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Abstract Estrogen and various growth factors affecting tu-
mor behavior are present in the breast cancer microenviron-
ment, but their comprehensive effects and signal crosstalks are
different in each case. However, there is no system to evaluate
the factors, detected in individual breast cancer cases, that
regulate ER activity and tumor progression. In this study, we
analyzed the effects of individual breast cancer extracts by our
original system using an estrogen-signal reporter cell line,
MCF-7-E10, which we previously established. MCF-7-E10
cell line is stably transfected by an estrogen response element
(ERE)-green fluorescent protein (GFP) gene; it expresses GFP
when estrogen receptors (ERs) are activated by estrogen or
growth factor signal-mediated ER phosphorylation. Using this
cell line, we analyzed the comprehensive effects of factors
derived from breast cancer tissues on ER activity and growth
of MCF-7-E10 cells for each case. We also analyzed

relationships between these activities and clinicopathologic
characteristics of patients who provided cancer specimens.
The breast cancer extracts, which reflect the combined activ-
ities of growth factors present in individual cases, stimulated
MCF-7-E10 cell growth in an estrogen-independent manner,
and specifically stimulated growth of other breast cancer cell
lines, regardless of ER expression. High growth-promoting
activities were seen in tumor regions of specimens with tu-
mors > 10 mm in size, HER2 intrinsic subtype, and scirrhous
and solid-tubular carcinoma histological subtypes. Anti-
human hepatocyte growth factor (HGF) antibody and an
inhibitor for insulin-like growth factor-1 (IGF-1) receptor
inhibited MCF-7-E10 cell growth by the breast cancer ex-
tracts, indicating that signal pathways via HGF or IGF-1
receptor significantly affect breast cancer. These data suggest
that growth factors other than estrogen in the tumor extract
significantly affect breast cancer aggressiveness in an
estrogen-independent manner, and could be useful therapeutic
targets.
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Background

The tumor microenvironment is enriched in factors such as
growth factors, cytokines and chemokines, and critically af-
fects initiation and progression of various tumor types [1–5].
For postmenopausal women with low levels of plasma estro-
gen, breast cancer growth and progression are mainly caused
by estrogen produced locally in the tumor microenvironment
[6–8]. Intratumoral production of estrogen is induced by aro-
matase, a key enzyme in estrogen biosynthesis, which is
expressed by carcinoma-associated stromal fibroblasts
[7–10]. Aromatase is a target of endocrine therapy for breast
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cancers; aromatase inhibitors attenuate estrogen biosynthesis
in treating hormone-responsive breast cancer [11, 12]. Estro-
gen stimulates breast cancer growth via expression of a di-
verse set of growth-related genes in tumor cells, and through
activation of estrogen receptor (ER), a transcription factor [13,
14]. ERα is a primary predictive marker for hormonal therapy
in breast cancer, but approximately one-third of ER + patients
do not respond to this therapy, suggesting that ERα is not a
perfect predictor for hormonal therapy. To shed light on these
issues, and to study the molecular basis for breast cancer, we
first focused on analysis of estrogen signals by development
of a custom-made cDNA microarray, and provided novel
diagnostic and prognostic estrogen-induced genes [15–17].

In addition to the genomic pathway, estrogen induces non-
genomic pathways by interacting with signal cascades for
growth factors [4, 13], such as epidermal growth factor
(EGF) and insulin-like growth factor-1 (IGF-1), which acti-
vate ERα in an estrogen-independent manner by phosphory-
lating several ERα sites using their downstream signal ki-
nases, including MAPK and PI3K [4, 5, 18–20]. Growth
factors are produced by malignant cells themselves, adjacent
tumor stromal fibroblasts and inflammatory cells in the
microenvironment.

To analyze the carcinoma-associated fibroblasts-induced
ER activation in individual breast cancers, we established an
estrogen response element (ERE)-green fluorescent protein
(GFP) assay system. It allows us to detect estrogen- and
phosphorylation-dependent ER-activating ability of stromal
fibroblasts adjacent to tumor cells under coculture with
MCF-7-E10 cells, a clone of MCF-7 stably transfected with
the ERE-GFP gene [20]. Using this system, we examined
relationships between ER-activating ability of stromal fibro-
blasts and clinicopathological characteristics. We found that,
although ER-activating abilities of stromal fibroblasts vary
among breast cancers, they are higher in breast cancers from
postmenopausal patients than in those from premenopausal
patients [20]. This is in accordance with the fact that
intratumoral estrogen production causes progression of post-
menopausal breast cancers [6–8]. ER-activating abilities of
fibroblasts in grade 3 breast cancers are lower than in grade 1
breast cancers, suggesting that the grade 3 microenvironment
stimulates proliferation of breast cancer cells via an estrogen-
independent pathway [20].

In the breast cancer microenvironment, various growth
factors and cytokines reportedly interact to control tumor
growth, as described above. However, their significance in
tumor growth in vivo and in response to hormonal therapy are
unclear. To investigate the role of breast cancer-derived factors
on breast cancer growth, we studied effects of the supernatants
of minced breast cancer tissues on MCF-7-E10 cell growth.
Tissue supernatant, unlike tissue extract or conditioned

medium of tissue prepared after culture for several days
in vitro, reflects the comprehensive effects of factors detected
in the tumor in vivo. In addition to estrogen-related signals, we
found that the breast cancer-derived factors effectively stimu-
late MCF-7-E10 cell growth via an estrogen-independent
pathway.

Methods

Cells & Cell Culture

Cell lines used in this study were cultured in RPMI1640
medium (GIBCO) supplemented with 10 % FCS (Tissue
Culture Biologicals) at 37 °C in a humidified atmosphere of
5 % CO2. We previously established the estrogen-signal re-
porter cell line MCF-7-E10 derived from MCF-7 cells by
stable transfection with an ERE-GFP reporter plasmid [20].
To analyze the effect of breast cancer tissue supernatant
(BCTS) on ER activity in MCF-7-E10 cells, cells were
precultured in estrogen-deprived medium (phenol red-free
RPMI1640 medium supplemented with 10 % dextran-
coated, charcoal-treated FCS) for 3 days.

Preparation of BCTS

Breast cancer specimens were processed within 1 h after
surgical resection. After being weighed, specimens were
transferred to tubes containing phenol red- and serum-free
RPMI 1640 medium at 100 mg/ml, and minced to particles
< ~1 mm3 in size. The suspension was centrifuged (600 × g ,
10 min, 4 °C) and the supernatant was further centrifuged (12,
000 × g , 10 min, 4 °C) to obtain BCTS. The protein concen-
tration of each sample was determined using BCA Protein
Assay Reagent (PIERCE).

Human breast cancer tissues were obtained by surgery at the
Saitama Cancer Center Hospital (Saitama, Japan) after informed
consent had been obtained from the patients. The Saitama
Cancer Center Ethics Committee approved this study. In the
clinicopathological classifications of the patients (Table 1), ER
and progesterone receptor (PgR) status was determined using
monoclonal anti-ERα antibody 1D5 (Dako, Glostrup, Den-
mark) and monoclonal anti-PgR antibody PgR636 (Dako),
and evaluated on the basis of Allred scoring [21]. HER2
protein expression was scored as 0, 1+, 2+ or 3+ using the
HercepTest™ (Dako); HER2 genome status was evaluated
by fluorescent in situ hybridization (FISH) using PathVysion
HER-2 DNA Probe Kit (Abbott Laboratories, Abbott Park,
IL, USA). According to the ASCO/CAP guidelines [22],
absolute HER2 gene/chromosome 17 copy number ratios

24 Y. Yamaguchi et al.



greater than 2.2 and less than 1.8 indicated HER2 amplifi-
cation (positive) and HER2 non-amplification (negative),
respectively. Histologic grading was evaluated according to
the Elston and Ellis grading scheme [23].

Cell Growth Assay

After 3 days of culture in estrogen-deprived medium, cells
were seeded at 1×103/150 μl in a 96-well multi-dish culture
plate, or at 1×104/1 ml in a 24-well plate, with or without
BCTS at indicated protein concentrations for 4 days. Viable
cells were examined using a Cell Counting Kit-8 assay ac-
cording to manufacturer’s instructions (Dojindo Laboratories,
Japan).

Evaluation of ER Activity

ER activities in MCF-7-E10 cells, which had been transfected
with ERE-GFP, after incubation with BCTS or E2, were
monitored through GFP expression [20]. To quantify GFP
expression, cells expressing GFP were counted under a fluo-
rescence microscope after the cells were harvested by treat-
ment with trypsin. Data are presented as percentage of cells
expressing GFP.

Quantification of Growth Factors in BCTS by ELISA

Human EGF and IGF-1 levels in BCTS were quantified by
ELISA using Quantikine (R&D Systems, MN, USA) specific
for each growth factor.

Materials

Unless otherwise stated, all other materials were from
Sigma-Aldrich Inc. (St. Louis, MO, USA). Inhibitors for
EGF receptor and IGF receptor, and normal mouse IgG
were from Calbiochem. Mouse anti-human HGF monoclo-
nal antibody was from the Institute of Immunology (To-
kyo, Japan). Mouse IgG1 antibody (Chemicon Internation-
al, CA, USA) was used as an isotype control. IGF-1
receptor inhibitor, AG1024, and EGF receptor inhibitor,
AG1478, were from Chemicon International.

Statistical Analysis

Statistical analyses were performed using the Stat Flex version
6.0 software program (Artech Co., Ltd., Osaka, Japan). In
comparisons among groups, ANOVA and two-sample t -tests
were used to assess the statistical significance of differences.

Table 1 Clinical
characteristics
of patients

a Total number of
patients was 93

No. of patientsa

Age (y)

< 51 26

≥ 50 65

Unknown 2

Menopausal status

Pre 28

Post 64

Male 1

Tumor diameter (cm)

≤ 1 15

> 1 75

Unknown 3

ER

Positive 69

Negative 24

PgR

Positive 52

Negative 41

HER2

0 37

1 31

2 10

3 13

Unknown 2

Stage

0 1

I 37

II 42

III 11

Unknown 2

Histology

Scirrhous 41

Solidtubular 23

Papillotubular 13

Mucinous 7

Apocrine 2

DCIS 3

Unknown 4

Grade

1 18

2 17

3 47

Unknown 11

Nodal status

Negative 38

Positive 53

Unknown 2
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Data are expressed as means ± S.D. P <0.05 was considered
statistically significant.

Results

BCTS Stimulates Breast Cancer Cell Growth
in Both Estrogen-Dependent and -Independent Manners

In the tumor microenvironment, many growth factors, cyto-
kines and chemokines directly and indirectly control growth.
To study their comprehensive influence on breast cancer ag-
gressiveness, we first analyzed effects of BCTS on MCF-7-
E10 cell growth (Fig. 1), which allowed us to examine the
total effect of breast cancer-derived factors secreted from
tumor and stromal cells, as they exist in vivo, on growth and
estrogen-related signals of breast cancer cells. BCTS dose-
dependently stimulated MCF-7-E10 cell growth (Fig. 1a).
Although activities varied among specimens, more than
60 % showed higher growth-stimulating activity than with
estrogen (Fig. 1b).

To examine the specificity of target cells, we studied the
effect of BCTS on growth of other tumor cell lines, including

a breast cancer cell line, T47D, a lung adenocarcinoma cell
line, PC9, and a cervical cancer cell line, HeLa (Fig. 2a). The
growth of T47D, another ER + human breast cancer cell line,
was stimulated by BCTS while growth of PC9 was not in-
creased. HeLa cell growth was rather inhibited by BCTS. The
growth of MDA-MB-231 cells, an ER– human breast cancer
cell line, was also stimulated by the extracts (data not shown).
These results suggest that BCTS specifically stimulated breast
cancer cell growth regardless of ER expression.

Next, to see whether growth-stimulating activity in the
tissue supernatant affected only the tumoral region, we ana-
lyzed extracts of tumoral regions and non-tumoral regions
2 cm distal to the tumor. The tumoral regions had more
growth-stimulating activity than the non-tumoral regions
(Fig. 2b), suggesting that the tumoral regions have an abun-
dance of growth-stimulating activities for breast cancer cells.

To see if ER activation was required for BCTS-induced
growth stimulation, we analyzed GFP expression in MCF-7-
E10 cells, and found growth stimulation was not necessarily
accompanied by ER activation (Fig. 3a). We next examined
effects of anti-estrogen agents such as tamoxifen and
fulvestrant on BCTS-induced growth stimulation, and found
that high growth-stimulating activities were resistant to
fulvestrant (Fig. 3b) and tamoxifen (Fig. 3c). These results
indicate that, in addition to an ER-dependent pathway, BCTS
stimulates breast cancer growth via an ER-independent
pathway.

Growth-Stimulating Activity Correlated
with Clinicopathological Characteristics

We analyzed the relationships between ER-independent
growth-stimulating activity detected in BCTS and clinicopath-
ologic characteristics of the specimens’ donors (Fig. 4). Al-
though BCTS growth-stimulating activity did not correlate
with expression of ERα or PgR, stage, menopausal status,
grade or nodal status (data not shown), specimens from tu-
mors larger than 10 mm showed higher growth-stimulating
activity than those smaller than 10 mm (Fig. 4a). Breast
cancers are categorized into four intrinsic subtypes according
to gene-expression profile: luminal A (ER + and/or PgR+,
HER2–), luminal B (ER + and/or PgR+, HER2+), HER2
(ER–, PgR–, HER2+) and basal-type (ER–, PgR–, HER2–)
[24, 25]. BCST derived from HER2 subtype showed slightly
or significantly higher growth-stimulating activity than that
from luminal B or basal types, respectively (Fig. 4b), suggest-
ing that the tumor extracts of HER2 subtype have an abun-
dance of growth factors stimulating their own receptors, in-
cluding those of the ERBB family.

We next analyzed relationships between HER2 expression
and growth-stimulating activity in ER– breast cancers, and
found that the cases with high growth-stimulating activity
differed significantly from those with low activity in terms
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Fig. 1 BCTS effectively stimulated growth of MCF-7-E10 cells. After
3 days of culture in estrogen-deprived medium, MCF-7-E10 cells were
cultured with breast cancer tissue supernatant at the indicated
protein concentrations (a ) or at 25 μg (b ) in total 150 μl medium
per well in 96-well plate for 4 days. The viable cells were
examined using a Cell Counting Kit-8 assay. Values relative to
control are shown. Data are presented as mean ± SD of triplicate
determinations. *, P <0.05; **, P <0.01
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of HER2 expression; more specimens with high HER2 scores
(score 3) were seen among cases with high activity (Fig. 4c).
This difference could not be observed for ER + breast cancers.

Breast cancers have histological types that reflect biologi-
cal characteristics. Invasive ductal carcinoma can be classified
into three subtypes—papillotubular, solid-tubular and
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scirrhous carcinoma—which are related to prognosis. We
previously reported their relative overall survival rates as
papillotubular carcinoma > solid-tubular carcinoma > scir-
rhous carcinoma [26]. The more aggressive scirrhous carcino-
ma and solid-tubular carcinoma show higher growth-
stimulating activity than do papillotubular carcinoma and
mucinous types (Fig. 4d), suggesting that growth-stimulating
activity is related to aggressiveness in breast cancer.

Growth Factors in BCTS Promote MCF-7-E10 Cell Growth

Growth-stimulating activity was heat labile and detectable in
the fraction with an MW greater than 5 kDa (data not shown),
suggesting that it could be derived from proteinous factors.
Among various factors in the tumor microenvironment, HGF
derived from stromal fibroblasts has been reported to stimu-
late growth of mouse mammary tumor cells in primary culture
[27]; EGF and IGF-1 are known to activate ER via phosphor-
ylation [18, 19]. To analyze the participation of these growth
factors in tumor growth-stimulating activities found in BCTS,
we first examined the effect of anti-HGF antibody on them. As
shown in Fig. 5a, anti-HGF antibody, but not control IgG,
effectively inhibited extract-stimulated growth of MCF-7-E10
cells. MCF-7 cells reportedly express c-Met, a receptor for
HGF.

We next analyzed the roles of EGF and IGF-1, using the
inhibitors specific for their receptors. IGF-R inhibitor dose-
dependently inhibited the growth of MCF-7-E10 cells while
EGF-R inhibitor, in contrast, stimulated their growth (Fig. 5b, c).

Finally, we analyzed growth factors present in BCTS using
the enzyme immunoassay. HGF was detected in more than
70% of the tested samples, whereas EGFwas detected only in
3 out of 25 samples (Fig. 5d). Although the analysis using
IGF-1R inhibitor suggested involvement of IGF-1 in the
growth-stimulating effect of BCTS as described above, IGF-
1 could not be detected in the enzyme immunoassay. This
might be because of the immunoassay’s sensitivity, or because
other ligands for IGF-1R (such as IGF-II, insulin or unknown
factors) might have been present in the tumor extracts. These
results suggest that signal pathways via HGF or IGF-1R play a
significant role in promoting the growth of breast cancer cells.

Discussion

The tumor microenvironment is apparently associated with
important aspects of epithelial solid tumor progression, in-
cluding tumor growth, angiogenesis and metastasis. In the
tumor microenvironment, growth factors such as EGF, IGF-
1, transforming growth factor-α, transforming growth factorβ
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and stromal-derived factor-I reportedly affect breast cancer
growth, directly or indirectly [1, 3, 4]; however, the combined
effects of these factors and their signal interactions in vivo are
unclear. In this study, using the supernatant of breast cancer
tissues, we analyzed the comprehensive effects of breast
cancer-derived factors and found that BCTS effectively and
specifically stimulated breast cancer cell growth. In addition
to estrogen, which is locally produced in the microenviron-
ment in breast cancers of postmenopausal patients [6, 8], our
results suggest that the tumor extracts also stimulated breast
cancer cell growth in an estrogen-independent manner, as anti-
estrogen agents such as tamoxifen and fulvestrant did not
inhibit the effect of BCTS. Furthermore, clinicopathological
data and BCTS-associated growth-stimulation correlated with
tumor size and HER2 expression, indicating the physiological
significance of growth-stimulating activity in BCTS. Thus,
BCTS offers an appropriate means to analyze the combined
effect of the breast cancer-derived factors on tumor cell
behavior.

Although many growth factors might be present in BCTS,
we found HGF and IGF-1R-related signals to affect the
growth-stimulating activity of BCTS, because it was sup-
pressed by anti-HGF antibody and IGF-1R inhibitor. HGF
was detected in tissue extracts of more than 70 % of breast
cancer specimens whereas EGF was detected in only 12 %
(Fig. 5d). The growth-stimulating activities did not always
correlate with HGF concentrations (data not shown), but this
is expected, as growth-stimulating activities in the supernatant

are derived from the signal cross-talks of several factors. HGF,
which acts through its receptor MET, is a multifunctional
cytokine that induces cell survival, growth, differentiation
and motility in most solid human cancers including colorectal,
renal and breast cancers [28]. In normal epithelial cells, HGF,
in combination with other growth factors, promotes mammary
ductal morphogenesis [29]. Overexpression of both HGF and
MET have been frequently reported in breast cancers, and are
associated with poor prognosis [30]. HGF reportedly stimu-
lates breast cancer growth in a paracrine fashion, in that HGF
is produced primarily by stromal fibroblasts and acts on
epithelial cells through its receptor MET [27, 31]. Stromal
fibroblasts from breast cancer tissue produce large amounts of
HGF compared with normal fibroblasts [30]. A c-Met-
targeted therapy, ARQ197—which selectively targets c-Met
tyrosine kinase—is currently in a phase II clinical trial [32];
SGX523—a novel ATP-competitive inhibitor, that is exqui-
sitely selective for inhibition of MET-mediated signaling—is
also being developed [33].

We found that IGF-1R signaling mediated the growth-
stimulating activity of BCTS, because IGF-1R-specific inhib-
itor decreased the growth-stimulating effect of BCTS. IGF-
1R-related signals are widely shown to induce cell prolifera-
tion and survival in breast cancer [34–36]; IGF-R1 activation
protects breast cancer cells from apoptosis induced by various
anticancer drugs [37]. While BCTS stimulated growth of
MCF-7-E10 cells in an estrogen-independent manner, func-
tional interactions between estrogen and IGF-1R signaling
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factors involved in growth-
promoting activity for MCF-7-
E10 cells in BCTS. MCF-7-E10
cells were incubated with BCTS
in the presence of anti-HGF
antibody (a), AG1024, IGF-1R
inhibitor (b), or AG1478, EGFR
inhibitor (c), at the indicated
concentrations. For anti-HGF
antibody treatment, BCTS was
pre-incubated with anti-HGF
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temperature and was then used for
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detected in BCTS were analyzed
by immunoassay using
Quantikine (R&D Systems, MN,
USA). **, P <0.01, ***,
P<0.001
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pathways, including Ras/MAPK and PI3K/Akt have been
reported [38] Estrogen also up-regulates IGF-1R expression
in breast cancer [36]. However, we could not detect IGF-1 and
stromal cell-derived growth factor-1alpha in BCTS (data not
shown), possibly because of the limit of sensitivity by the
immunoassay used in our study; or that other ligands may be
present in the breast cancer microenvironment that activate
IGF-1R—including IGF-II, insulin and unknown factors [39].
Indeed, overexpression of IGF-1R in MCF-7 cells has been
shown to induce IGF-1R tyrosine kinase activation in the
absence of exogenous IGF-1 [40].

These results suggest that signaling pathways via HGF/c-
Met or IGF-1R significantly affect breast cancer cell growth.
However, growth-stimulating activity found in BCTS might
be derived from orchestrated signal crosstalks of several fac-
tors, because recombinant growth factors, including HGF and
IGF-1, could not induce MCF-7-E10 cell growth when used
alone. Further investigations of these activities and the identi-
fication of the cellular sources of the growth factors are needed
to identify the mechanisms of the growth-stimulating effect of
breast cancer tissue supernatant, which may help design more
effective targeted therapies for breast cancer.

Conclusions

The breast cancer microenvironment provides estrogen and
growth factors that affect tumor behavior, but the comprehen-
sive effects of these factors, including signal crosstalk, on
progression of breast cancer remain unclear. Using an
estrogen-signal reporter cell line, MCF-7-E10, stably
transfected with the ERE-GFP gene, we analyzed the effect
of factors present in breast cancer tissues to reflect the in vivo
status of individual cases. We found that they stimulated
growth of MCF-7-E10 cells in an estrogen-independent man-
ner, and that growth-promoting activity is related to aggres-
siveness in breast cancer. Moreover, signal pathways via HGF
and IGF-1 receptor were involved in these activities. Our
study strongly suggests that the evaluation of comprehensive
tumor-promoting activity for individual breast cancers is im-
portant in determining appropriate therapy.
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