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Maresin 1 promotes nerve regeneration 
and alleviates neuropathic pain after nerve 
injury
Jinhuan Wei1†, Wenfeng Su2†, Yayu Zhao2, Zhongya Wei2, Yuchen Hua1, Peng Xue1, Xiang Zhu3, 
Ying Chen4* and Gang Chen1,2,3*   

Abstract 

Background:  Peripheral nerve injury (PNI) is a public health concern that results in sensory and motor disorders as 
well as neuropathic pain and secondary lesions. Currently, effective treatments for PNI are still limited. For example, 
while nerve growth factor (NGF) is widely used in the treatment of PNI to promote nerve regeneration, it also induces 
pain. Maresin 1 (MaR1) is an anti-inflammatory and proresolving mediator that has the potential to regenerate tissue. 
We determined whether MaR1 is able to promote nerve regeneration as well as alleviating neuropathic pain, and to 
be considered as a putative therapeutic agent for treating PNI.

Methods:  PNI models were constructed with 8-week-old adult male ICR mice and treated with NGF, MaR1 or saline 
by local application, intrathecal injection or intraplantar injection. Behavioral analysis and muscle atrophy test were 
assessed after treatment. Immunofluorescence assay was performed to examine the expression of ATF-3, GFAP, IBA1, 
and NF200. The expression transcript levels of inflammatory factors IL1β, IL-6, and TNF-α were detected by quan-
titative real-time RT-PCR. AKT, ERK, mTOR, PI3K, phosphorylated AKT, phosphorylated ERK, phosphorylated mTOR, 
and phosphorylated PI3K levels were examined by western blot analysis. Whole-cell patch-clamp recordings were 
executed to detect transient receptor potential vanilloid 1 (TRPV1) currents.

Results:  MaR1 demonstrated a more robust ability to promote sensory and motor function recovery in mice after 
sciatic nerve crush injury than NGF. Immunohistochemistry analyses showed that the administration of MaR1 to mice 
with nerve crush injury reduced the number of damaged DRG neurons, promoted injured nerve regeneration and 
inhibited gastrocnemius muscle atrophy. Western blot analysis of ND7/23 cells cultured with MaR1 or DRG neurons 
collected from MaR1 treated mice revealed that MaR1 regulated neurite outgrowth through the PI3K–AKT–mTOR 
signaling pathway. Moreover, MaR1 dose-dependently attenuated the mechanical allodynia and thermal hyperalge-
sia induced by nerve injury. Consistent with the analgesic effect, MaR1 inhibited capsaicin-elicited TRPV1 currents, 
repressed the nerve injury-induced activation of spinal microglia and astrocytes and reduced the production of proin-
flammatory cytokines in the spinal cord dorsal horn in PNI mice.
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Background
Peripheral nerve injury (PNI) is a common clinical dis-
ease that is usually caused by sudden crushing, strong 
external force, ischemic injuries, transection, or other 
iatrogenic injuries. Patients with PNI are somewhat 
prohibited by sensory and motor disorders and endure 
neuropathic pain and its secondary lesions [1–3]. Vari-
ous experimental and clinical strategies, such as nerve 
grafts, nerve transfers, nerve conduits, cell-based ther-
apies, and gene therapy, have been implemented to 
improve neuron survival, improve axon regeneration 
and target reinnervation [1, 2]. The use of appropriate 
cytokines to protect damaged neurons and promote 
axonal regeneration has always been an important 
strategy in the study of nerve regeneration. Among 
cytokines, nerve growth factor (NGF) is well known to 
play key roles in neuronal survival, growth and main-
tenance in response to injury [4]. However, researchers 
studying the effects of NGF on PNI have not paid much 
attention to its side effect of inducing neuropathic pain 
[5]. For the last two decades, an increasing number of 
studies have focused on anti-NGF therapy [6]. Since 
NGF plays two roles in the treatment of PNI, improving 
nerve regeneration but accelerating neuropathic pain, 
the discovery of novel cytokine(s) or drug molecular(s) 
that can protect injured neurons, promote axonal 
regeneration, and inhibit neuropathic pain in the treat-
ment of PNI is a very urgent and important task.

Maresin 1 (MaR1), an anti-inflammatory and prore-
solving mediator, is a dioxygenation product produced 
by human macrophages that was discovered and named 
by Serhan et al. [7]. It has shown promising value in the 
treatment of airway inflammation, pneumonia, coli-
tis, delayed wound healing and diabetes complications 
and has been shown to ameliorate pain hypersensitiv-
ity and provide neuronal protection [8–12]. In pla-
naria, MaR1 promoted the speed of head reappearance 
and increased the rate of surgical regeneration [13]; in 
rats and mice, MaR1 promoted bone regeneration [14, 
15]. These results prompted us to investigate whether 
MaR1 can simultaneously exert anti-inflammatory and 
analgesic effects and accelerate nerve regeneration after 
nervous system injury.

In this report, we examined whether MaR1 could pro-
mote nerve regeneration and neurological functional 
recovery and alleviate neuropathic pain after nerve 
injury and compared its effects with those of NGF.

Methods
Mice and surgery
Mouse experiments were performed according to guide-
lines established by the Institutional Animal Care and Use 
Committee of Nantong University and were conducted 
following the ARRIVE guidelines [16, 17]. A prior sam-
ple size calculation was executed using degree of freedom 
(E value) [18] and sample sizes were estimated based on 
our previous studies for similar types of behavioral, bio-
chemical, and electrophysiological analyses [19, 20]. The 
ICR mice used for the experiments were obtained from 
the Laboratory Animal Center of Nantong University. 
Eight-week-old adult male ICR mice (25–30 g) were used 
to construct the PNI models, including a sciatic nerve 
crush model and a sciatic nerve chronic constriction 
injury model (CCI). Primary dorsal root ganglion (DRG) 
neurons were isolated from newborn ICR mice (postna-
tal day 0–1) or adult male ICR mice. Total 235 mice were 
killed in the current study, including 163 adult male mice 
(8–10  weeks old) and 72 newborn ICR mice (postnatal 
day 0–1). The sciatic nerve crush injury model was estab-
lished according to our previous report [21] and the sche-
matic overview of the experimental timeline is shown in 
Additional file 1: Figure S1. Briefly, after anaesthetization 
with isoflurane, the left sciatic nerve of the mouse was 
squeezed with no. 5 jeweler’s forceps for 20  s. In some 
cases, a diluted fluorescent dye (0.5 μl of Vybrant CM-Dil 
in 20  μl of PBS) was injected into the hind paw on the 
injured side at 7 days after nerve crushing, and L5 DRG 
sections were examined 7 days later. The CCI model was 
produced by placing three ligatures (7-0 Prolene, 1-mm 
intervals) around the left sciatic nerve proximal to the tri-
furcation. The ligatures were softly tied until a short flick 
of the ipsilateral hind limb occurred [22]. The mice in 
the sham group were subjected to the surgery described 
above but not to nerve injury. The mice were separated 
into groups (5 mice per cage) and housed under standard 
conditions (25 ± 1  °C, 12-h light/dark cycle, ad  libitum 
access to food and water).

Reagents and administration
Capsaicin (catalog: 404-86-4) and NGF-7S (catalog: 
N0513, 130  kDa) were purchased from Sigma-Aldrich. 
Maresin 1 (7R, 14S-dihydroxy-docosa-4Z, 8E, 10E, 12Z, 
16Z, 19Z-hexaenoic acid) was purchased from Cayman 
Chemical Company (catalog: 1268720-28-0). Vybrant 
CM-Dil Cell-Labeling Solution was purchased from 

Conclusions:  Application of MaR1 to PNI mice significantly promoted nerve regeneration and alleviated neuropathic 
pain, suggesting that MaR1 is a promising therapeutic agent for PNI.

Keywords:  Maresin 1, Inflammation, Nerve regeneration, Neurological recovery, Neuropathic pain, Never injury



Page 3 of 16Wei et al. Journal of Neuroinflammation           (2022) 19:32 	

Invitrogen (catalog: V22885). A sterilized hemostatic 
gelatin sponge containing 500 ng of MaR1 or saline (con-
trol) was immediately applied locally to the injured nerve 
after crushing, and the wound was then closed. Drugs in 
20 μl of PBS were intraplantarly injected using a Hamil-
ton microsyringe with a 30-G needle. The spinal cord was 
punctured with a 30-gauge needle between the L5 and L6 
levels for intrathecal drug delivery.

Cell culture
DRG neurons were harvested from newborn ICR mice 
and then subjected to explant culture or dissociated cul-
ture as previously described [23]. A widely applied neu-
ronal ND cell line (ND7/23) that is a hybrid between 
dorsal root neurons and neuroblastoma N18 Tg2, exhib-
iting sensory neuron-like properties was used in this 
work [24–26]. In brief, ND7/23 rat DRG/mouse neuro-
blastoma hybrid cells were obtained from Sigma-Aldrich 
and maintained in DMEM supplemented with 10% FBS, 
2 mM l-glutamate and 10% penicillin/streptomycin.

Whole‑cell patch‑clamp recordings in dissociated mouse 
DRG neurons
As we described previously [20], whole-cell patch-clamp 
recordings in dissociated DRG neurons (small size, 
< 25  mm) harvested from 4- to 6-week-old mice were 
performed at room temperature using an Axopatch-200B 
amplifier (Axon Instruments, USA). The patch pipettes 
were pulled from borosilicate capillaries (Chase Scientific 
Glass Inc., Rockwood, TN, USA), and their resistance 
when filled with the pipette solution (in mM: 126K-glu-
conate, 10 NaCl, 1 MgCl2, 10 EGTA, 2 NaATP, and 0.1 
MgGTP, adjusted to pH 7.3 with KOH) was 4–5  MΩ. 
Whole-cell recordings were performed in an extracellu-
lar solution (in mM): 140 NaCl, 5 KCl, 2 CaCl2, 1 MgCl2, 
10 HEPES, 10 glucose, adjusted to pH 7.4 NaOH. A volt-
age clamp was applied at a holding membrane poten-
tial of −  70  mV to record the inward currents, and the 
recording chamber (300 µl) was superfused continuously 
(3–4  ml/min). We compensated for series resistance 
(> 80%) and performed leak subtraction. The data were 
low-pass filtered at 2  kHz and sampled at 10  kHz, and 
pClamp10 (Axon Instruments) software was used for the 
experiments and data analysis.

Behavioral analysis
A total of four double-blind behavioral tests were used. 
The double-blind behavioral tests were performed like 
this: the anonymous reagents (saline, NGF or Maresin 
1) were administered to the mice by one researcher, 
and the behavior analysis were performed and recorded 
by another observer who has no information about 
the experimental design. (1) Walking track (footprint) 

analysis was used to analyze basic motor functions, and 
the sciatic function index (SFI) was calculated as previ-
ously reported [21]. In brief, the plantar surface of each 
mouse’s hind paw was smeared with ink, and the mouse 
was allowed to walk in a straight path on white paper. 
(2) The rotarod test (LE8200, RWD Life Science Co., 
Ltd) was used to test complex motor functions as previ-
ously reported [27]. Briefly, mice were tested three times 
at 10-min intervals, and the time spent on the rod was 
recorded and averaged. During the test, the speed was 
increased from 2 to 20 rpm over a 3-min period. (3) The 
von Frey test was used to test mechanical sensitivity as 
previously reported [20]. Briefly, the mice were placed 
in a box on an elevated metal mesh floor and stimulated 
with a series of von Frey filaments of logarithmically 
increasing stiffness (0.02–2.56  gf; Stoelting Company) 
on their hind paws. The 50% paw withdrawal threshold 
was determined by Dixon’s up–down method. (4) Using a 
Hargreaves radiant heat apparatus (IITC Life Science) as 
previously reported [27], we tested the thermal sensitiv-
ity. The basal paw withdrawal latency was adjusted to 9 to 
12 s with a cutoff of 20 s to avoid tissue damage.

Immunofluorescence assay
As we described previously [28], the mice were deeply 
anesthetized with isoflurane, and their ascending aortas 
were perfused first with PBS and then with 4% paraform-
aldehyde. After perfusion, the L4–L6 spinal cord seg-
ments were collected and then postfixed overnight. The 
spinal cord sections were sliced at a thickness of 30 µm 
(free-floating) on a cryostat and processed for immuno-
histochemistry analysis. The sections were first blocked 
with 2% goat serum at room temperature for 1 h and then 
incubated at 4  °C overnight with the following primary 
antibodies: anti-ATF-3 (rabbit, 1:1000, Santa Cruz Bio-
technology Inc.), anti-GFAP (mouse, 1:1000, EMD Mil-
lipore), anti-IBA1 (rabbit, 1:1000; Wako Chemicals Inc., 
USA) and anti-NF200 (mouse, 1:1000, Sigma, catalog: 
N0142). After washing, the sections were incubated at 
room temperature for 2  h with the following secondary 
antibodies (1:400, Jackson ImmunoResearch): Cy3-don-
key anti-rabbit (catalog: 711-165-152) and FITC-donkey 
anti-mouse (catalog: 715-095-150). The stained sections 
were observed and photographed with a Leica fluores-
cence microscope.

Muscle atrophy test
After the administration of MaR1 for 9  days after CCI, 
the gastrocnemius muscles from both hind legs were sep-
arated for imaging and weight measurements. The mus-
cle size and weight were used to assess muscle atrophy.
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Quantitative real‑time RT‑PCR
Total RNA was collected from ipsilateral and contralat-
eral spinal dorsal horn tissues using TRIzol reagent (Life 
Technologies, USA), and 1 µg of RNA was reverse-tran-
scribed using the PrimeScript RT reagent kit (Takara, 
Dalian, China). Gene-specific mRNA analyses were per-
formed using the MiniOpticon Real-Time PCR system 
(BioRad), and the mRNA expression levels were calcu-
lated using the 2−ΔΔCt method. The specific primers, 
including those for the GAPDH control, were synthesized 
by Thermo Fisher Scientific, and the sequences were as 
follows: IL1β (forward TAC​ATC​AGC​ACC​TCA​CAA​GC, 
reverse AGA​AAC​AGT​CCA​GCC​CAT​ACT), IL-6 (for-
ward TCC​ATC​CAG​TTG​CCT​TCT​TGG, reverse CCA​
CGA​TTT​CCC​AGA​GAA​CATG), TNF-α (forward CCC​
CAA​AGG​GAT​GAG​AAG​TT, reverse CAC​TTG​GTG​
GTT​TGC​TAC​GA) and GAPDH (forward TTG​ATG​
GCA​ACA​ATC​TCC​AC, reverse CGT​CCC​GTA​GAC​
AAA​ATG​GT).

Western blot analysis
Total proteins were extracted from ND7/23 cells or DRG 
neurons isolated from mice with RIPA lysis buffer (Beyo-
time, Shanghai, China) containing a protease inhibitor 
cocktail and phosphate inhibitors (Roche Molecular Bio-
chemicals, Inc. Mannheim, Germany). The proteins were 
separated on 8% or 10% SDS-PAGE gels and electropho-
retically transferred onto PVDF membranes. The mem-
branes were blocked with 5% nonfat milk for 1–2 h and 
then incubated with antibodies against phosphorylated 
AKT (p-AKT) (1:1000, rabbit, Cell Signaling, catalog: 
9271), AKT (1:1000, rabbit, Cell Signaling, catalog: 9272), 
phosphorylated ERK (p-ERK) (1:1000, rabbit, Cell Signal-
ing, catalog: 9101), total ERK (1:1000, rabbit, Cell Sign-
aling, catalog: 9102), phosphorylated mTOR (p-mTOR) 
(1:1000, rabbit, Cell Signaling, catalog: 2971), mTOR 
(1:1000, rabbit, Cell Signaling, catalog: 2972), phospho-
rylated PI3K (p-PI3K) (1:1000, rabbit, catalog: 4228), 
PI3K (1:1000, rabbit, Cell Signaling, catalog: 4292), and 
GAPDH (1:10,000, mouse, Proteintech, catalog: 60004-
1-lg) overnight at 4  °C. The next day, the membranes 
were incubated with the corresponding secondary anti-
body at room temperature for 2 h. Bands were detected 
using PierceTM ECL western blotting substrate (Thermo, 
USA), and the results were analyzed by ImageJ software.

Statistical analyses
All data are expressed as the mean ± SD, as indicated 
in the figure captions. Student’s t-test (two groups) or 
ANOVA (one-way and two-way) test or Bonferroni post 
hoc test was used to compare the differences between 

groups, followed by Bonferroni’s test. The criterion for 
statistical significance was p < 0.05. Statistical report and 
t-test comparison are shown in Additional file 3, 4; Sup-
plementary Table 1 and Table 2, respectively.

Results
Sciatic nerve crush injury caused motor dysfunction 
and neuropathic pain in mice
We aimed to study both nerve regeneration and neuro-
pathic pain in one model. Therefore, we established a 
sciatic nerve crush injury model in mice and examined 
motor and sensory functions and pain behavior after 
nerve injury. We first used the SFI evaluation to assess 
the motor function recovery of the affected hindlimb. 
The footprint test showed that the mice developed severe 
motor dysfunction at 3  days after sciatic nerve injury, 
and the recovery took almost 4 weeks (Fig. 1A). Next, we 
performed a rotarod test to evaluate the fine motor func-
tions of the mice after nerve crushing. Severely impaired 
fine motor functions were observed after nerve injury, 
and recovery took 12  weeks (Fig.  1B). This result dif-
fered from that of the footprint test, which showed a full 
recovery of basic motor function after 4 weeks. Moreo-
ver, we investigated pain behavior by the von Frey and 
Hargreaves tests. In the 1st week, the mice with nerve 
injury showed a higher mechanical withdrawal threshold 
than normal mice, and pain sensitivity was high during 
the initial recovery period, peaking in the 3rd week but 
lasting for more than 12 weeks (Fig. 1C). The Hargreaves 
test results showed that the paw withdrawal latencies 
of nerve-injured mice recovered to normal levels after 
11 weeks (Fig. 1D). Therefore, in this model, both motor 
and sensory functions were damaged to some degree, 
and pain behaviors were obvious.

Besides, we executed a 3-week-period experiment to 
monitor motor functions and sensory functions of four 
groups: naïve group (normal mice), sham control (sur-
gery but no crush), sham + MaR1 group, sham + vehicle 
group, and found there was no significant change among 
four groups, which suggesting that MaR1 has no detect-
able negative effect on healthy mice (Fig. 2).

MaR1 stimulated axon regeneration
A previous study reported that MaR1 potentially stimu-
lated tissue regeneration in planaria [13]. And we herein 
investigated whether MaR1 could promote nerve regen-
eration in injured mice. To answer this question, we har-
vested newborn mouse DRGs and then cultured them 
with MaR1. After the administration of MaR1 (10  ng/
ml) for 5  days, the DRG explants showed more extend-
ing nerve fiber bundles and more neurons than those 
not treated with MaR1 (Fig.  3A). Similar results were 
observed when MaR1 was applied to dissociated DRG 
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cell cultures for 36 h. The DRGs in the MaR1 group dis-
played substantially more and longer neurites than those 
in the control group without MaR1 treatment (Fig.  3B). 
Therefore, MaR1 directly influences neurite outgrowth in 
DRG cells from both dissociated and explant cultures.

Most neurotrophic factors promote neurite outgrowth 
in a dose-dependent manner [29]. To determine the opti-
mal dosage of MaR1 for further study, we cultured DRG 
cells with the agent at a series of concentrations (0.1, 0.5, 
1, 3, 10, 100 ng/ml) for 36 h. MaR1 (1, 3, 10, 100 ng/ml) 
significantly increased the length and number of neu-
rites (Fig.  3C, D, p < 0.05) in a dose-dependent manner 
compared with those in the control group. However, the 
results of the 100  ng/ml MaR1 group were not signifi-
cantly different from those of the 10 ng/ml MaR1 group. 
In addition, we assessed the EC50 values (concentration 
needed to achieve 50% of the maximal effect) of MaR1 
and found that the values were 1.12  ng/ml and 0.99  ng/
ml for promoting the neurite length and number, respec-
tively (Fig. 3E, F). Moreover, we compared the effects of 
NGF and MaR1 at the same dosage on neurite outgrowth. 
NGF promoted the length and number of neurites also 

in a dose-dependent manner with an optimal threshold 
effect occurring at 100  ng/ml (Additional file  2: Figure 
S2). Compared with EC50 for MaR1 was around 1 ng/ml 
to promote neurite length and number, the EC50 for NGF 
was 7–9  ng/ml. More interestingly, 10  ng/ml MaR1 had 
a much stronger ability to increase neurite length than 
NGF at the same concentration (Fig. 3G), but their abili-
ties to increase neurite numbers were not significantly dif-
ferent (Fig.  3H). Taken together, our results suggest that 
MaR1 promotes neurite outgrowth in DRG cells cultured 
in vitro at a lower dosage than that required for NGF.

MaR1 reduced DRG neuronal damage and promoted nerve 
path reconstruction after nerve injury
Next, we examined whether MaR1 could attenuate 
DRG neuronal damage induced by nerve crush injury in 
mice. After the surgery, the damaged nerves of mice in 
the experimental group were covered with a sterilized 
hemostatic gelatin sponge containing 500  ng of MaR1, 
while those of mice in the control group were covered 
with the saline vehicle. Immunohistochemical analysis 
of ATF3 showed that MaR1 significantly reduced the 

Fig. 1  Motor and sensory dysfunction and neuropathic pain in mice with sciatic nerve crush injury. The motor functions of mice with sciatic nerve 
crush injury were measured by footprint (A) and rotarod (B) tests. The sensory functions of mice with sciatic nerve crush injury were measured by 
the von Frey (C) and Hargreaves (D) tests. The data are presented as the mean ± SD, n = 8 mice in each group, *p < 0.05 versus the baseline (BL) 
group, one-way ANOVA test
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number of damaged DRG neurons after 7 days of treat-
ment (Fig. 4A, B). Our results suggested that MaR1 not 
only prohibited more DRG neuronal damage after nerve 
crush injury but also promoted the recovery of motor 
nerves and nerve path reconstruction. To confirm this 
hypothesis, we observed the regeneration of DRG neu-
rons by intraplantarly injecting Dil, a fluorescent tracer 
dye, at 7  days after nerve injury. Two days later, more 
neurons were dyed with Dil in the MaR1 group than 
in the vehicle control group (Fig.  4C, D), which indi-
cated that MaR1 promoted nerve path reconstruction. 
Because muscle atrophy is a common phenomenon 
after PNI, we isolated the gastrocnemius muscles from 

mice treated with MaR1 or saline at 9 days after surgery 
to evaluate the ability of MaR1 to prevent muscle atro-
phy. Unsurprisingly, both the size and weight of the gas-
trocnemius muscles in the MaR1 group were larger than 
those of the vehicle group (Fig.  4E, F). Taken together, 
these results showed that MaR1 reduced DRG neuronal 
damage, inhibited muscle atrophy, and promoted the 
regeneration of DRG neurons after nerve crush injury.

MaR1 promoted functional recovery after nerve injury 
more effectively than NGF
Because MaR1 administered at a lower dosage promoted 
neurite outgrowth better than NGF (Fig. 3G, H), we next 

Fig. 2  Motor and sensory functions were not affected in control groups. Naïve group, sham group, sham + vehicle group and sham + MaR1 group 
were used as the control groups in this study. The motor functions of mice with sciatic nerve crush injury were measured by footprint (A) and 
rotarod (B) tests. The sensory functions of mice with sciatic nerve crush injury were measured by the von Frey (C) and Hargreaves (D) tests. The data 
are presented as the mean ± SD, n = 6 mice in each group, one-way ANOVA test

(See figure on next page.)
Fig. 3  MaR1 dose-dependently promoted axon regeneration in vitro. MaR1 stimulated neurite outgrowth in DRG neurons grown in explant 
and dissociated cultures in vitro. Neurofilament staining was employed to examine the outgrowth of neurites in the DRG. A DRG neurons 
grown in explant cultures for 5 days and treated with (right) and without (left) MaR1. Scale bars = 100 μm. B DRG neurons grown in dissociated 
cultures for 36 h and treated with (right) and without (left) MaR1. Scale bars = 100 μm. C, D MaR1 increased the neurite length and number in a 
dose-dependent manner. DRG neurons cultured with MaR1 for 36 h. E, F The EC50 values at which MaR1 increased the neurite length and number 
were measured. G, H Comparison of the effects of MaR1 and NGF at the same concentration on increasing the neurite length and number. MaR1 
and NGF were added in the culture medium. The data are presented as the mean ± SD, *p < 0.05 versus the control group; #p < 0.05 versus the NGF 
group, Student’s t-test and one-way ANOVA
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Fig. 3  (See legend on previous page.)
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compared the effects of MaR1 and NGF at the same dose 
(500 ng) on motor function and sensory function recov-
ery in mice with nerve crush injury. Although the basic 
motor functions measured by the footprint test were not 
significantly different between the two groups of mice 
treated with MaR1 and NGF separately, the complex 
motor function measured by the rotarod test showed that 
MaR1 worked more quickly and efficiently than NGF to 
promote motor function recovery after nerve crushing 
(Fig. 4G, H). Similar results were obtained in the von Frey 
and Hargreaves tests, as MaR1 promoted the recovery of 
normal mechanical and thermal sensations after nerve 
injury faster than NGF (Fig. 4I, J). Therefore, we suggest 
that MaR1 is better for PNI treatment than NGF, which 
requires a higher dosage and a longer treatment time.

MaR1 alleviated nerve injury‑induced neuropathic pain
Next, we evaluated the effects of MaR1 on neuropathic 
pain in CCI mice. As shown in Fig. 5A, B the ipsilateral 
paw withdrawal threshold and paw withdrawal latency 
were dramatically decreased at 1 week after the surgery. 
The intrathecal injection of MaR1 (10 ng or 100 ng) rap-
idly reversed mechanical allodynia within 1  h, and the 
effect lasted for more than 3  h and was dose-depend-
ent (Fig.  5A). Similarly, MaR1 also reduced the thermal 
hyperalgesia in CCI mice (Fig. 5B). The analgesic effects 
of MaR1 disappeared at 24 h after treatment.

Transient receptor potential vanilloid 1 (TRPV1) is 
a type of TRP channel that plays an important role in 
mediating somatic inflammatory pain after injury [30, 
31], and substantial efforts have been made to develop 
small-molecule inhibitors of TRP channels (e.g., TRPV1 
and TRPA1). A previous study suggested that MaR1 
inhibits capsaicin-induced TRPV1 currents and neuronal 
activity in trigeminal ganglion and DRG neurons [13, 32]. 
Here, our patch-clamp recording results showed that 
100  nM capsaicin elicited a noticeable inward current 
in the perfusion of mouse DRG neurons, and the inward 
current was almost completely inhibited by pretreatment 
with MaR1 (3 ng/ml) (Fig. 5C), which is consistent with 
previous studies reporting that MaR1 potently modulates 
TRPV1.

MaR1 inhibited glial cell activation and inflammation 
in the spinal cord after nerve crush injury
Maintenance of the glial cell resting state is important 
for central nervous system homeostasis [33, 34]. The 
activation of glial cells by noxious stimuli and inflamma-
tion triggers an inflammatory response, thereby inducing 
neuropathic pain. Therefore, we evaluated the expression 
of the astrocytic marker GFAP and the microglial marker 
IBA-1 in L4–L6 spinal dorsal horn sections at 7  days 
after sciatic nerve crush injury by double immunohisto-
chemistry analysis. In the vehicle group, the fluorescence 
intensities of GFAP and IBA-1 immunoreactivity in the 
spinal cord dorsal horn were markedly upregulated on 
the ipsilateral side compared with the contralateral side 
(Fig.  5D–F). In contrast, the intensities of GFAP and 
IBA-1 immunoreactivity on the ipsilateral side were sig-
nificantly reduced in the group treated with the sterile 
gelatin sponge containing 500  ng of MaR1 immediately 
after nerve crush injury (Fig. 5D–F).

Due to their roles in inflammatory propagation and 
neutrophil recruitment, proinflammatory cytokines are 
important in the initiation and maintenance of neuro-
pathic pain [35]. The expression levels of the inflamma-
tory factors IL1β, IL6 and TNF-ɑ in the ipsilateral L4–L6 
spinal dorsal horn were increased compared with those 
on the contralateral side at 7 days after the nerve crush 
injury as determined by qRT-PCR (Fig.  5G). However, 
the levels of these inflammatory factors were signifi-
cantly suppressed by the local application of MaR1 to 
the injured nerve (Fig.  5G). These results suggest that 
MaR1 attenuates nerve injury-induced neuropathic pain 
by repressing the astrocyte and microglia activation and 
proinflammatory cytokine production in the spinal cord.

MaR1 promoted nerve growth via the PI3K–AKT–mTOR 
signaling pathway
To assess the mechanisms underlying the analgesic 
effect of MaR1 in PNI, we examined its influence on 
the basic pain thresholds of naïve mice and compared 
it with that of NGF. After the intraplantar injection of 
saline (20  μl), MaR1 (50  ng in 20  μl saline) and NGF 
(50  ng in 20  μl saline), we observed no significant 

Fig. 4  MaR1 protected against DRG neuronal damage and improved functional neurological recovery. Immunohistochemical analysis of ATF3 was 
used to determine the number of DRG neurons after 7 days of MaR1 or saline (vehicle) treatment (A, B). Neuronal regeneration was detected by the 
Dil labeling of DRG neurons after 9 days of MaR1 or vehicle administration (C, D). MaR1 (500 ng) or saline (vehicle) was administered using the sterile 
gelatin sponge to the injured region, scale bars = 50 μm. The data are presented as the mean ± SD, *p < 0.05 versus the sham group; #p < 0.05 versus 
the vehicle group, one-way ANOVA. E, F The size and weight of the gastrocnemius muscle were measured after 9 days treated with MaR1 or saline. 
Scale bars = 5 mm. The data are presented as the mean ± SD, *p < 0.05 versus the vehicle group, Student’s t-test. G–J The local application of MaR1 
(500 ng in a sterile gelatin sponge) or NGF (500 ng in sterile gelatin sponge) to the injured nerve promoted motor and sensory function recovery, 
but MaR1 was more effective. The data are presented as the mean ± SD, n = 6 mice in each group, *p < 0.05 versus the BL group, #p < 0.05 versus the 
NGF group, $p < 0.05 versus both the BL and NGF groups, two-way ANOVA and Bonferroni post hoc test

(See figure on next page.)
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changes in the pain thresholds between the vehicle and 
MaR1 groups (Fig.  6A, B). However, the pain thresh-
olds were decreased significantly in the NGF group 
at all the tested time points as determined by the von 
Frey and Hargreaves tests (Fig. 6A, B). Thus, given the 
role of NGF in promoting pain, MaR1 is much better 
for the treatment of nerve injury.

Because the mechanisms underlying MaR1 function 
are complicated and relatively unknown, we investi-
gated whether MaR1 functions via the same pathway 
as NGF to better understand how it regulates neu-
ronal growth. We treated ND7/23 cells with MaR1 or 
NGF for 60  min, and western blot analysis revealed 
that phosphorylated AKT (p-AKT) was upregulated 
in the MaR1 and NGF groups compared with the vehi-
cle group, while phosphorylated ERK (p-ERK) was 
upregulated in only the NGF group compared with 
the vehicle group (Fig.  6C, D). There were no detect-
able differences in AKT and ERK expression among 
all three groups (Fig.  6C, D). We next examined the 
effect of MaR1 on the phosphorylation of mTOR, 
a common downstream protein in the Akt signal-
ing pathway. Phosphorylated mTOR (p-mTOR) levels 
were increased in both the MaR1 and NGF treatment 
groups, and the protein expression of mTOR was not 
significantly different among the three groups (Fig. 6E, 
F). The PI3K–AKT pathway is well known to medi-
ate neuronal survival, and we next investigated the 
protein expression of phosphorylated PI3K (p-PI3K). 
Our results clearly demonstrated that MaR1 triggered 
p-PI3K protein expression, like NGF, did but did not 
affect PI3K expression (Fig.  6E, F). Moreover, west-
ern blot analysis also exhibited the upregulated levels 
of p-PI3K, p-AKT and p-mTOR in the DRG neurons 
collected from mice treated with MaR1 for 3  days 
compared with that from the vehicle group, while the 
p-ERK/ERK level was only increased in NGF treated 
group (Fig. 6G, H). Taken together, our results showed 
that MaR1 regulates neural growth through the PI3K–
AKT–mTOR signaling pathway both in  vitro and 
in vivo.

Discussion
PNI is a common occurrence that causes motor, sensory 
and autonomic nervous system dysfunction as well as 
neuropathic pain. While surgical intervention is the main 
treatment for PNI, conservative and pharmacological 
treatments as well as cell-based therapies, gene therapies 
and growth factors are also popular for patients. Several 
growth factors have already been identified and preclini-
cal applied for the treatment of PNI, and NGF is one of 
the best studied. NGF plays vital roles in promoting the 
growth and survival of neurons. In recent decades, an 
increasing number of studies have suggested that NGF 
antagonism can ameliorate pain and pain-related behav-
ior [4, 36–40]. Preclinical and clinical trials have demon-
strated that the direct intradermal injection of NGF into 
rodents and humans clearly activates and sensitizes noci-
ceptors [41–43]. Therefore, a variety of strategies have 
been designed to target the NGF pathway and thereby 
reduce neuropathic pain. MaR1, a newly identified anti-
inflammatory and proresolving mediator, could be an 
important reagent for conservative treatment. Here, we 
showed that MaR1 stimulated the DRG growth much 
more strongly than NGF at the same dosage (Fig. 3G, H). 
We also demonstrated that MaR1 protected damaged 
DRG neurons and promoted functional neurological 
recovery. In mice with sciatic nerve crush injury, MaR1 
at a low dose accelerated the recovery of both motor 
function and sensory function, promoted neural regen-
eration, and reduced DRG neuronal damage (Fig.  4I, J), 
which suggests that the use of MaR1 for PNI treatment 
will ease the economic burdens on patients.

In addition, the paw withdrawal threshold and paw 
withdrawal latency were decreased after the injection 
of NGF into the plantar tissues of normal mice, while 
there were no changes in these parameters in the mice 
receiving the MaR1 injection (Fig.  6A, B). This result 
suggests that even though NGF plays a neuroprotec-
tive role, its side effect of inducing mechanical and ther-
mal pain represents a significant limitation. In contrast, 
MaR1 was not shown to induce pain but rather inhib-
ited CCI-induced neuropathic pain development in our 

(See figure on next page.)
Fig. 5  Maresin 1 alleviated nerve injury-induced neuropathic pain. Intrathecal injection of MaR1 attenuated the mechanical allodynia (A) and 
thermal hyperalgesia (B) induced by SCI. The data are presented as the mean ± SD, n = 6 mice in each group, *p < 0.05 versus the BL group; #p < 0.05 
versus the 10 ng MaR1 group, two-way ANOVA and Bonferroni post hoc test. C MaR1 inhibited capsaicin (CAP; 100 nM)-induced inward currents. 
The data are presented as the mean ± SD, n = 9 neurons, *p < 0.05 versus the control group, Student’s t-test. D–F MaR1 suppressed the activation of 
astrocytes (immunofluorescence staining of GFAP) and microglia (immunofluorescence staining of IBA-1) in the L4–L6 spinal dorsal horn at 7 days 
after sciatic nerve crush injury by double immunohistochemistry analysis. *p < 0.05 versus the contralateral group; #p < 0.05 versus the vehicle group, 
Student’s t-test, two-way ANOVA and Bonferroni post hoc test. Intensity of staining was qualified by ImageJ. Four fluorescence positive arbitrary 
units were randomly selected and calculated the intensity of staining with background subtraction by analyze-measure function of ImageJ. G 
qRT-PCR indicated that MaR1 inhibited the increased mRNA expression of Il1β, Il6, and TNF-a in the ipsilateral L4–L6 region induced by sciatic nerve 
crush injury at 7 days after the treatment. The data are presented as the mean ± SD, n = 4 mice in each group. *p < 0.05 versus the contralateral 
group; #p < 0.05 versus the vehicle group, Student’s t-test, two-way ANOVA and Bonferroni post hoc test
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study (Fig. 4I, J). Both sciatic nerve chronic constriction 
injury (CCI) model and crush injury model are typical 
models for PNI. Sciatic crush injury causes severe ana-
tomical damage with a large number of axons fractured 
and is one of the most widely applied models for the 
study of nerve repair and regeneration [44]. Motor and 
sensory impairment is the primary injury after sciatic 
nerve crush, and neuropathic pain is the secondary pain 
that occurs during nerve regeneration. CCI with extru-
sion leads to mild injury with little axon damage, and the 
inflammatory response triggers pathological pain, hence 
provides an opportunity to mimic neuropathic injury and 
much more popular be used for studying neuropathic 
pain [45, 46]. Therefore, the effects of MaR1 on nerve 
regeneration were studied by local sciatic nerve admin-
istration in sciatic crush model while the effects of MaR1 
on pain relieve and the expression patterns of inflamma-
tory factors in spinal cord dorsal horn were examined in 
CCI model. The intrathecal injection of MaR1 into CCI 
model mice reduced allodynia to some extent in a dose-
dependent manner (Fig. 5A. B). All of the above results 
strongly indicate that MaR1 should be considered a novel 
target for preclinical PNI treatment.

While the mechanisms of MaR1 are not well under-
stood, those underlying NGF-induced pain have been 
studied extensively and might provide some clues about 
how MaR1 exerts its effects. Previous studies have 
demonstrated that NGF binds to TrkA–TrkA or TrkA–
p75NTR to phosphorylate the TrkA cytoplasmic receptor 
and then triggers numerous second-messenger cascades 
(e.g., PI3K, AKT, ERK, mTOR) to affect the growth, dif-
ferentiation and survival of neuronal cells [6, 47, 48]. 
AKT and ERK have been indicated to significantly con-
tribute to the pathogenesis of various neurodegenerative 
diseases and to PNI [49, 50]. The PI3K/AKT pathway is 
activated by the NGF/TrkA complex and then partici-
pates in the cognitive dysfunctional pathological process 
[51], regulates neurotrophin retrograde axonal transpor-
tation in the nervous system [52] and determines neu-
ronal polarity and axon growth [53, 54]. In neuronal cell 
lines, PI3K promotes the outgrowth and retraction of 
neurites [55, 56]. Since NGF is known to bind TrkA to 

initiate downstream signaling pathways, such as PI3K–
AKT and Ras–MEK, followed by activation of the ERK 
or mTOR signal transduction pathway and, finally, the 
regulation of cytokine secretion, we aimed to examine 
whether MaR1 functions via a similar pathway in ND7/23 
cells and DRG neurons collected from mice by western 
blot. Interestingly, in ND7/23 cells, the protein expres-
sion of p-AKT was improved to similar levels in the 
MaR1 and NGF treatment groups, while the AKT expres-
sion was not noticeably altered in either group (Fig. 6C, 
D); compared with the vehicle group, p-AKT/AKT level 
was upregulated in MaR1 treated mice but no signifi-
cant change was found in NGF treated group (Fig.  6G, 
H). However, no matter in ND7/23 cells or DRG neurons 
isolated from mice, neither the p-ERK level nor the ERK 
level was changed by the administration of MaR1, unlike 
in the NGF treatment group (Fig. 6E–H). In ND7/23cells, 
the expression levels of AKT downstream of p-mTOR 
and AKT upstream of PI3K were elevated in both the 
MaR1 and NGF treatment groups, which indicated that 
like NGF, MaR1 promotes the neuronal growth process 
via the PI3K–AKT–mTOR pathway in vitro, while NGF 
also functions via the PI3K–ERK pathway. In vivo, MaR1 
also participates in PI3K–AKT–mTOR pathway while 
NGF seems like only gets involved in ERK signaling path-
way (Fig. 6G, H).

Thus far, little is known about the MaR1 receptors. 
Colas et  al. discovered that MaR1 is a partial agonist of 
recombinant human leukotriene B4 receptor (BLT1), 
suggesting that BLT1 is a potential receptor for MaR1 
[57]. Recently, human leucine-rich repeat containing G 
protein-coupled receptor 6 (LGR6), a plasma membrane 
GPCR, was screened out as a receptor for MaR1 [58]. 
MaR1 and LGR6 interactions in phagocytes were clearly 
demonstrated to play a role in resolving inflammation. 
Another confirmed receptor for MaR1 is retinoic acid-
related orphan receptor α (RORα), which induces non-
alcoholic steatohepatitis (NASH) protection through the 
MaR1/RORα/12-lipoxygenase (12-LOX) autoregulatory 
circuit [59]. RORα and LGR6 are the molecular targets 
for MaR1 in chronic NASH and acute sepsis, respec-
tively. However, whether RORα or LGR6, or even both, 

Fig. 6  Maresin 1 regulated the PI3K–AKT–mTOR pathway. A, B Intraplantar injection of MaR1 did not affect the mechanical withdrawal threshold or 
paw withdrawal latency of normal mice, while NGF did. The data are presented as the mean ± SD, n = 6 mice in each group. *p < 0.05 MaR1 group 
verse the vehicle group; #p < 0.05 NGF group verse the vehicle group, two-way ANOVA and Bonferroni post hoc test. C–F Western blot analysis 
indicated that the administration of MaR1 to ND7/23 cells for 60 min significantly activated the PI3K–AKT–mTOR pathway, while NGF promoted the 
expression of p-PI3K, p-AKT, p-mTOR and p-ERK, *p < 0.05, Student’s t-test and one-way ANOVA. G, H In vivo, western blot analysis of DRG neurons 
isolated from mice indicated that MaR1 significantly activated the PI3K–AKT–mTOR pathway, while NGF only promoted the expression of p-ERK. 
DRG neurons collected from the mice with MaR1 (500 ng), NGF (500 ng) or saline (vehicle) that administered using the sterile gelatin sponge to the 
injured region for 3 days. The data are presented as the mean ± SD, n = 3 mice in each group, Student’s t-test and one-way ANOVA test. *p < 0.05, 
**p < 0.01 verse vehicle group

(See figure on next page.)
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functions as a MaR1 receptor and thereby triggers intra-
cellular cascades to promote PNI recovery requires fur-
ther study. A deeper and updated understanding of this 
phenomenon will likely significantly advance the chances 
of MaR1 being investigated in clinical trials.

Besides, in our sciatic crush injury mice the basic 
motor function tested by Footprint could easily revered 
about 1  month while complicated motor action poten-
tials examined by Rotarod test were slightly recovered 
even after 3 months (Fig. 1A, B), which is consistent with 
our previous results that the compound muscle action 
potentials (CMAPs) not completely restored even after 
56  days [60]. It might due to the different strategies to 
construct sciatic nerve crush models, such as the distinct 
tools, time and force for extrusion lead to different injury 
degrees and recovery period. Also, the different animal 
models cause inconsistency since we used mice instead of 
the widely used rats [61].

In conclusion, we provided clear evidence that MaR1 
should be considered a novel analgesic agent for the 
treatment of neuropathic pain and as a new activator for 
nerve regeneration to improve functional neurological 
recovery after nerve crush injury. MaR1 should be con-
sidered as the mainstay treatment for PNI rather than 
NGF, which is expensive and has some uncertain adverse 
effects.

Conclusions
Peripheral nerve injury (PNI) is a public health concern 
that results in sensory and motor disorders as well as 
neuropathic pain and secondary lesions. Currently, effec-
tive treatments for PNI are still limited. One well-known 
treatment is nerve growth factor (NGF), which improves 
nerve regeneration but accelerates neuropathic pain. 
New cytokine(s) or drug molecular(s) that function bet-
ter than NGF are urgently needed for patients with PNI. 
Maresin 1 (MaR1) is an anti-inflammatory and proresolv-
ing mediator that has the potential to regenerate tissue. 
Our study demonstrated that the administration of MaR1 
to a mouse model of PNI not only promoted neurological 
functional recovery by protecting damaged DRG neurons 
and promoting injured axonal regeneration but also alle-
viated neuropathic pain by inhibiting glial cell activation 
and the inflammatory response in the spinal cord. There-
fore, our results suggest that MaR1 is a promising thera-
peutic agent for PNI.
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