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The free-living, non-parasitic nematode Caenorhabditis elegans is a premier

model organism for the study of aging and longevity due to its short lifespan,

powerful genetic tools, and conservation of fundamental mechanisms with

mammals. Approximately 70 percent of human genes have homologs in C.

elegans, including many that encode proteins in pathways that influence aging.

Numerous genetic pathways have been identified in C. elegans that affect

lifespan, including the dietary restriction pathway, the insulin/insulin-like

growth factor (IGF) signaling pathway, and the disruption of components of

themitochondrial electron transport chain.C. elegans is also a powerful system

for performing drug screens, and many lifespan-extending compounds have

been reported; notably, several FDA-approved medications extend the lifespan

in C. elegans, raising the possibility that they can also extend the lifespan in

humans. The renin–angiotensin system (RAS) in mammals is an endocrine

system that regulates blood pressure and a paracrine system that acts in a

wide range of tissues to control physiological processes; it is a popular target for

drugs that reduce blood pressure, including angiotensin-converting enzyme

(ACE) inhibitors and angiotensin II receptor blockers (ARBs). Emerging evidence

indicates that this system influences aging. In C. elegans, decreasing the activity

of the ACE homolog acn-1 or treatment with the ACE-inhibitor Captopril

significantly extends the lifespan. In Drosophila, treatment with ACE

inhibitors extends the lifespan. In rodents, manipulating the RAS with genetic

or pharmacological interventions can extend the lifespan. In humans,

polymorphisms in the ACE gene are associated with extreme longevity.

These results suggest the RAS plays a conserved role in controlling

longevity. Here, we review studies of the RAS and aging, emphasizing the
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potential of C. elegans as a model for understanding the mechanism of lifespan

control.
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Enalapril, Losartan, Lisinopril

Introduction

Caenorhabditis elegans is a powerful
model system for aging pharmacology

Age-related degenerative changes are a major issue for

human health (Vijg and Campisi, 2008). A wide variety of

systems are affected including the reproductive, central and

peripheral nervous, musculoskeletal, immune, cardiac, renal,

and respiratory. The age-related reduction of muscular

strength, or sarcopenia, is a serious problem for many elderly

people. Although the quest for methods to delay aging is a

longstanding human endeavor, no pharmacological agents

have yet been demonstrated to delay human aging. One of the

biggest challenges to understanding and treating human aging is

the fact that humans live so long and age so slowly. Thus, a

critical need in aging research is model organisms that are short-

lived, amenable to experimentation, and relevant to humans.

The analysis of genetically tractable model organisms with

short lifespans, such as yeast, worms, and flies, has resulted in the

identification of genes that can modulate longevity (Guarente

and Kenyon, 2000). Studies of mice have provided substantial

evidence that at least somemechanisms that affect the rate of age-

related degeneration have been conserved during animal

evolution (reviewed in Blagosklonny (2008), Vijg and Campisi

(2008)). Thus, short-lived animals may provide meaningful

guides to the biology of human aging and serve as the

proving grounds where interventions that delay age-related

degeneration can be identified and characterized. The report

by the intervention testing program (ITP) of the National

Institutes of Aging that Rapamycin extends the lifespan of

mice is a compelling example, since Rapamycin was first

demonstrated to influence the lifespan in yeast (Kaeberlein

et al., 2005; Powers et al., 2006; Harrison et al., 2009).

C. elegans is a powerful and relevant experimental system

that is excellent for the identification of genes and drugs that

modulate the rate of aging. C. elegans is a free-living,

hermaphroditic nematode that displays an extensive

conservation of fundamental biological processes with other

animals. Pioneering studies by Sydney Brenner and others

established C. elegans as a powerful experimental model

system for forward genetics, reverse genetics, and molecular

analysis supported by a fully sequenced genome (C. elegans

Sequencing Consortium, 1998; Brenner, 1974). C. elegans has

been used to characterize fundamental and highly conserved

biological processes such as RNA interference (RNAi) and

apoptosis (Sulston and Horvitz, 1977; Fire et al., 1998). It has

been used to develop innovative experimental techniques such as

the in vivo expression of green fluorescent protein (GFP) (Chalfie

et al., 1994); these and other discoveries have had a major impact

on understanding mammalian biology. C. elegans is extremely

well understood at the cellular anatomical level, since the entire

cell lineage of the 959 somatic nuclei has been determined

(Sulston and Horvitz, 1977).

C. elegans is excellent for studies of aging because the adults

display the progressive, degenerative changes that are typical of

aging in larger animals, but the adult lifespan is only about

15 days (Johnson, 1987). Age-related degenerative changes in C.

elegans have been characterized extensively, and the genetic

analysis of C. elegans has resulted in the discovery of genes

and pathways that modulate longevity (Guarente and Kenyon,

2000; Kenyon, 2001). Many well-characterized mutations that

influence aging by affecting known pathways are reagents that

can be used to investigate the mechanism of action of newly

discovered genes and drugs that influence aging. C. elegans has

been used successfully to analyze the molecular targets of drugs

(Carroll et al., 2003; Jones et al., 2005). Since nearly 75% of all C.

elegans genes have human counterparts, there is a good chance

that the molecular target of a drug in the worm will be similar to

that in humans (C. elegans Sequencing Consortium, 1998).

The first of what is now a large class of ACE inhibitors,

Captopril is an oligopeptide derivative developed in 1975 based

on a peptide found in the venom of a snake, Bothrops jararaca,

the Brazilian pit viper (Ondetti et al., 1977). ACE inhibitors

modulate the renin–angiotensin system (RAS), a mechanism by

which the body adapts to hypotension (Basso and Terragno,

2001; Igic and Igic, 2009). In this review, we focus on the

emerging evidence from C. elegans, Drosophila, and mammals

that the RAS controls longevity and drugs that target this system

might be useful agents in the quest to extend human lifespan.

The RAS is an endocrine system that
controls blood pressure and a paracrine
system that mediates a wide range of
physiological processes

High blood pressure, or hypertension, is defined as a systolic

blood pressure over 140 mmHg and/or diastolic blood pressure

over 90 mmHg (Mills et al., 2020). It is a common malady

throughout the world, affecting more than 31% of the adult

population (~1.4 billion people); the percentage of the population
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suffering from hypertension continues to increase, creating an

accelerating health crisis (Mills et al., 2020). High blood pressure

is associated with and a likely cause of many cardiovascular and

renal diseases (Mills et al., 2020) and is estimated to result in

more than 10 million deaths per year worldwide (Forouzanfar

et al., 2017). What causes hypertension? Dietary factors such as

sodium are one cause; genetics can be a second cause (Singh et al.,

2012). Age has been identified as a major risk factor for

hypertension, with incidences rising in aging populations

(Singh et al., 2012). Understanding the interaction between

age and hypertension is important for maintaining the health

of an aging population.

The RAS was first identified as a crucial regulator of blood

pressure in the mid-20th century ((Skeggs et al., 1956), reviewed

in Basso and Terragno (2001), Igic and Igic (2009)). The classic

understanding was that the RAS is an endocrine system. In

response to low blood pressure, the kidney secretes renin, an

aspartyl protease. Renin cleaves the peptide angiotensinogen

(AGT), which the liver releases into the blood stream, into

angiotensin I (Ang I), a 10 amino acid peptide. Ang I is

cleaved into angiotensin II (Ang II), an eight-amino acid

peptide, by the angiotensin-converting enzyme (ACE), a

metalloprotease secreted by the lungs. Ang II binds to the

angiotensin II type 1 receptor (AGT1R) on vascular

endothelial cells. AGT1R is a G-protein-coupled receptor that

initiates a signal transduction pathway resulting in

vasoconstriction and increased blood pressure (Figure 1A)

(reviewed in Peach (1977), Reid et al. (1978), Fyhrquist and

Saijonmaa (2008), and Santos et al. (2019)). In the last 30 years,

exciting new discoveries have shown that the RAS is significantly

more complicated in two dimensions: the endocrine system has

many additional components, including some that promote

vasodilation, and the RAS functions as a paracrine/autocrine

system in many organs to mediate a wide range of physiological

responses.

In 2000, a second isoform of ACEwas described inmammals,

called ACE2 (Lavoie and Sigmund, 2003). ACE2 is a

transmembrane protein that cleaves Ang I or Ang II into the

heptapeptide angiotensin (1-7) (Ang(1-7)). Furthermore, the

receptor for Ang(1-7) was discovered, called the Mas receptor

(MasR). Activation of the Mas receptor results in vasodilation

(Figure 1A) (Santos et al., 2003). The recent discovery that

ACE2 appears to be the main entry point into cells for the

SARS-CoV-2 coronavirus, the cause of the COVID-19 pandemic,

has resulted in intense scrutiny (Wrapp et al., 2019).

Additionally, ACE2 has been proposed to influence aging

since inhibition accelerates age-related degenerative changes

(Takeshita et al., 2018; Nozato et al., 2019; Takeshita et al.,

FIGURE 1
Pharmacological inhibition of the renin–angiotensin system influences aging in C. elegans, Drosophila, and mammals. (A) The RAS pathway in
mammals; the ACE inhibitor Enalapril and angiotensin II type-1 receptor blocker Losartan are FDA-approved drugs that control aging in non-human
mammals (see Table 1). AGT, Angiotensinogen; Ang I, Angiotensin I; ACE, Angiotensin-converting enzyme; Ang II, Angiotensin II; AGT1R, Angiotensin
II type-1 receptor; ACE2, Angiotensin-converting enzyme 2; Ang 1-7, Angiotensin (1-7); MasR, Mas Receptor. (B) The FDA-approved ACE-
inhibitor drug Captopril inhibits acn-1, the only C. elegans ACE homolog, to control aging (Kumar et al., 2016). ACN-1, Angiotensin-converting
enzyme-like non-peptidase. (C) The FDA-approved ACE inhibitor drug Lisinopril inhibits Ance, the Drosophila ACE homolog, to control aging
(Gabrawy et al., 2019). Ance, ANgiotensin-converting enzyme. Blue, ACE and its homologs ACE2, Ance, and ACN-1; red, ACE inhibitors (Captopril,
Enalapril, Lisinopril) or ARBs (Losartan), which have been shown to influence aging.
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2020). Other discoveries include the (pro)renin receptor [(P)RR],

which binds and activates renin in tissues, and the angiotensin II

type 2 receptor (AGT2R) on vascular endothelial cells. AGT2R is

a G-protein-coupled receptor that initiates a signal transduction

pathway resulting in vasodilation and reduced blood pressure.

Thus, Ang II can increase blood pressure by acting through the

AGT1R receptor and reduce blood pressure by acting through

the AGT2R receptor, and the expression levels of the two

receptors play an important role in the overall response

(Figure 1A).

The receptors for angiotensin peptides are expressed in a

wide range of tissues, indicating that they function in paracrine/

autocrine systems controlled by the local generation of peptide

agonists (reviewed in Lavoie and Sigmund, 2003; Bader, 2010;

Nehme et al., 2019). The brain expresses the AGT1R and AGT2R

receptors, which influence the autonomic nervous system, the

hypothalamus–pituitary axis, vasopressin release, baroreflex

sensitivity, and thirst and salt appetite. The overall effects of

brain activation are to increase blood volume and blood pressure,

but are also implicated in higher brain functions such as anxiety

and stress (Abiodun and Ola, 2020; Balthazar et al., 2021). In the

kidney, local RAS signaling plays a role in kidney development

and renal function in adults. In the heart, Ang II acts through the

AGT1R to induce cardiac hypertrophy and fibrosis and through

the AGT2R to cause the opposite effects. In the gastrointestinal

system, the RAS regulates intestinal physiological functions

including electrolyte homeostasis, digestion, peptide transport,

glucose, sodium and water absorption, and gastrointestinal

motility (Jaworska et al., 2021). The RAS is important during

pregnancy and acts locally in the uteroplacental unit to mediate

angiogenesis, trophoblastic invasion, and adequate placentation

(Leal et al., 2022). It is possible that the tissue-specific functions

of the RAS represent primordial functions and are the target of

interventions that modulate aging.

A major breakthrough in the treatment of hypertension was

the development of Captopril, the first ACE inhibitor compound,

in 1975 (Figure 2A) (Cushman and Ondetti, 1991). Observations

of the hypotensive effects of venom of the snake Bothrops

jararaca made it clear that ACE was a critical regulator of

blood pressure and a useful target for inhibition (Cushman

and Ondetti, 1991). Rational drug design techniques allowed

the creation of Captopril as a peptide-analogue targeting and

inhibiting the active site of ACE, with later generations of ACE

inhibitors, such as Enalapril (Figure 2B) or Lisinopril (Figure 2C),

improving the activity and bioavailability. Further research into

the RAS led to the development of angiotensin II receptor

blockers (ARBs) such as Losartan (Figure 2D) (Duncia et al.,

1990). More recently, renin inhibitors such as Aliskiren were

developed (Jensen et al., 2008).

The blood pressure regulation activity of the RAS is well

characterized and has been studied in many mammalian model

organisms (reviewed in (Peach, 1977; Reid et al., 1978; Igic and

Igic, 2009; Santos et al., 2019). However, components of the RAS

have also been discovered in non-mammalian organisms that

lack closed circulatory systems. ACE homologs have been

identified in organisms throughout the Bilaterian clade,

including the C. elegans homolog acn-1 and the Drosophila

homolog Ance (Figures 1B,C). Functional ACE homologs have

also been identified in insects, crustaceans, annelids, and

mollusks (reviewed in (Fournier et al., 2021)). Based on its

presence in such diverse phyla, it is likely that ACE first

evolved in a common ancestor roughly 600 million years ago

(Dos Reis et al., 2015), prior to the evolution of the animal closed

circulatory system (Simões-Costa et al., 2005). These

observations raise an intriguing question: What is the

ancestral function of ACE? Insight into that function can help

address the role of the RAS during aging.

Emerging evidence has identified important connections

between the RAS and aging. Pharmacological or genetic

inhibition of members of the RAS can extend lifespan and

delay age-related degenerative changes in mice and rats

(Figures 3C, 4C) (reviewed in (Basso et al., 2005; de Cavanagh

et al., 2011; Capettini et al., 2012; Kamo et al., 2016; Mogi, 2020;

Jaworska et al., 2021; Le et al., 2021)). The study of ACE and the

RAS in the context of aging is complicated in mammalian

systems due to their pleiotropic effects not only on aging but

also on vasoconstriction, renal, cardiovascular, and pulmonary

health and function, and less understood functions in the brain

(reviewed in (Le et al., 2021)). In contrast, non-mammalian

organisms lacking closed circulatory systems can be used to

FIGURE 2
Chemical structure of the angiotensin-converting enzyme
inhibitors Captopril (A), Enalapril (B), and Lisinopril (C), and of the
angiotensin II receptor blocker Losartan (D). These drugs have
been shown to control aging in C. elegans, Drosophila, and/
or rodents.
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distinguish the aging effects of the RAS from the cardiovascular

functions.

Captopril and the acn-1 gene influence
aging in Caenorhabditis elegans

The nematode ACE homolog acn-1 was first identified by

Brooks et al. (2003) as necessary for larval development and adult

morphogenesis. Green fluorescent protein (GFP)-tagged ACN-1

driven by an acn-1 promoter was expressed in the embryo

hypodermis, hypodermal seam cells, and vulva of the

L4 hermaphrodite, and the ray papillae in the L4 male tail.

acn-1 RNAi-mediated knockdown resulted in larval molting

defects, characterized by a failure to shed the cuticle. Gonad

injection of dsRNA resulted in larval arrest at L2 and an early

mortality phenotype, indicating that it causes a strong reduction

of function and acn-1 is necessary for larval survival; feeding of

dsRNA-expressing bacteria allows many animals to survive the

larval stage, indicating a less severe reduction of function, and

animals display cuticle shedding defects in the L3/L4 and L4/

adult molts. RNAi-mediated knockdown of nhr-23 and nhr-25

reduced the expression of ACN-1, suggesting that these genes

regulate acn-1. Loss of function of these two genes was previously

reported to induce cuticle shedding defects similar to acn-1 loss

of function (Gissendanner and Sluder, 2000). Indeed, a

comprehensive RNAi screen by Frand et al. (2005) identified

acn-1, along with nhr-23 and nhr-25, as inducing molting defects.

Based on these results, acn-1 appears to act in larval animals to

regulate molting downstream of nhr-23 and nhr-25.

Oskouian et al. (2005) replicated the finding of Brooks et al.

(2003) that the injection of worms with acn-1 dsRNA resulted

in the arrest of larval development. Kumar et al. (2016) did not

observe significant larval arrest after acn-1 RNAi feeding

treatment. The difference may be due to the method of

administration (feeding in the case of Kumar et al. (2016),

and injection into the gonad in the cases of Oskouian et al.

(2005), Brooks et al. (2003).

The heterochronic pathway controls the timing of molting

and other development events by time-dependent expression of

genes including several microRNAs. Knockdown of

heterochronic pathway components disrupts crucial timing in

cell fate decisions, leading to precocious or retarded cell fate

phenotypes. Knockdown of acn-1 suppresses the ectopic

phenotypes associated with the knockdown of the

heterochronic pathway microRNA let-7, and acn-1 expression

is modulated throughout the L1 stage in a manner dependent on

lin-41 and hbl-1, both targets of let-7 (Metheetrairut et al., 2017).

Thus, acn-1 genetically interacts with several components of the

heterochronic pathway. Ahn et al. (2006) found that acn-1

transcription was downregulated in tax-6(jh107) mutants. tax-

6 is the nematode homolog of the mammalian calcineurin A

subunit, and the jh107 allele represents a constitutively active

gain-of-function mutation. This suggests a role for tax-6 in the

regulation of acn-1 protein expression. Dubois et al. (2019) found

that ACN-1 protein expression was affected by exposure to

ionizing gamma radiation; protein expression was upregulated

following chronic exposure and down-regulated following acute

exposure.

Based on sequence alignments, the predicted ACN-1

protein lacks several histidine residues that are ligands for

the zinc cofactor necessary for the metalloprotease activity of

ACE, suggesting that ACN-1 protein lacks this enzyme

activity (Brooks et al., 2003). Biochemical analyses of the

catalytic activity of ACN-1 have not been performed, so it

remains unknown if ACN-1 has the metalloprotease activity

observed in ACE. It has been speculated that ACN-1 may

function by binding to and sequestering its substrate, but

further research is needed to determine the biochemical

function of ACN-1.

While acn-1 function in larval animals is well established,

Kumar et al. (2016) showed that acn-1 RNAi treatment initiated

after the L4 stage, when the animal has completed all of its larval

molts, extends lifespan and delays age-related degenerative

changes (Figure 4A; Table 2). This suggests that acn-1

functions in adults to control aging. Further research is

required to better understand the function of acn-1 in adult

animals.

Kumar et al. (2016) performed a screen for FDA-approved

medications that extend lifespan in C. elegans. Captopril, an ACE

inhibitor, extended lifespan in hermaphrodite worms by more

than 30% (Figure 3A; Table 1); additionally, Captopril treatment

delayed age-related degeneration in multiple systems, including

body movement and pharyngeal pumping rate. Captopril

treatment increased thermotolerance and oxidative stress

resistance, phenotypes associated with extended longevity

(Kumar et al., 2016). The lifespan extension phenotype

appeared to be independent of several known longevity

pathways, including the caloric restriction, mitochondrial

dysfunction, sirtuin, and TOR signaling pathways.

Kucuktepe (2021) treated animals with Captopril and

replicated the lifespan extension, delayed the decline of

pharyngeal pumping rate, increased thermotolerance, and

increased oxidative stress resistance phenotypes reported by

Kumar et al. (2016). Kucuktepe (2021) examined the effect of

Captopril administration on lipid levels; triglyceride levels were

significantly reduced based on oil red O-staining of L4-stage

worms. The primary effect was on intestinal lipid droplets, which

were reduced in diameter. Biochemical analysis indicated a

reduction in triglycerides and protein content after Captopril

treatment.

Kumar et al. (2016), Kucuktepe (2021) both

demonstrated that the lifespan extension caused by

Captopril treatment was abrogated by a daf-16 loss-of-

function mutation. The DAF-16 transcription factor is

the terminus of the insulin/insulin-like growth factor
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(IGF) signaling pathway, a well-characterized pathway that

influences aging (Kimura et al., 1997; Tissenbaum and

Ruvkun, 1998). Kumar et al. (2016) reported that DAF-16

does not display nuclear localization upon treatment with

Captopril. Furthermore, Kucuktepe (2021) observed that

the body fat reduction caused by Captopril in wild-type

animals was not displayed by daf-16(lf) mutants, suggesting

that both lifespan extension and body fat reduction are

DAF-16-dependent. Further research is needed to

determine the nature of the Captopril–DAF-16 interaction.

Kumar et al. (2016) examined interactions of the ACE

inhibitor Captopril with the acn-1 gene. RNAi-mediated

inhibition of acn-1 caused many phenotypes similar to

Captopril administration, including lifespan extension

TABLE 1 Pharmacological inhibition of the RAS system and effects on age-related phenotypes.

Drug namea Animalb Age-related phenotype(s)c Dose/notesd

Captopril (ACE inhibitor) Worm Lifespan ↑ (Kumar et al., 2016; Kucuktepe, 2021), pharyngeal pumping rate
↑ (Kumar et al., 2016; Kucuktepe, 2021), body movement rate ↑ (Kumar
et al., 2016; Kucuktepe, 2021), thermotolerance ↑ (Kumar et al., 2016;
Kucuktepe, 2021), oxidative stress resistance ↑ (Kumar et al., 2016;
Kucuktepe, 2021), lipid storage ↓ (Kucuktepe, 2021)

2.5 mM in agar; hermaphrodites only

Lisinopril (ACE inhibitor) Fly Lifespan ↑ (Gabrawy et al., 2019), protein aggregation ↓ (Gabrawy et al.,
2019), climbing speed ↑ (Crocco et al., 2022), endurance ↑ (Crocco et al.,
2022), strength ↑ (Crocco et al., 2022), mitochondrial number ↑ (Ederer
et al., 2018), starvation resistance ↓ (Ederer et al., 2018)

1 mM in feed; males only; effects are
genotype-specific

Enalapril (ACE inhibitor) Mouse (1) Body weight ↑ (Ferder et al., 1994; Inserra et al., 1995), mitochondrial
number ↑ (Ferder et al., 1994), kidney mass ↑ (Ferder et al., 1994),
glomerular number and size ↑ (Ferder et al., 1994), glomerulosclerosis ↓
(Ferder et al., 1994), serum potassium ↑ (Inserra et al., 1995),
myocardiosclerosis ↓ (Inserra et al., 1995)

(1) 5, 10, or 20 mg/L in water; females only

(2) Frailty ↓, systolic blood pressure ↓ (Keller et al., 2019) (2) 30 mg/kg/day in feed; males and females

Enalapril (ACE inhibitor) Rat (1) Lifespan ↑ (Santos et al., 2009), body weight ↓(Santos et al., 2009;
González Bosc et al., 2000; Basso et al., 2007), caloric intake ↓ (Santos et al.,
2009), systolic blood pressure ↓ (González Bosc et al., 2000; de Cavanagh
et al., 2003; Basso et al., 2007; de Cavanagh et al., 2008; Santos et al., 2009),
water intake ↑ (González Bosc et al., 2000; Basso et al., 2007), heart weight ↓
(González Bosc et al., 2000; Basso et al., 2007), cardiac health ↑ (González
Bosc et al., 2000; Basso et al., 2007), renal health and function ↑ (de
Cavanagh et al., 2003; de Cavanagh et al., 2008), kidney degradation ↓ (de
Cavanagh et al., 2003; de Cavanagh et al., 2008), glomerular size ↓ (de
Cavanagh et al., 2003; de Cavanagh et al., 2008), proteinuria ↓ (de Cavanagh
et al., 2003; Carter et al., 2004; Inserra et al., 2009), mitochondrial function ↑
(de Cavanagh et al., 2003; de Cavanagh et al., 2008), glomerular size ↓
(Inserra et al., 2009)

(1) 10 mg/kg/day in water; males only

(2) Heart rate ↑ (Carter et al., 2004), blood pressure ↓ (Carter et al., 2004),
body fat ↓ (Carter et al., 2004), grip strength ↑ (Carter et al., 2004), climbing
of incline ↑ (Carter et al., 2004)

(2) 40 or 80 mg/kg/day by subcutaneous
injection; males and females

(3) Body weight ↓ (Carter et al., 2011), fat mass ↓ (Carter et al., 2011), grip
strength ↑ (Carter et al., 2011), food consumption ↓ (Carter et al., 2011),
movement ↑ (Carter et al., 2011), tumor incidence ↓ (Carter et al., 2011)

(3) 40 mg/kg/day in feed; males only

Losartan (Angiotensin II type 1
receptor blocker)

Rat (1) Systolic blood pressure ↓ (González Bosc et al., 2000), water intake ↓
(González Bosc et al., 2000), heart weight ↓ (González Bosc et al., 2000),
cardiac health ↑ (González Bosc et al., 2000)

(1) 10 mg/kg/day in water; males only

(2) Systolic blood pressure ↓ (de Cavanagh et al., 2003; Basso et al., 2007; de
Cavanagh et al., 2008), renal health and function ↑ (de Cavanagh et al., 2003;
de Cavanagh et al., 2008), kidney degradation ↓ (de Cavanagh et al., 2003; de
Cavanagh et al., 2008; Inserra et al., 2009), glomerular size ↓ (de Cavanagh
et al., 2003; de Cavanagh et al., 2008; Inserra et al., 2009), proteinuria ↓(de
Cavanagh et al., 2003; de Cavanagh et al., 2008; Inserra et al., 2009), heart
weight ↓ (Basso et al., 2007), cardiac health ↑ (de Cavanagh et al., 2003; de
Cavanagh et al., 2008), mitochondrial number and function ↑ (de Cavanagh
et al., 2003; de Cavanagh et al., 2008)

(2) 30 mg/kg/day in water; males only

(3) Grip strength ↑ (Carter et al., 2011) (3) 30 mg/kg/day in feed; males only

aCompound name (protein target).
bWorm, Caenorhabditis elegans; fly, Drosophila melanogaster; mouse, Mus musculus; rat, Rattus norvegicus.
cPhenotypes display age-related change; arrow indicates the direction of drug effect with respect to the untreated age-matched cohort.
dDrug dose; route of administration; sex of animals; notes.
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(Figure 4A). Furthermore, RNAi-mediated knockdown of acn-1

did not further enhance the lifespan extension caused by

Captopril treatment (Figure 4B), suggesting that Captopril

affects aging by the inhibition of acn-1. In contrast to Kumar

et al. (2016), Dalton and Curran (2018) reported that treatment

with acn-1 RNAi decreased heat and oxidative stress resistance

(Kumar et al., 2016; Dalton and Curran, 2018). These results may

be explained by differences in methodology, as the two studies

differed in the timing of temperature shift (larval day 1 or 2 in

Dalton and Curran (2018) and adult day 3 in Kumar et al.,

(2016)) and the timing of acn-1 RNAi administration (beginning

at hatch for Dalton and Curran (2018) and beginning at L4 for

Kumar et al. (2016)).

The Greenwald group generated a compendium of C. elegans

genes with homologs in humans, called “Ortholist” (Shaye and

Greenwald, 2011; Kim et al., 2018). Based on protein homology,

nematode ACN-1 has homologs throughout the Bilaterian clade:

in addition to humans, non-human primates, and rodents, ACE

homologs are present in Zebrafish, Xenopus, Drosophila, and

various other arthropods, suggesting that ACE-like proteins have

been retained throughout many animal phyla for at least six-

hundred million years of evolutionary history. Moreover, this

suggests that the evolution of the ACE protein predated the

evolution of the animal circulatory system, implying that the
ancestral function of the ACE protein was unrelated to the
regulation of blood pressure, especially considering its
continued retention in phyla which lack closed circulatory
systems. This is further reinforced by the apparent lack of
functional homologs to the primary substrate of mammalian
ACE, Angiotensinogen, in worms or Drosophila, as well as the
lack of functional analogs to mammalian renin or the
angiotensinogen receptors in these model organisms. Thus, it
is apparent that the ancestral function of ACE was unrelated to
blood pressure regulation and that this activity evolved later.

Lisinopril and Ance affect aging in
Drosophila melanogaster

The fruit fly Drosophila melanogaster is a valuable model

organism for studies of genetics, development, behavior, and

aging, having been commonly used for over a century (Castle,

1906; Morgan, 1910; Dunn, 1964; Roberts, 2006). Low

maintenance costs, rapid generation time, well-developed

genetic techniques, and relatively short lifespans make

Drosophila one of the predominant model organisms for

aging studies. Several studies have identified pathways that

regulate aging including dietary restriction (DR), IGF

signaling pathway, and the disruption of components of the

mitochondrial electron transport chain (Broughton et al., 2005;

Copeland et al., 2009; Altintas et al., 2016). Drosophila has been

used to test anti-aging pharmacological interventions due to the

availability of high-throughput screening techniques

FIGURE 3
ACE inhibitors extend lifespan in model organisms. (A) The FDA-
approved ACE inhibitor drug Captopril (cap) extends adult lifespan in
C. elegans by about 21%. Survival curves of wild-type (WT)
hermaphrodites treatedwith 2.5 mMCaptopril from the L4 stage
onward at 20°C. Adapted from (Kumar et al., 2016). (B) The FDA-
approved ACE inhibitor drug Lisinopril extends lifespan in Drosophila
melanogaster. Survival curve of populations of theDrosophilaGenetic
Reference Panel (DGRP, strain DGRP_304 is depicted) exposed to
1 mM Lisinopril. Adapted from (Gabrawy et al., 2019). (C) The FDA-
approved ACE-inhibitor drug Enalapril extends lifespan in adult rats.
Survival curves of adult Wistar rats exposed to 10 mg/kg Enalapril in
water for 26 months. Enalapril treatment reduced mortality by 45% in
the 26 month period. Adapted from (Santos et al., 2009).
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(Giacomotto and Ségalat, 2010; Jafari, 2010; Pandey and Nichols,

2011; Willoughby et al., 2013; Lee and Min, 2019). Compared to

C. elegans, Drosophila has greater anatomical similarity to

mammals (Copeland et al., 2009; Pandey and Nichols, 2011).

The Drosophila genome encodes two primary homologs of

ACE as well as several that are more diverged. Ance

(ANgiotensin-Converting Enzyme) is most similar to

mammalian ACE (Figure 1C); Ance is expressed throughout

the lifespan and plays roles in development and fertility (Houard

et al., 1998; Hurst et al., 2003). Acer (angiotensin-converting

enzyme-related) is most similar to mammalian ACE2 and plays

roles in heart morphogenesis (Crackower et al., 2002). Several

other homologous genes, Ance-2 through Ance-5, likely resulted

from gene duplication events; these genes do not have established

functions and are not predicted to encode catalytically active

proteins based on amino acid sequence (Coates et al., 2000). Ance

and Acer, in contrast to ACN-1, have highly conserved residues

in the active site residues similar to mammalian ACE. These

proteins have been demonstrated to be catalytically active, since

they can cleave Ang I in purified extracts (Cornell et al., 1995;

Coates et al., 2000). ACE inhibitors bind to and inhibit the

enzymatic activity of Acer and Ance (Cornell et al., 1995; Akif

et al., 2010; Lee et al., 2020).

In agreement with results in worms, RNAi-mediated

knockdown of Ance, the primary ACE homolog in Drosophila,

extended lifespan (Gabrawy et al., 2019) (Table 2). Lisinopril

treatment failed to enhance this effect, suggesting that Lisinopril

extends lifespan via the inhibition of Ance (Gabrawy et al., 2019).

In contrast, RNAi-mediated knockdown of the ACE2 homolog

Acer reduces lifespan. Liao et al. (2013) used tissue-specific

RNAi-mediated knockdown to reduce Acer activity in

mesoderm and cardiac tissue, resulting in a reduction in

lifespan, an increase in heart failure rate, a reduction in heart

rate and the fractional shortening of the cardiac tissue, and an

increase in the systolic and diastolic diameters. In agreement with

this finding, Glover et al. (2019) observed that the genetic

knockout of Acer reduced lifespan when fed ad libitum, but

that starvation abrogated this reduction (Table 2).

Gabrawy et al. (2019) examined the effect of the ACE

inhibitor Lisinopril (Figure 2C) on several strains of

Drosophila; in addition to extending lifespan (Figure 3B),

Lisinopril increased the physical performance in aged flies, as

measured by climbing speed, strength, and endurance (Table 1).

Lisinopril treatment reduced aberrant protein aggregation in the

muscles of aged flies (Gabrawy et al., 2019). Lisinopril extended

lifespan in three genetic backgrounds, although the degree of

extension varied. However, the physical performance and protein

aggregation in aged flies varied in the degree by which they were

influenced by Lisinopril, suggesting that genotype can affect

phenotypes caused by Lisinopril in a complex manner.

Ederer et al. (2018) reported a genotype-specific effect of

Lisinopril on metabolism; Lisinopril lowered the mitochondrial

TABLE 2 Genetic interventions on the RAS system and effects on age-related phenotypes.

Genea Interventionb Animalc Age-related phenotype(s)d Notese

acn-1 RNAi knockdown Worm Lifespan ↑ (Kumar et al., 2016), pharyngeal pumping rate ↑ (Kumar
et al., 2016), body movement rate ↑ (Kumar et al., 2016),
thermotolerance ↑ (Kumar et al., 2016), oxidative stress resistance ↑
(Kumar et al., 2016)

Hermaphrodites only

Ance RNAi knockdown Fly Lifespan ↑ (Gabrawy et al., 2019) Males only; effect is genotype-specific

Acer RNAi knockdown Fly Lifespan ↓ (Liao et al., 2013), heart rate ↓ (Liao et al., 2013), heart failure
rate ↑ (Liao et al., 2013), end-systolic diameter ↑ (Liao et al., 2013), end
diastolic diameter ↑ (Liao et al., 2013), fractional shortening ↓ (Liao
et al., 2013)

Males only; tissue-specific RNAi knockdown in
mesoderm and cardiac tissue

Acer Chromosomal mutation
(Null)

Fly Lifespan ↓ (Carhan et al., 2011; Glover et al., 2019) Females only

Agt1r Chromosomal mutation
(Null)

Mouse Lifespan ↑ (Benigni et al., 2009; Yabumoto et al., 2015), cardiac health
and function ↑ (Benigni et al., 2009), mitochondrial number and
function ↑ (Benigni et al., 2009), hair growth ↑ (Yabumoto et al., 2015),
skin thickness ↑ (Yabumoto et al., 2015), fat layer thickness ↑
(Yabumoto et al., 2015), grip strength ↑ (Yabumoto et al., 2015), muscle
repair ↑ (Yabumoto et al., 2015)

Males only

ACE2 Chromosomal mutation
(Null)

Mouse Grip strength ↓ (Takeshita et al., 2018), running distance ↓ (Takeshita
et al., 2018), body weight ↓ (Takeshita et al., 2018), maximal muscle
force ↓ (Takeshita et al., 2018)

Males only

aAnce is homologous to ACE; Acer is homologous to ACE2; acn-1 is the only known ACE homolog in worms; Agt1r, Angiotensin II, type-1 receptor; ACE2, Angiotensin-converting

enzyme 2.
bRNA-interference (RNAi) transiently reduces gene activity; chromosomal mutations appear to be null alleles.
cWorm, Caenorhabditis elegans; fly, Drosophila melanogaster; mouse, Mus musculus.
dPhenotypes display age-related change; arrow indicates the direction of effect with respect to wild-type or untreated age-matched cohort for chromosomal mutation or RNAi-mediated

knockdown, respectively.
eRNAi affects either whole animal or specific tissues; sex of animal.
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oxygen consumption in young flies, increased the number of

mitochondria in aged flies, and reduced peroxide levels in young

flies—however, each of these phenotypes occurred in strains with

different genotypes. Genotype-specific effects were also observed

in thoracic metabolite concentrations upon treatment with

Lisinopril.

Crocco et al. (2022) expanded on this work using genome-
wide association studies (GWAS) on 126 Drosophila strains with
different genotypes treated with Lisinopril; while the majority of
strains displayed extended lifespan and reduced age-related
physical decline, some strains displayed reduced lifespan or
increased age-related decline. GWAS implicated members of
the WNT signaling pathway in the Lisinopril effect on
climbing speed, and reducing the expression of some of these
genes in skeletal muscle reduced Lisinopril’s beneficial impact on
climbing. However, the effect of the WNT signaling pathway on
Lisinopril-induced lifespan extension or other aging phenotypes
was not reported.

RAS inhibitors can increase lifespan in
rodents

Rodents have long been the organism of choice for studying the

RAS, given their historical use in drug discovery. Their use in the

study of aging is more complicated because of their relatively long

lifespan (~3 years) compared to worms and flies, making studies of

the effects of drugs on lifespan more labor-intensive and expensive.

The RAS has been a popular target of study for aging inmice and

rats due to its well-studied effects on blood pressure. Several rodent

models displaying spontaneous hypertension are in common use;

however, in comparison to the large body of evidence examining its

effects on blood pressure regulation, relatively few studies have

examined the effects of the inhibition of the RAS on aging,

normotensive rodents (Jama et al., 2022). In aging hypertensive

rodent models, the inhibition of the RAS may increase the

survival rate due to alleviation of hypertension-associated

morbidity; these effects cannot be distinguished from any

beneficial effects on age-related degeneration itself. Therefore, the

studies discussed below are only those that use normotensive rodents,

whichmeasure the effect of RAS inhibition in agedmice and that use

an untreated age-matched cohort as a control.

Genetic knockout of components of the RAS has been shown

to influence aging in rodents. Benigni et al. (2009) showed that

the knockout of the angiotensin II type I receptor (AGT1R)

increased lifespan by 25% in mice, and a similar effect was

reported by Yabumoto et al. (2015) (Figure 4C; Table 2). In

addition to increased lifespan, Agt1r−/− mice displayed

increased late-life cardiac health and mitochondrial function,

as well as reduced frailty and healthier skin aging (Benigni et al.,

2009; Yabumoto et al., 2015). By contrast, the knockout of

ACE2 accelerates aging in mice (Takeshita et al., 2018; Nozato

et al., 2019; Takeshita et al., 2020), and the knockout of ACE

FIGURE 4
Reducing ACE expression extends lifespan in C. elegans and
mice. (A) Reducing acn-1 expression via RNA-interference (RNAi)
extends adult lifespan in C. elegans by about 20%. Survival curves
of wild-type (WT) hermaphrodites exposed to acn-1 or
control dsRNA-expressing bacteria from the L4 stage onward at
20°C. (B) Captopril and acn-1 RNAi are not additive in extending
the lifespan of adult C. elegans, suggesting that Captopril inhibits
acn-1 to control aging. Survival curves of RNAi-hypersensitive
strain rrf-3(pk1426) exposed to E. coli bacteria expressing control
or acn-1 dsRNA from the embryonic stage and to 2.5 mM
Captopril from L4 stage at 20°C. (A,B) Adapted from (Kumar et al.,
2016). (C) Knock-out of AGT1R extends adult lifespan in mice by
about 17%. Survival curves of Agtr1a−/− and Agtr1a+/+ mice (Sugaya
et al., 1995) fed with a standard diet. Adapted from (Yabumoto
et al., 2015).
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resulted in detrimental effects on health (Esther et al., 1996)

(Table 2); these data suggest that complete knockout of ACE is

harmful, whereas complete knockout of AGT1R alone shows

beneficial effects.

The effect of Enalapril on aging rodents is well studied.

Santos et al. (2009) showed that Enalapril treatment extends the

lifespan of rats by 45% on either standard or high-fat diet

(Figures 1A, 3C; Table 1) (Santos et al., 2009). It has been noted

that many age-related degenerative phenotypes displayed by

the cardiovascular and renal systems of normotensive

mammals are similar to phenotypes observed in younger

hypertensive mammals (Benetos et al., 1993; Pinaud et al.,

2007). Thus, high blood pressure may accelerate the aging of

the cardiovascular system. Alternatively, high blood pressure

may cause pathologies that resemble age-related degeneration

but are actually distinct. Treatment with anti-hypertensive

medications in the absence of hypertension may have

beneficial anti-aging properties (Benetos et al., 1993; Assayag

et al., 1997). Cardiovascular health declines with age (Miller and

Arnold, 2022) and treatment with Enalapril (González Bosc

et al., 2000; de Cavanagh et al., 2003; Carter et al., 2004; Basso

et al., 2007; de Cavanagh et al., 2008; Inserra et al., 2009; Carter

et al., 2011) or Losartan (González Bosc et al., 2000; de

Cavanagh et al., 2003; Basso et al., 2007; de Cavanagh et al.,

2008; Inserra et al., 2009; Carter et al., 2011) improve many

aspects of the health of aged rodents (Figure 1A; Table 1).

Improvements were observed in cardiac (Inserra et al., 1995;

González Bosc et al., 2000; Basso et al., 2007) and renal health

(Ferder et al., 1994; de Cavanagh et al., 2003; de Cavanagh et al.,

2008; Inserra et al., 2009), reduced tumor incidence (Carter

et al., 2011), reduced frailty (Keller et al., 2019; de Cavanagh

et al., 2008; Carter et al., 2011), and reduced age-associated

hypertension (González Bosc et al., 2000; de Cavanagh et al.,

2003; Carter et al., 2004; Basso et al., 2007; de Cavanagh et al.,

2008; Keller et al., 2019). Enalapril, but not Losartan, reduced

body weight in old age, suggesting that RAS inhibition of

different targets may result in distinct phenotypes (Ferder

et al., 1994; Inserra et al., 1995; González Bosc et al., 2000;

Basso et al., 2007; Carter et al., 2011). Body fat and food

consumption were reduced, suggesting dietary restriction as

a possible mechanism (Carter et al., 2004; Carter et al., 2011).

Other studies have implicated mitochondria by demonstrating

an increase in mitochondrial number and function late in life

and a reduction of reactive oxygen species (Ferder et al., 1994;

de Cavanagh et al., 2003; de Cavanagh et al., 2008).

Associations between a polymorphism in
the ACE gene and longevity in humans

Human centenarians (>100 years of age) and

supercentenarians (>110 years of age) are of interest for

studies of aging due to their extreme longevity and

extraordinarily healthy lives. In addition to extremely long

lifespans, human centenarians exhibit fewer infectious

diseases, lower inflammation and cancer rates, and reduced

age-related comorbidities such as Alzheimer’s disease,

cardiovascular disease, and hypertension (Willcox et al., 2008;

Andersen et al., 2012; Hirata et al., 2020; Sato et al., 2021). Many

studies, including several meta-analyses, investigate variants that

are associated with the phenotype of extreme human longevity

(Sebastiani et al., 2013; Revelas et al., 2018). One candidate is the

ACE polymorphism rs4340 (Revelas et al., 2018). This

polymorphism was discovered by Rigat et al. (1990) and is

characterized by the presence or absence of a 287bp Alu

repetitive element in intron 16. The allele with the Alu

sequence is defined as I (insertion), and the allele without the

Alu sequence is defined as D (deletion) (Rigat et al., 1990; Sayed-

Tabatabaei et al., 2006). The D allele is most likely an ancestral

version because the I allele insertion is absent from the genomes

of non-human primates (Batzer et al., 1994; Li et al., 2011). The I

and D alleles are not homogeneously distributed among the

population (Batzer et al., 1994; Li et al., 2011): The D allele is

more frequent in Africa and the Middle East, whereas the I allele

is more frequent in East Asia (Li et al., 2011). This polymorphism

is likely to have a direct phenotypic consequence on the level of

ACE in the plasma since the level of ACE activity is increased in

humans with the genotype D/D (Rigat et al., 1990). Cultured

primary human endothelial cells with an I/I genotype exhibited

lower Ang II levels and a higher cell viability compared to cells

with the D/D genotype. D/D cells phenocopied I/I cells after the

addition of Captopril, indicating that the phenotype is caused by

alterations in ACE activity (Hamdi and Castellon, 2004).

Several studies investigated the association of the ACE I/D

polymorphism with pathologies. The D allele is positively

associated with hypertension, arteriosclerosis, cardiovascular

disease, and diabetic microvascular disorders and is negatively

associated with Alzheimer’s disease (Sayed-Tabatabaei et al.,

2006). By contrast, the I allele is associated with a higher

expression of ACE2, which has been shown to negatively

affect health (Delanghe et al., 2020). The positive association

of the D allele with extreme longevity was investigated in over

32 studies (Human Ageing Genomic Resources, 2022). Two

meta-analysis included (1) 12 studies with a total of

1803 centenarians and 10,485 non-centenarian controls

(Garatachea et al., 2013), and (2) eight studies with

2043 individuals over 85 years of age and 8,820 younger

controls (Revelas et al., 2018). These studies identified a

positive association between increased longevity and the

presence of the D allele. The authors speculate that the D

allele has a negative impact early in life and may grant a

survival advantage in later life by effecting tissue repair and

activating the immune system, thus representing a pleiotropic

effect in favor of longevity (Revelas et al., 2018). It is important to

note that studies with centenarians are cross-sectional rather

than longitudinal, and the control group is younger individuals
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from a different birth cohort. In addition, associations might be

caused by nearby polymorphisms that are linked to the D or I

allele.

Currently available results suggest the possibility that ACE

may have undefined functions in addition to its effect on blood

pressure that may be responsible for the longevity effects.

Humans treated with ACE inhibitors or ARBs display

improvements in some measures of health and a reduction in

all-cause mortality; however, no aging-focused study has been

performed on normotensive humans treated with these drugs

(Zoja et al., 2010; Kwang Chae et al., 2011; Abdel-Zaher et al.,

2014; Faglia et al., 2014). Interestingly, reduced mortality was

reported in diabetic patients treated with ACE inhibitors but not

in patients treated with the cholesterol-lowering medication

Statin, suggesting that the effect of ACE inhibitors on human

health is at least partially independent of its effect on

cardiovascular health (Faglia et al., 2014). Future studies

should address the mechanistic basis of ACE-associated

longevity with a focus on determining to what degree this

longevity is caused by a reduction in blood pressure.

Conclusions and perspectives

The large body of research performed on the RAS over the

last several decades makes it clear that the RAS can significantly

influence aging. However, several important questions at the

intersection of the RAS and aging remain unanswered.

What is the function of the renin–angiotensin system in general,

and the angiotensin-converting enzyme in particular, in non-

vertebrate animals that lack closed circulatory systems? Treating

hypertensive humans with medicines that reduce blood pressure

makes them live longer by alleviating the pathologies caused by high

blood pressure, including strokes and heart disease. Thus, one model

for how these same drugs extend lifespan is by reducing blood

pressure. However, RAS inhibition extends lifespan in normotensive

rodents. While this might indicate that lowering blood pressure

below the normal level extends lifespan, it also hints that there is

another mechanism. Furthermore, how does the inhibition of ACE

affect aging in animals that lack a closed circulatory system

altogether? Clearly, in these animals, the effect cannot be on

blood pressure, so there must be an alternative mechanism.

Although Drosophila has tissues that are analogous to the

vertebrate cardiac and pulmonary systems, C. elegans lacks these

systems altogether, yet ACE inhibitors extend lifespan in both of

these organisms.We speculate that ACE has some ancestral function

that mediates its effect on aging.

It is well established that ACE is an essential enzyme in many

organisms; the knockout of ACE or its homologs in other species has

severe negative effects on health in mammals and is lethal in

Drosophila and C. elegans (Tatei et al., 1995; Esther et al., 1996;

Brooks et al., 2003; Kumar et al., 2016; Nichols et al., 2016). ACE

likely evolved in a hypothesizedmost recent common ancestor of the

Bilaterian clade; since that time functional ACE homologs have been

retained in such diverse phyla as insects (Lamango and Isaac, 1994;

Cornell et al., 1995; Wijffels et al., 1996; Wijffels et al., 1997; Loeb

et al., 1998; Isaac et al., 1999; Vandingenen et al., 2001; Vandingenen

et al., 2002; Ekbote et al., 2003a; Ekbote et al., 2003b; Nathalie et al.,

2003; Burnham et al., 2005; Lemeire et al., 2008; Wang et al., 2015;

Abu Hasan et al., 2017; Nagaoka et al., 2017; Wang et al., 2019),

crustaceans (Smiley andDoig, 1994; Kamech et al., 2007; SookChung

and Webster, 2008), mollusks (Laurent et al., 1997; Riviere et al.,

2011), annelids (Rivière et al., 2004), nematodes (Brooks et al., 2003;

Kumar et al., 2016; Metheetrairut et al., 2017; Kucuktepe, 2021), and

vertebrates (reviewed in (Lv et al., 2018)). Metalloprotease activity,

predicted by the highly conserved histidine-rich HEXXH motif, is

retained in all known organisms with an active ACE other than

nematode ACN-1, indicating a high degree of evolutionary selective

pressure to retain this motif. ACE inhibitors bind to and

competitively inhibit this active site, and ACE inhibitors have

been shown to function in non-vertebrate animals (Lamango and

Isaac, 1994; Smiley andDoig, 1994;Wijffels et al., 1996;Wijffels et al.,

1997; Isaac et al., 1999; Vandingenen et al., 2001; Vandingenen et al.,

2002; Ekbote et al., 2003a; Ekbote et al., 2003b; Nathalie et al., 2003;

Rivière et al., 2004; Vercruysse et al., 2004; Kamech et al., 2007;

Lemeire et al., 2008; Sook Chung andWebster, 2008; Nagaoka et al.,

2017). ACE has been shown to be involved in fertility in mice,

Drosophila, and other arthropods (Wijffels et al., 1996; Wijffels et al.,

1997; Loeb et al., 1998; Ramaraj et al., 1998; Isaac et al., 1999;

Vandingenen et al., 2002; Ekbote et al., 2003a; Ekbote et al., 2003b;

Hurst et al., 2003; Nathalie et al., 2003; Vercruysse et al., 2004;

Kamech et al., 2007; Sook Chung and Webster, 2008; Riviere et al.,

2011;Nagaoka et al., 2017), being commonly expressed in the testis or

ovaries, and effecting spermmotility or progeny production in many

species. This is especially interesting considering the existence of a

testis-specific isoform of ACE inmammals, called tACE; this isoform

has been shown to regulate male fertility and sperm function

(Hagaman et al., 1998). ACE has also been implicated in ecdysis

(Ekbote et al., 2003a; Ekbote et al., 2003b; Vercruysse et al., 2004;

Lemeire et al., 2008; Metheetrairut et al., 2017), being most strongly

expressed during larval molts in several species. Thus, ACE plays

many roles in many different organisms, but it is likely that its role as

a blood pressure regulator was a later development, as this activity is

not observed outside of vertebrates. It is likely that ACE evolved from

earlier peptidyl dipeptidases and diverged to serve many functions;

one later development would be the maturation of blood pressure

signaling peptides in a vertebrate ancestor, whose function was

retained in modern vertebrates. It is likely, then, that any

potential secondary effects on aging were retained in mammals as

well, explaining the seemingly dual effects of ACE inhibitors on aging

and blood pressure.

The C. elegans homolog of ACE does not conserve some amino

acids necessary for the catalytic function, leading to the model that it

is not an active enzyme (Brooks et al., 2003). However, it has an

important function because the genetic knockout of acn-1 is lethal

and it has been implicated as an essential regulator of molting and
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development, indicating an essential role for acn-1 despite the

predicted lack of metalloprotease activity (Brooks et al., 2003;

Kumar et al., 2016; Metheetrairut et al., 2017). Kumar et al.

(2016) demonstrated that Captopril treatment or knockdown of

acn-1 by RNAi still resulted in lifespan extension if administered after

the final larval molt, once all known functions of acn-1 have

presumably been completed. What is the function of acn-1 in

adulthood, and why does inhibiting this function affect aging? It

is possible that ACN-1 merely sequesters or is involved in the

maturation of its substrate rather than acting through an

enzymatic activity, or that it acts in concert with a second

enzyme. Further research must be done to determine what, if any,

substrate is associated with ACN-1.

The discovery of drugs that influence aging has traditionally been

a strength of non-vertebratemodel organisms;C. elegans in particular

has been a fruitful ecosystem for repurposing well-studied human

drugs into potential anti-aging treatments. Two of the most well-

studied anti-aging compounds are the FDA-approved medications

Metformin and Rapamycin. Metformin was first developed to treat

type 2 diabetes, and Rapamycin was approved as an

immunosuppressant for organ transplants. Subsequent research in

C. elegans (Onken and Driscoll, 2010; Robida-Stubbs et al., 2012;

Cabreiro et al., 2013) and Drosophila (Bjedov et al., 2010)

demonstrated that these drugs control aging. Metformin has been

shown to control aging in nematodes and mice (reviewed in

(Glossmann and Lutz, 2019; Hu et al., 2021)). Additionally, the

Targeting Research with MEtformin (TAME) project is currently

testing the effect of Metformin on mortality in elderly humans

(Justice et al., 2018). The National Institute of Aging’s

Interventions Testing Program (ITP) has identified Rapamycin as

a potent controller of aging, extending lifespan in both male and

female mice by more than 10% (Harrison et al., 2009; Miller et al.,

2011). Rapamycin has also been tested as a potential anti-aging

therapy in non-human primates (Ross et al., 2015) and is currently

being tested in canines (Kaeberlein et al., 2016). Captopril is currently

undergoing testing by the ITP as well and is on track to become the

third FDA-approved drug with potential as an anti-aging therapy.

Captopril is an ideal candidate for future human studies due to its

long history as a safe, effective blood pressure medication, but it has

not yet been tested as an anti-aging therapy in normotensive humans.

Future research inmodel organismswill lay the foundation for testing

Captopril and other RAS inhibitors for use as an anti-aging therapy

in humans.
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