve from a weakly absorbing crystal. The slopes of

both shoulders of the peak are steeper than those of 2Ph. The

rocking curve of 3Ph from the third crystal is shown in Fig. 5(c)

(dots). It also has an asymmetric form and is in good agree-

ment with the curve (solid line) calculated by taking the

absorption effect into account. The FWHM of the peak is 40 0.

The rocking curves of 3Ph, 3Ph1im and 3Pt þ
3Plt from the third

crystal are shown in Fig. 6. The ordinate is the intensities and

the abscissa is the incident angle. The origin of the angle (0) is

taken at the center of 3Ph, which corresponds to the Lorentz

point. The mirage fringe intensity 3Ph1im is measured by the

scintillation counter SC1 after setting Slit 4 at the peak posi-

tion of the curve of 3Ph1im . 3Pt is the intensity of the transmitted

beam and 3Plt is the intensity of the emitted beam in the

direction of the transmitted beam from the lateral surface of
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Figure 3
(a) Photograph of the cantilever jig and the crystal. (b) Geometry of the
second crystal. The force is applied in the opposite direction to gravity. (c)
Geometry of the third crystal. The force is applied in the direction of
gravity. (d) Schematic diagram of the triple-crystal diffractometer with
(+, �, +) setting. The vertical width of Slit 2 is 0.02 mm, and those of Slit 3
and Slit 4 are 0.04 mm.

Figure 4
Intensities of mirage interference fringes as a function of the distance x.
(a) Intensities of mirage interference fringes from the second crystal and
(b) those from the third crystal.

Figure 5
(a) Rocking curve of 1Ph from the first crystal (open circles) and that of
2Ph from the second crystal (solid circles). (b) Rocking curve of 2Ph1im from
the second crystal (solid circles). (c) Rocking curve of 3Ph from the third
crystal (solid circles). The solid curves in (b) and (c) are the curves of Ph

for the Si(220) reflection calculated by taking the absorption effect into
account.



the crystal. These intensities are measured by the scintillation

counter SC2. The sharp peak of 3Ph1im , with an FWHM of 0.600,

appears between the peaks of 3Ph and 3Pt þ
3Plt. The peaks of

3Ph1im and 3Pt þ
3Plt appear on the negative angle side where

the anomalous transmission occurs.

In Fig. 7 are shown the four rocking curves 3Phnim for n = 1, 2,

3 and 4 from the third crystal, together with the rocking curves

of 3Pt þ
3Plt. The origin of the angle is taken at the center of

the peak of 3Ph2im . Each curve of 3Phnim was measured by the

scintillation counter SC1 after setting Slit 4 at the peak posi-

tion of the mirage interference fringes, and the curve of
3Pt þ

3Plt was measured simultaneously by the scintillation

counter SC2, as shown in Fig. 3(d). When n increases, the peak

position of 3Phnim moves to the lower incident angle side, close

to the peak of the curve 3Pt þ
3Plt. The angle difference

between the two peaks 3Ph1im and 3Ph4im is 0.300. The average

angle difference between two adjacent peaks is 0.100. The curve

of 3Pt þ
3Plt shows two peaks: one, corresponding to the peak

of 3Plt, appears around the origin, and the other, corre-

sponding to the peak of the transmitted beam 3Pt, appears

around the angle of�1.300. When the rocking curves of the nth

(n = 1, 2, 3 and 4) peak of the interference fringes 3Phnim are

measured after setting Slit 4 at its peak position, the measured

peak of 3Pt þ
3Plt stays at the same position as shown in Fig. 7.

The peak of 3Pt þ
3Plt is a good reference point for the inci-

dent angle. It is possible to determine a very small angle

difference between two peaks of 3Phnim and 3Phnþ1i
m by

measuring the curves of 3Phnim and 3Pt þ
3Plt simultaneously.

4. Discussion

Equation (1) derived by Gronkowski & Malgrange (1984) is

applicable only to a monochromatic X-ray of a plane wave. In

the present experiment, however, since the X-rays from

synchrotron radiation are emitted from a source of finite size

and are monochromated by a crystal monochromator, they

have a small energy bandwidth as well as a small divergence

angle. It is noted that �� denotes the divergence angle for

monochromatic X-rays and �� denotes the angle shift corre-

sponding to the energy shift �E, which can be estimated from

the observed range of mirage interference fringes. �� is equal

to the maximum value of ��. It is necessary to have the rela-

tion between the diffraction of monochromatic X-rays and

that of X-rays with a finite energy bandwidth and a finite

divergence angle. If the X-ray energy changes from E to

E� �E and the amplitude of the wavevector changes from

jK0j to jK0j � j�KEj while the glancing angle is fixed, the

dispersion surface T0
0 moves to T0

00 and the Bragg angle

changes from �B to �B þ ��B as shown in Fig. 2. Here j�KEj is

the amplitude of the wavevector �KE, which is related to the

energy deviation �E by

j�KEj=K0 ¼ �E=E: ð11Þ

In Fig. 2, we have the relation between �W and j�KEj as

�WX0 ¼ �KE

�� �� cos �B: ð12Þ

Using equations (9), (11) and (12), �E=E is expressed by

�E

E
¼

�h

�� ��
2 cos2 �B

�W: ð13Þ

When the dispersion angle changes from �0 to �0 � ��, the

relation j�K�j ¼ jK�j�� holds in Fig. 2. �E is related to �� as

�E ¼ E �� tan �B; ð14Þ

by using the relation j�KEj tan �B ¼ K0 ��B or �E tan �B ¼

E ��B.

By inserting equation (13) into equation (8), the energy

shift �E is related to the distance x by

�E ¼
j�hjE

2 cos2 �B

1� 1þ
�2x2

4

� �1=2
" #

: ð15Þ

It is possible to estimate �E by measuring x. In the present

experiment, since the measured maximum value of x is 3 mm,

as shown in Fig. 4(b), the maximum value of j�Ej is obtained as

research papers

1270 Tomoe Fukamachi et al. � An X-ray diffractometer using mirage diffraction J. Appl. Cryst. (2014). 47, 1267–1272

Figure 7
Rocking curves of 3Phnim and 3Pt þ

3Plt from the third crystal. Solid
squares shows 3Ph1im , open circles 3Ph2im , solid circles 3Ph3im and open squares
3Ph4im . The rocking curves of 3Pt þ

3Plt (left) were measured simulta-
neously with the curve of 3Phnim with n = 1, 2, 3 and 4. The peak angles of
3Phnim for n = 1, 2, 3 and 4 correspond to the angles of the refracted beam
Sm1 in Fig. 1(b). The shoulder structures of 3Phnim on the high-angle side are
probably caused by the component of the refracted beam Sm2

Figure 6
Rocking curves of 3Ph (open circles), 3Pt þ

3Plt (triangles) and 3Ph1im (solid
circles) from the third crystal. The solid line is the calculated curve of Ph.



11 meV by using equation (15) and the maximum value of ��
is obtained as 0.6500 by using equation (14). By differentiating

equation (15), we have the energy resolution dE obtained

from the position of the mirage interference fringes with the

position resolution dx as

jdEj ¼
j�hj

2 cos2 �B

1þ
�2x2

4

� ��1=2
�2

4
Ex dx: ð16Þ

When dx is 0.1 mm and � = 0.63 mm�1 in the case of Si(220),

jdEj is approximately 0.4 meV at x = 1.5 mm. This means that

the mirage interference fringes from the third crystal can be

used for energy analysis of the beams with an energy resolu-

tion of sub-meV. The value of 0.1 mm for dx is nearly the same

as the projected width of Slit 4 on the sample surface

(0:04 = sin �B ¼ 0:12 mm).

In the case of angle dispersive diffractometry, an asym-

metric reflection is usually used as a monochromator or an

analyzer with high energy resolution from meV to sub-meV.

For example, two asymmetrically cut crystals with (+n, +m,

�m, �n) setting were used as a monochromator with the

energy bandwidth of meV (Ishikawa et al., 1992; Yabashi &

Ishikawa, 2000). According to the relation jdE=Ej ¼ d�B =

tan �B, it is also possible to have X-rays with a small energy

bandwidth by using back reflection. X-rays with an energy

resolution of 0.45 meV were obtained by using Si(13 13 13)

reflection with �B = 89.98	 for X-rays of 25.70 keV (Verbeni et

al., 1996). Another monochromator with an energy resolution

of sub-meV was designed by combining asymmetric reflection

with back reflection (Baron et al., 2001; Stoupin et al., 2013).

Stoupin et al. designed a monochromator with high spectral

efficiency by combining asymmetric reflection from an asym-

metrically cut diamond with back reflection from a silicon

crystal. In these angle dispersive monochromators, it is

necessary to choose an appropriate crystal and its Bragg

reflection after setting the X-ray energy. In contrast, it is

possible to adjust the energy resolution for any energy of

X-rays just by choosing a Bragg reflection and changing the

strain gradient parameter � for the current monochromator

using mirage interference fringes.

As the FWHM of the rocking curve of 3Ph1im in Fig. 6 is 0.60 0,

which is much smaller than that of 1Ph (900) in Fig. 5(a), the

rocking curve of 2Ph1im is regarded to be the intrinsic curve of

the primary diffraction beam of 1Ph. The value of 0.600 actually

corresponds to the FWHM of 2Ph1im . However, according to the

estimation by using the beam width passing through Slit 2 with

a width of 0.02 mm, the FWHM of the rocking curve of 2Ph1im

should be 0.200. The measured FWHM is three times larger

than this estimated value. The cause of this difference is

probably the source size (0.06 mm) of the synchrotron radia-

tion X-rays from the bending magnet. If the source size is

assumed to be 0.06 mm, the FWHM of the rocking curves of
2Ph1im becomes 0.600, which agrees with the observed maximum

value of �� ’ 0.6500. If we use an undulator instead of the

bending magnet, we can obtain a beam with a much smaller

divergence angle by using this mirage diffractometer, because

the source size of the undulator is approximately ten times

smaller than that of the bending magnet.

Fig. 8 shows a DuMond diagram to demonstrate the angle

and energy resolutions of the current triple-crystal difftact-

ometer with (+, �, +) setting. The reflection indices of 220 are

the same for the three Si crystals. The glancing angle of the

incident beam on each crystal is fixed when the mirage inter-

ference fringes are observed by moving Slit 4 in Fig. 3(d). The

divergence of the Bragg angle ��B (= 0.070 0) and the bandwidth

of the wavelength ��b (= 1.1 
 10�7 nm) of the second crystal

used as a monochromator are determined according to the

source size of the synchrotron radiation X-rays as described

above. The divergence angle d�1 of the beam from the first

peak of the mirage interference fringes in Fig. 4(a) is found to

be 0.00300 by using equations (4), (14) and (16), after passing

Slit 3 of 40 mm width. The value of d�1 corresponds to the

angular width of the �B � � curve. As the mirage interference

fringes from the third crystal are observed by moving Slit 4

with a vertical width of 40 mm, the angular width d�2 of the

beam from Slit 4 is 0.00300 and the bandwidth of the wave-

length d� is 4 
 10�9 nm, which is much smaller than ��b, as

shown in Fig. 8. Slit 4 is located at �B when x = 0 mm and at

�B þ ��B when x = xmax. The energy width dE is approximately

0.4 meV by using the relation jd�=�j ¼ jdE=Ej.
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Figure 8
DuMond diagram. ��B (= 0.070 0) is the angular width of the incident beam
on the second crystal used as a monochromator through Slit 2, d�1

(= 0.0030 0) that on the third crystal used as the sample through Slit 3 and
d�2 (= 0.0030 0) the angular resolution of the analyzer obtained by moving
Slit 4. ��b (= 1.1 
 10�7 nm) is the bandwidth of the X-ray wavelength
through Slit 2 and d� (= 4 
 10�9 nm) the wavelength resolution of the
analyzer obtained by moving Slit 4.

Table 1
The peak position x of mirage interference fringes of 3Phnim for n = 1, 2, 3
and 4, and the corresponding values of Ws, �E and ��ðnÞ.

n x (mm) Ws1 ðWs2Þ �E (meV) ��ðnÞ (0 0)

1 1.41 �1.10 (�1.03) �3.0 �0.18
2 1.96 �1.17 (�1.05) �5.0 �0.30
3 2.27 �1.23 (�1.06) �6.7 �0.40
4 2.51 �1.27 (�1.07) �7.9 �0.48



5. Summary

In the present experiment, the divergence angle of the beam

from the first Si crystal is 400. When this beam is incident on the

second Si crystal, the divergence angle of the mirage inter-

ference fringes is reduced to 0.600. The second crystal works as

a monochromator to obtain a small divergence angle and thus

high energy resolution. Table 1 shows the peak positions x and

the corresponding values of Ws1 (Ws2), �E and ��ðnÞ of mirage

interference fringes from the third crystal. Ws1 and Ws2 are the

values of Ws obtained by using equation (8) for the refracted

beams Sm1 and Sm2 in Fig. 1(b). The intensity of the diffracted

beam corresponding to Sm1 is approximately five times larger

than that corresponding to Sm2, as shown in Fig. 7. This is

because beam Sm1 directly reaches A2, while beam Sm2 reaches

point A2 after being once reflected from the top surface. Then

we use the value of Ws1 for estimating �E and ��ðnÞ. The

average value of the difference between two adjacent values

of ��ðnÞ given by
P3

n¼1½��ðnþ 1Þ � ��ðnÞ�=3 is 0.100, which

agrees with the angular difference between two adjacent

peaks of 3Phnim in Fig. 7. The value of energy width �E obtained

in Table 1 shows that the third crystal works as an analyzer

with high energy resolution.

In order to have X-rays with a very small divergence angle,

an asymmetric crystal monochromator is widely used. When

we use an Si(220) asymmetric monochromator for an X-ray

energy of 11 100 eV, for example, the Bragg angle is 16.9	 and

the asymmetric factor b [= sinð�B þ aÞ= sinð�B � aÞ with a =

15.9	] is 31. The divergence angle from the asymmetric crystal

monochromator is 1/5.6 (= 1/b1=2) of the divergence angle from

a symmetric crystal, and the X-ray intensity is reduced by 1/31.

If we use the mirage interference fringes from Si(220) as a

monochromator, on the other hand, the divergence angle is 1/8

of the incident X-ray and the intensity is reduced by 1/50,

because the number of photons of the incident beams through

the second crystal is approximately 25 000 s�1 and that of the

mirage interference fringes from the third crystal is 500 s�1

according to the present experiment, as shown in Fig. 4. The

intensity is the same as or slightly weaker than that from an

asymmetric crystal. It is an advantage of this monochromator

using the mirage interference fringes that the setup is quite

easy and its structure is simple, although the divergence angle

and the intensity are the same orders of magnitude as those of

an angle dispersive monochromator using an asymmetric

crystal.

Fukamachi et al. (2011) reported a monochromator with a

very small divergence angle using the multiple-Bragg Laue

mode diffraction from a lateral surface. The characteristics

and usability of this instrument are nearly the same as those of

the present monochromator using mirage interference fringes,

but the divergence angle from the monochromator using the

multiple-Bragg Laue mode is about twice that using mirage

diffraction.

In this experiment, we have measured the intensities of

mirage diffraction with a scintillation counter by moving a slit

of very small width in front of it. The intensity distribution of

the mirage interference fringes as a function of x is regarded as

a spectrum of the incident X-rays projected onto the crystal

according to equation (15). If we use an X-ray CCD camera or

a position sensitive detector instead of a scintillation counter,

the energy resolution of the spectrum should be improved to a

large extent and the measuring time should be reduced. As we

have very large angle amplification in the mirage diffraction,

in the near future we can expect to achieve high energy

resolution (less than meV) by using this diffractometer if it is

combined with X-rays from an undulator beamline and a CCD

camera.
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