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Abstract
Rapidly growing public gene expression databases contain a wealth of data for building an

unprecedentedly detailed picture of human biology and disease. This data comes from

many diverse measurement platforms that make integrating it all difficult. Although RNA-se-

quencing (RNA-seq) is attracting the most attention, at present, the rate of new microarray

studies submitted to public databases far exceeds the rate of new RNA-seq studies. There

is clearly a need for methods that make it easier to combine data from different technolo-

gies. In this paper, we propose a new method for processing RNA-seq data that yields gene

expression estimates that are much more similar to corresponding estimates from microar-

ray data, hence greatly improving cross-platform comparability. The method we call PREBS

is based on estimating the expression from RNA-seq reads overlapping the microarray

probe regions, and processing these estimates with standard microarray summarisation al-

gorithms. Using paired microarray and RNA-seq samples from TCGA LAML data set we

show that PREBS expression estimates derived from RNA-seq are more similar to microar-

ray-based expression estimates than those from other RNA-seq processing methods. In an

experiment to retrieve paired microarray samples from a database using an RNA-seq query

sample, gene signatures defined based on PREBS expression estimates were found to be

much more accurate than those from other methods. PREBS also allows new ways of using

RNA-seq data, such as expression estimation for microarray probe sets. An implementation

of the proposed method is available in the Bioconductor package “prebs.”

Introduction
Public gene expression databases such as ArrayExpress [1] and Gene Expression Omnibus [2]
host public data from more than half a million gene expression experiments. While the field is
moving toward sequencing-based methods for expression analysis, an overwhelming majority
of the existing and even newly uploaded data in these databases are still from microarray plat-
forms as demonstrated in Table 1. The existing microarray-based data represent a huge
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investment and being able to utilise it efficiently as background information in new sequenc-
ing-based studies is of great interest.

Recently there has been significant interest in utilising the large public databases to holisti-
cally characterise phenotypes based on expression in new samples [3]. Most work utilising
these large databases is based on differential expression [4–6], but Schmid et al. [3] argue that
absolute expression can yield a more comprehensive picture. All of these methods are currently
restricted to microarray data, which severely limits their utility in new studies.

RNA-seq and microarrays are based on very different principles and ultimately measure dif-
ferent things [7]. Numerous experimental comparisons have demonstrated RNA-seq and mi-
croarrays to yield broadly comparable results [8–15]. These results demonstrate that the
platforms typically agree on differentially expressed genes between sufficiently different sam-
ples, although RNA-seq tends to be more sensitive. For measures of absolute expression, there
is typically a clear correlation, the level of which ranges from moderate to very high depending
on the example.

In this paper we present a method for processing RNA-seq data in a way to make the result-
ing expression measures significantly more comparable with measures derived from microar-
ray data by estimating the expression level at the microarray probe regions using a method we
call PREBS (Probe Region Expression estimation Based on Sequencing). The improvement is
especially significant for measures of absolute expression. This improved comparability comes
at the expense of ignoring some information in the RNA-seq data by focusing the analysis to
regions covered by the microarray probes. Because of this loss of information, PREBS should
not be viewed as a replacement of standard RNA-seq analysis tools. Neither is it a replacement
for actually performing the corresponding microarray experiment if the sample material and
sufficient resources are available, but rather a cheap computational alternative for the very
common case when either samples or resources are not available.

Materials and Methods

Basic description of the method
One of the fundamental differences between microarray and RNA-seq technologies is that mi-
croarrays, especially now ubiquitous oligonucleotide arrays, measure gene expression based on
the parts of the gene where probe sequences are located [16] while RNA-seq measures expres-
sion over the whole gene sequence [17]. The idea of our method is to eliminate this difference
by calculating RNA-seq gene expression measures only based on the parts of the gene where
microarray probe sequences are located.

Traditionally gene expression is estimated from RNA-seq data by counting the number of
reads that overlap with exons of the gene (count methods) [17, 18]. The analysis in higher eu-
karyotes can be complicated by alternative splicing. To account for this, several methods have
been proposed that are based on deconvolution of transcript isoform expression using probabi-
listic models [19–22], but these methods still estimate the expression level across the
whole gene.

In PREBS method we estimate probe region expression by counting the number of reads
that overlap with probe regions and using a statistical model to infer the expression level from
the read counts. We treat the inferred probe region expression levels in a similar way as they
are treated in computational microarray processing pipelines. In particular, we apply two dif-
ferent types of microarray data summarisation algorithms used for Affymetrix data analysis:
the classical RMA algorithm [23] and as an example of more modern probabilistic methods
also the RPA algorithm [24]. The details of applying summarisation algorithms and the statisti-
cal model used to infer probe regions will be described in later sections.
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Using the described method we aim to computationally process RNA-seq data in a way that
is similar to microarray computational processing pipelines. In the Results section we show
that gene expression measures that we get from RNA-seq data this way are more similar to mi-
croarray measures than the measurements that we get using conventional RNA-seq data pro-
cessing methods. We call our RNA-seq data processing method PREBS (Probe Region
Expression estimation Based on Sequencing).

Read counting
For counting read overlaps PREBS uses count_overlaps() function from GenomicRanges pack-
age in R/Bioconductor. Just like implemented in count_overlaps() function, PREBS counts the
read for all overlapping probe regions, even if one read overlaps with several of them. There is
no need to discard reads that overlap several probe regions, because it would cause biased
under-expression of densely probe-packed genome areas. Moreover, PREBS has inherited a
feature from count_overlaps() function that allows to select whether the strand from which the
read originates should be ignored when counting the overlaps. Since most of the RNA-seq pro-
tocols that are used nowadays are not strand-specific, the default behaviour of PREBS is to ig-
nore the strand. Finally, PREBS supports a possibility to process both single-ended and paired-
ended reads. If paired-ended mode is selected, the two mates are treated as a single unit, not as
independent reads during read-counting process.

Probe region expression estimation from RNA-seq
Read sampling in sequencing is inherently a stochastic process. To account for the uncertainty
this induces, we use statistical methods to infer the probe region expression level from
read data.

We assume that the number of reads from a region with a given expression level follows the
Poisson distribution. Placing a conjugate gamma prior on the expression level, we obtain an es-
timate of the expression level as the mean of the posterior distribution. The hyperparameters of
the prior are determined using an empirical Bayesian approach by maximising the marginal
likelihood of the full data.

Expression summarisation
Affymetrix microarray probes are grouped into probe sets containing 8–20 perfect match /
mismatch probe pairs. Perfect match probes are completely complementary to gene portion
they are interrogating while mismatch probes have their middle nucleotide changed. Some al-
gorithms like MAS5 [25] use expression values from mismatch probes to account for non-

Table 1. Number of RNA-seq andmicroarray experiments in ArrayExpress and GEO databases.

Platform Database 2010 2011 2012 2013 2014 2010–2014 All time

RNA-seq ArrayExpress 269 499 877 1454 2114 5213 5470

RNA-seq GEO 136 309 567 1038 1741 3791 3976

Microarray ArrayExpress 6032 5604 6052 6528 5822 30038 40525

Microarray GEO 4243 5152 5521 5705 5589 26210 42130

The data are valid as of January 25, 2015. When querying ArrayExpress database, option “ArrayExpress” data only was unchecked.

doi:10.1371/journal.pone.0126545.t001
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specific binding while RMA and RPA completely ignore mismatch probe values and use only
the perfect match probes.

RMA is probably the most popular microarray summarisation algorithm used nowadays.
RMAmodels probe-specific affinities [23], but it does not model probe-specific variances that
are modelled by newer summarisation algorithms such as RPA [24]. We have implemented
these two summarisation modes in the PREBS algorithm: RMA and RPA. The user has a possi-
bility to choose one of these two summarisation algorithms when running PREBS.

Our implementation of PREBS uses the original RMA and RPA code from Affy [26] and
RPA [24] packages respectively and applies them on our probe expression estimates. The noise
characteristics of microarrays and RNA-seq are different, especially at the low end of the ex-
pression level spectrum, where microarrays have a significant background that is removed by
the background correction step in the RMA and RPA algorithms. Because of the digital nature
of RNA-seq, there is no explicit background like in microarrays, and hence the same back-
ground correction is not applicable. Low expression values in RNA-seq are less accurate and
can be considered as a background, but they can be effectively dealt with by filtering as indicat-
ed below. Therefore, when we applied RMA and RPA algorithms on our data, we have skipped
the background correction step. The two other major steps of RMA and RPA algorithms, nor-
malisation and summarisation, were left unchanged and performed as they are implemented in
corresponding packages.

When processing microarray data using RMA or RPA algorithm, the user has two options:
process the data based on original microarray probe set definitions or based on alternative
probe set definitions using so called Custom CDF files [27]. By default, the resulting expression
values are calculated for the original microarray probe sets. On the other hand, when the data
are processed using Custom CDF files, the expression measures can be directly calculated for
other units such as Ensembl genes. The latter option greatly simplifies the comparison between
microarray and RNA-seq data, since microarray gene expression values calculated for Ensembl
genes can be directly compared with the gene expression values calculated using various RNA-
seq data processing tools.

PREBS shares the feature of being able to run in the same two modes. On the one hand, the
values that we get using Custom CDF files for Ensembl genes can be easily compared with
RNA-seq gene expression values and therefore, most of the results in this paper are based on
this mode. On the other hand, being able to get expression values for the original probe sets is a
unique feature of PREBS that no other RNA-seq data processing method possesses. This fea-
ture is certainly very useful for people who prefer to work on expression summaries for micro-
array probe sets but still want to compare these to RNA-seq expression estimates.

Tools used for implementation
In order to evaluate the effectiveness of our method (PREBS) we compared it to representatives
of two RNA-seq analysis methods: count-based [17] (“read counting”) and isoform deconvolu-
tion (“MMSEQ”). We processed sequencing data using each of the methods and evaluated
their agreement with microarray data by calculating correlations of gene expression.

For the PREBS method, reads were mapped by TopHat software version 1.4.1 [28] to
Human genome version GRCh37.65. We considered only unique genomic alignments to anno-
tated transcripts. When running PREBS with Ensembl gene summaries, the locations for probe
regions were retrieved from Custom CDF file annotations (version 15.0.0 ENSG) [27]. For
probe set summaries, we mapped the probe sequences to the latest human genome build
(hg19) using Bowtie (version 0.12.7). The read overlaps with probe regions were calculated
using GenomicRanges package from R/Bioconductor [29]. Probe region expression estimates

Probe Region Expression Estimation for RNA-Seq Data

PLOS ONE | DOI:10.1371/journal.pone.0126545 May 12, 2015 4 / 18



were calculated as described above and fed to the RMA and RPA algorithms from R/Biocon-
ductor Affy (version 1.42.2) and RPA (version 1.20.01) packages, respectively.

Read counting RPKM values were calculated using the same tools as in PREBS method, but
read overlap counts were calculated for Ensembl genomic annotations that were downloaded
using GenomicFeatures package. RPKM values were calculated using these counts and log2 val-
ues were taken.

For isoform deconvolution we used MMSEQ [21] (software version 0.9.18). Bowtie software
(version 0.12.7) [30] was used to map the reads to the transcriptome, as recommended by
MMSEQ manual. MMSEQ options were set to default and Bowtie options were set as recom-
mended by MMSEQ (-a –best –strata -S -m 100 -X 400). Human transcriptome version
GRCh37.65 from Ensembl database was used. MMSEQ output values were converted from
natural logarithm scale to log2 scale.

Microarray expression values were summarised using RMA and RPA algorithms. In case of
multiple replicates, the mean value was taken as an absolute expression estimate for each state.
RMA and RPA summarised values were in log2 scale, so no logarithm base conversion
was needed.

Significance tests between the observed correlation differences were performed using r.test()
function from psych package in R.

Results

Data sets
We evaluated the performance of our method on two data sets: Marioni [8] and Acute myeloid
leukaemia (LAML) from The Cancer Genome Atlas (TCGA) database [31]. These will be re-
ferred to as Marioni and LAML data sets, respectively. Both of these data sets have paired
RNA-seq and microarray data. The Marioni data set has two samples, human kidney and liver,
both of which were used for testing. The LAML data set has 200 samples in all, 163 of which
have both microarray and RNA-seq data available. For 16 of those read mapping using TopHat
failed to complete (sample numbers: 2808, 2813, 2823, 2824, 2844, 2853, 2865, 2868, 2888,
2892, 2912, 2917, 2959, 2973, 2980, 2982) so we skipped those samples and used the remaining
147 samples. In both of the data sets RNA-seq platform is Illumina Genome Analyzer II and
microarray platform is Affymetrix U133 Plus 2.

The main criterion for selecting the data sets was availability of both RNA-seq and microar-
ray data for exactly the same samples that would be prepared in the same way. There are very
few data sets meeting this criterion. In the other data sets that had paired RNA-seq–microarray
data either the samples were different or not prepared in the same way, or they had some other
technical problems (raw data not available, the pairing of the samples is not clear etc.).

We were interested in checking how much information is lost in each RNA-seq data set by
only focusing on microarray probe locations in the PREBS method. For that we computed ra-
tios of how many of the total reads were mapped to gene regions and out of those how many
were mapped to the microarray probe locations. In the Marioni data set on average 79.4% of
the reads where mapped to gene regions. Out of these, 21.1% where mapped to microarray
probe locations inside the gene regions. In the LAML data set on average 59.1% reads were
mapped to gene regions and 25.2% of these were mapped to probe locations.

Absolute expression comparison
We ran PREBS both in RMA and RPA modes and compared it with two other RNA-seq data
processing methods: count-based [17] (“read counting”) and isoform deconvolution
(“MMSEQ”) [21]. PREBS and the other two RNA-seq data processing methods were evaluated
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based on agreement with microarray expressions where microarray data was processed using
the same RMA and RPA methods. We found that two microarray data processing methods
give very similar results. Overall, the RNA-seq data processing methods show a slightly higher
agreement with microarrays when RPA method is used (see S10 Fig and S11 Fig). Therefore, in
the main text we include only the plots where microarray data were processed with RPA meth-
od and PREBS was run in RPA mode while in the supplementary material we provide all of the
corresponding plots where microarray data were processed with RMAmethod and PREBS was
run in RMAmode.

First, we will present results for expression summaries for Ensembl genes both from micro-
array data and PREBS. This ensures a fair comparison against the other RNA-seq data process-
ing methods, as the methods we tested are able to calculate expression values for Ensembl
genes, too. The other two RNA-seq data processing methods that PREBS was compared to
were count-based [17] (“read counting”) and isoform deconvolution (“MMSEQ”) [21].

In most gene expression studies, low expressed genes are filtered out, because their measure-
ments are noisy and unreliable. Common filtering thresholds for RNA-seq data vary around
0.3 RPKM [32]. This fraction accounts for 70% of top expressed genes in the Marioni data set
and 60.9% of top expressed genes in the LAML data set. To make the filtering uniform among
all of the data sets and methods, we have decided to use at most 60% of top expressed genes.

In order to evaluate the agreement of each RNA-seq data processing method (PREBS,
MMSEQ and read counting) with microarrays, we have calculated the Pearson correlation of
sequencing-based expression values with microarray expression values for each sample in Mar-
ioni and LAML data sets. The correlations were calculated for different fractions of most highly
expressed genes in a sample: 10–60%. To evaluate the methods performance for whole data
sets, we took an average correlation over all samples in each data set (2 samples in the Marioni
data set and 147 samples in the LAML data set). We provide the resulting graph that shows the
average Pearson correlations plotted as a function of the fraction of most highly expressed
genes (Fig 1).

Fig 1. Averaged absolute gene expression correlations (RPAmode). The plots show average absolute gene expression correlations between different
RNA-seq data processing methods and the microarray. Different points correspond to different numbers of top expressed genes. The correlations are
averaged over all samples in the corresponding data sets: (a) the Marioni et al. data set, (b) the LAML data set. The error bars correspond to standard errors
of the mean. For LAML data set the standard errors are so small that the top and bottom error bars are merged in the plot.

doi:10.1371/journal.pone.0126545.g001
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From Fig 1 we can clearly see that PREBS has the best agreement with microarrays for any
number of top expressed genes taken in both data sets. The differences in the LAML data set
are highly statistically significant (p< 10−15 for Wilcoxon signed-rank test) while the Marioni
data set is too small to obtain statistically significant results. Moreover, we observe that the dif-
ference is larger for smaller fractions of top expressed genes taken. This suggests that PREBS is
especially useful when focusing on highly expressed genes.

In order to show that the difference in correlations is robust among different samples, we
provide correlation scatter plots (Fig 2). Each point in the plot represents the comparison of
correlation between PREBS vs microarray and MMSEQ vs microarray for a single sample in
the LAML data set (so there are 147 points in each of the plots). PREBS correlation with micro-
array is better than MMSEQ correlation with microarray for all of the points that are above the
diagonal. From these plots we can see that PREBS agreement with microarray is consistently
better than MMSEQ among different samples in the LAML data set. Moreover, we can see
again that the difference in performance is larger when we take only 10% of top
expressed genes.

To give an example of how gene expression values look like within a single sample, we pro-
vide gene expression scatter plots for the first sample in each of the data sets: kidney sample in
the Marioni and 2803 sample in the LAML data set (Fig 3). The microarray gene expression es-
timates are plotted against sequencing-based estimates for each of the three RNA-seq data pro-
cessing methods: PREBS, MMSEQ and read counting. In general, the shapes of scatter plots for
all of the methods look similar, however, PREBS reaches the highest Pearson correlation both
on kidney sample in the Marioni data set (r = 0.78) and 2803 sample in the LAML data set
(r = 0.83).

We tested the significance of observed correlation differences for a single sample using r.test
() function from psych package. The significance of difference between PREBS vs microarray
correlation and read counting or MMSEQ vs microarray correlation was tested taking into

Fig 2. Absolute gene expression correlation scatter plots (RPAmode). The plots show the comparison of correlations of PREBS vs microarray and
MMSEQ vs microarray for all of the samples in the LAML data set. Each point represents one sample. Two different percentages of top expressed genes are
taken: (a) 10%, (b) 60%.

doi:10.1371/journal.pone.0126545.g002
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account the number of genes for which the correlation is calculated. All of the observed correla-
tion differences were significant with p-values lower than 10−6.

Retrieval of similar microarray experiments by an RNA-seq experiment
One of our main motivations for developing the PREBS method is information retrieval, where
the aim is to retrieve similar experiments based on the content, i.e. the signature of expressed
genes. The higher similarity of RNA-seq and microarray data provided by PREBS processing
should allow combining these two types of data more effectively. This kind of joint modelling
would significantly increase the utility of methods for content-based organisation of large gene
expression databases such as that of [3].

We designed an experiment to see whether the increased absolute gene expression correla-
tion of PREBS and microarrays can be useful in a similar RNA-seq–microarray retrieval task.
In this experiment we had several RNA-seq experiments with a matching microarray experi-
ment that had to be retrieved from a database. We used the 183 microarray samples in the
LAML data set, 147 of which had a matched RNA-seq pair. For each RNA-seq experiment we
calculated gene expression estimate correlation with all microarray experiments. Accuracy was

Fig 3. Absolute gene expression scatter plots (RPAmode). The gene expression values from three different RNA-seq data processing methods
(MMSEQ, read counting and PREBS) are plotted against gene expression values frommicroarray. Only plots for a single sample in each data set are shown.
The top row shows results for the kidney sample from the Marioni et al. data set and the bottom row for the 2803 sample from the LAML data set. The figures
show 60% of most highly expressed genes. The legend contains Pearson correlation (r) and the number of genes (n).

doi:10.1371/journal.pone.0126545.g003
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measured by how often the correct pair had the highest correlation. Accuracy of retrieval was
calculated for all three RNA-seq data processing methods: PREBS, MMSEQ and read counting.

To evaluate the performance of the methods using different sized signatures, we evaluated
the performance of the methods with different numbers of top expressed genes. As we can see
in the results in Fig 4, PREBS has clearly a better agreement with microarrays than the other
RNA-seq data processing methods, especially when relatively small subsets of most highly ex-
pressed genes are used as signatures. Looking this another way, PREBS can provide similar ac-
curacy with a signature that is significantly smaller than what is needed by the other methods,
which can provide significant computational savings in modelling large databases.

Fig 4. Retrieval accuracy of coupled RNA-seq–microarray experiments (RPAmode). The plot shows average precision of retrieving the corresponding
microarray experiment from a large collection based on correlation with expression estimates from RNA-seq as a function of the number of genes used as the
signature. Accuracy is measured as a fraction of the samples which have the largest correlation with its true pair.

doi:10.1371/journal.pone.0126545.g004
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Differential expression comparison
Similarly to the absolute expression comparison, we compared the three RNA-seq data pro-
cessing methods based on agreement with microarrays in differential expression measure-
ments. For each of the methods and for microarrays we calculated log2 fold change values of
gene expression between two states. Our comparison is limited to log2 fold changes instead of
proper statistical differential expression testing because this would require biological replicates
in RNA-seq data which are not available in the data sets used, and would be less meaningful
anyway because of the different nature of the tests used on different platforms. We wish to em-
phasise that we do not recommend this procedure as a primary method of differential expres-
sion analysis for RNA-seq data. The results are reported here to better help evaluate the
strengths and weaknesses of PREBS, and to suggest what is possible with cross-
platform comparisons.

We evaluated the agreement between the three RNA-seq data processing methods and mi-
croarray by calculating Pearson correlations between sequencing-based log2 fold change values
and microarray log2 fold change values. Again we did that for different fractions of top express-
ed genes: 10–60%. Since log2 fold change calculation requires two samples, we calculated them

for all possible sample pairs (1 pair for the Marioni data set and 147
2

� � ¼ 10731 pairs for the

LAML data set). So in Fig 5 we provide log2 fold change correlations averaged over all possible
sample pairs in each data set for different fractions of top expressed genes.

In contrast to the absolute expression case, we see that the differences in differential expres-
sion correlations between different methods are very small. PREBS method performs slightly
better on the higher end of expression (10–20%), but slightly worse on the lower end of expres-
sion (50–60%). We can also see that the differential expression agreement is better in the Mar-
ioni data set where the expression difference between the samples is large than in the LAML
data set where the samples have quite similar expression levels.

Fig 5. Averaged differential gene expression correlations (RPAmode). The plots show average log2 fold change correlations between different RNA-
seq data processing methods and the microarray. Different points correspond to different numbers of top expressed genes. The correlations are averaged
over all samples in the corresponding data sets: (a) the Marioni et al. data set, (b) the LAML data set. The error bars in LAML data set plot correspond to
standard errors of the mean, although the errors are so small that top and bottom bars are merged. Error bars for Marioni data set plot could not be displayed
because there is only one pair of samples for which log2 fold change values were calculated.

doi:10.1371/journal.pone.0126545.g005
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We provide an example of gene expression scatter plots for differential expression for the
first pair of samples of each data set in Fig 6. Again we can see that the shapes of scatter plots
look rather similar between different methods. The correlation levels differ slightly, but not as
much as in absolute expression case.

Fig 7 shows a comparison of the numbers of genes that have absolute value of log2 fold
change greater than 1.5 (the criterion for differential expression used e.g. in [13]) for example
sample pairs in both data sets. According to these results, PREBS has a better correlation with
microarray results by having many more genes in common with microarrays than read count-
ing and MMSEQ methods on both data sets. On Marioni data set PREBS has 486 differentially
expressed genes that are common with microarrays while MMSEQ and read counting have
only 81 and 84 respectively. On LAML data set the difference is even larger: PREBS has 815
genes common with microarrays while MMSEQ and read counting have only 142 and 86 re-
spectively. On the other hand, both MMSEQ and read counting find a lot of differentially ex-
pressed genes that are not detected by neither PREBS nor microarray (3219 on Marioni and
2003 on LAML). The added sensitivity arises most likely because it uses read data from the
whole gene regions, while PREBS restricts itself only to the gene regions where microarray

Fig 6. Differential expression scatter plots (RPAmode). log2 fold change values for differential expression estimated using different RNA-seq analysis
methods plotted against corresponding microarray log2 fold change values. The figures show 60% of most highly expressed genes. Only plots for a single
sample pair in each data set are shown. The top row shows the fold changes between the kidney and liver samples from the Marioni data set, while the
bottom row shows changes between samples 2803 and 2805 from the LAML data set. The legend contains Pearson correlation (r) and the number of genes
(n).

doi:10.1371/journal.pone.0126545.g006
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probes are located. Overall, this again confirms that PREBS results agree with microarray better
than MMSEQ and read counting results.

Cross-platform differential expression
Better comparability between microarray and RNA-seq data also allows completely new opera-
tions, such as cross-platform differential expression analysis between samples measured with
different technologies. This is a very difficult task because RNA-seq and microarray measures
suffer from different biases, and the results of any such analysis should always be interpreted
with care.

To compute the cross-platform differential expression fold change we perform an extreme
quantile normalisation by replacing RNA-seq gene expression measures with microarray gene
expression measures having corresponding ranks in the coupled experiment. This way, we
have not changed the relative order expression levels, but made the dynamic ranges of the two
platforms identical.

The correlation plots of log2 fold changes for cross-platform differential gene expression are
shown in Fig 8. We can see that PREBS has significantly better agreement with microarrays
than the two other methods both on Marioni and LAML data sets and can reach a reasonable
level of correlation especially with the Marioni data. The relative performances of the different
methods mirror those in Fig 1 because the performance depends mainly on similarity of abso-
lute expression measures.

Probe set expression calculation
So far we discussed only the results where both PREBS and microarray were processed using
Custom CDF files and gene expression values for Ensembl gene identifiers were acquired.
However, the default way to process microarray data is using microarray probe set definitions.
PREBS has an option to be run this way too, and in this way it can produce sequencing-based

Fig 7. Venn diagrams of differentially expressed genes (RPAmode). The Venn diagrams illustrate the similarities of lists of genes that are called
differentially expressed by different methods. We call genes with the absolute value of log2 fold change higher than 1.5 as significantly differentially
expressed. The pairs of samples that are analysed are the same as in Fig 6 (kidney and liver for Marioni data set, 2803 and 2805 for LAML data set).

doi:10.1371/journal.pone.0126545.g007
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probe set expression values that can be directly compared with microarray probe set
expression estimates.

Fig 9 shows the scatter plots for absolute and differential probe set expression estimates
using PREBS method on the Marioni data set. Calculating expression values for probe sets is a
unique feature of PREBS and there is no easy way to do that using MMSEQ or read counting.
Therefore, we did not compare PREBS with these two methods in this case.

Comparing PREBS vs microarray expression correlations of the two settings we see that the
correlations for manufacturer’s probe sets (Fig 9) are slightly lower than the correlations for
Ensembl genes (Figs 3 and 6). However, this is most likely due to the fact that there are many
more probe sets than genes and the estimation of the corresponding individual expression lev-
els is less reliable. Overall, PREBS provides a very reasonable level of correlation with original
probe set expression levels.

Discussion
Our results clearly demonstrate that the PREBS method is able to produce from RNA-seq data
gene expression estimates that are significantly more similar to microarray estimates than stan-
dard processing pipelines. What is more, PREBS allows obtaining estimates for original micro-
array probe sets, which is not possible with existing methods. This will greatly aid in building
integrated models of large gene expression databases that contain both microarray and RNA-
sequencing data. These larger databases will help in developing more accurate machine learn-
ing methods for various predictive tasks (e.g. [33]). Efficient processing of large databases will
require further work in integrating PREBS with more scalable microarray processing methods,
such as [34–36].

One potential criticism against the PREBS approach is that it throws away data in the analy-
sis. There does not however seem to be an easy way around this: microarrays only measure the

Fig 8. Averaged cross-platform differential gene expression correlations (RPAmode). The plots show average cross-platform differential gene
expression correlations between different RNA-seq data processing methods and the microarray. Different points correspond to different numbers of top
expressed genes. The correlations are averaged over all possible pairs of samples in the corresponding data sets: (a) the Marioni et al. data set, (b) the LAML
data set.

doi:10.1371/journal.pone.0126545.g008
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expression of the probe sequences, and including RNA-seq data over other regions risks intro-
ducing confounding information due to unforeseen splicing and annotation effects. It might be
possible to develop a more complex model taking all this into account, but that would be far
more computationally demanding and hence less well-suited for analysis of large
data collections.

PREBS greatly improves the comparability of absolute expression measures, but it does not
provide a significant improvement for differential expression analysis. This may in part be ex-
plained by microarray probes that target the gene sequence suboptimally, possibly focusing
only on a small fraction of its alternatively spliced isoforms. This introduces a gene-specific
bias to the expression estimates. When computing the difference between multiple samples,
these biases tend to cancel. The good performance of PREBS suggests that focusing on probe
regions is likely a significant gene-specific bias in microarrays. Learning a model of these and
other biases, such as those caused by different melting points and affinities of the probes, is an
important avenue of future work, but a detailed model will require a significant amount of di-
verse paired RNA-seq–microarray data.

Different experimental techniques for measuring gene expression produce different results
partly because they measure different things, such as different parts of the gene sequence. In
this work we have presented the PREBS method which aims to eliminate this difference from
RNA-seq and microarray gene expression analyses by focusing the RNA-seq summarisation to
microarray probe regions. Combining this with a standard microarray data processing algo-
rithm leads to estimates of absolute expression that are significantly more similar to ones mea-
sured from the same samples using microarrays than standard RNA-seq data processing
techniques. The difference between the methods is much smaller in differential expression, pre-
sumably because gene-specific biases cancel out in the differential analysis.

Diminishing the differences between different gene expression measurement platforms
paves the way for integrative modelling of large genomic data sets and big genome data

Fig 9. Original microarray probe set gene expression scatter plots (RPAmode). The plots show (a) estimated absolute expression values and (b)
estimated log2 fold changes values for original microarray probe sets. The plots show 60%most highly expressed genes in the Marioni data set.

doi:10.1371/journal.pone.0126545.g009
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applications. We have demonstrated that the PREBS approach can lead to increased accuracy
in a simplified content-based genomic information retrieval task. Extending this success to a
realistic integrative modelling system is a very attractive avenue of future research.

Supporting Information
S1 Fig. Averaged absolute gene expression correlations (RMAmode). The plots show aver-
age absolute gene expression correlations between different RNA-seq data processing methods
and the microarray. Different points correspond to different numbers of top expressed genes.
The correlations are averaged over all samples in the corresponding data sets: (a) the Marioni
et al. data set, (b) the LAML data set. The error bars correspond to standard errors of the
mean. For LAML data set the standard errors are so small that the top and bottom error bars
are merged in the plot.
(TIF)

S2 Fig. Absolute gene expression correlation scatter plots (RMAmode). The plots show the
comparison of correlations of PREBS vs microarray and MMSEQ vs microarray for all of the
samples in the LAML data set. Each point represents one sample. Two different percentages of
top expressed genes are taken: (a) 10%, (b) 60%.
(TIF)

S3 Fig. Absolute gene expression scatter plots (RMAmode). The gene expression values
from three different RNA-seq data processing methods (MMSEQ, Read counting and PREBS)
are plotted against gene expression values from microarray. Only plots for a single sample in
each data set are shown. The top row shows results for the kidney sample from the Marioni
et al. data set and the bottom row for the 2803 sample from the LAML data set. The figures
show 60% of most highly expressed genes. The legend contains Pearson correlation (r) and the
number of genes (n).
(TIF)

S4 Fig. Retrieval accuracy of coupled RNA-seq–microarray experiments (RMAmode). The
plot shows average precision of retrieving the corresponding microarray experiment from a
large collection based on correlation with expression estimates from RNA-seq as a function of
the number of genes used as the signature. Accuracy is measured as a fraction of the samples
which have the largest correlation with its true pair.
(TIF)

S5 Fig. Averaged differential gene expression correlations (RMAmode). The plots show av-
erage log2 fold change correlations between different RNA-seq data processing methods and
the microarray. Different points correspond to different numbers of top expressed genes. The
correlations are averaged over all samples in the corresponding data sets: (a) the Marioni et al.
data set, (b) the LAML data set. The error bars in LAML data set plot correspond to standard
errors of the mean, although the errors are so small that top and bottom bars are merged. Error
bars for Marioni data set plot could not be displayed because there is only one pair of samples
for which log2 fold change values were calculated.
(TIF)

S6 Fig. Differential expression scatter plots (RMAmode). log2 fold change values for differ-
ential expression estimated using different RNA-seq analysis methods plotted against corre-
sponding microarray log2 fold change values. The figures show 60% of most highly expressed
genes. Only plots for a single sample pair in each data set are shown. The top row shows the
fold changes between the kidney and liver samples from the Marioni data set, while the bottom
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row shows changes between samples 2803 and 2805 from the LAML data set. The legend con-
tains Pearson correlation (r) and the number of genes (n).
(TIF)

S7 Fig. Venn diagrams of differentially expressed genes (RMAmode). The Venn diagrams
illustrate the similarities of lists of genes that are called differentially expressed by different
methods. We call genes with the absolute value of log2 fold change higher than 1.5 as signifi-
cantly differentially expressed. The pairs of samples that are analyzed are the same as in Fig 6
(kidney and liver for Marioni data set, 2803 and 2805 for LAML data set).
(TIF)

S8 Fig. Averaged cross-platform differential gene expression correlations (RMAmode).
The plots show average cross-platform differential gene expression correlations between differ-
ent RNA-seq data processing methods and the microarray. Different points correspond to dif-
ferent numbers of top expressed genes. The correlations are averaged over all possible pairs of
samples in the corresponding data sets: (a) the Marioni et al. data set, (b) the LAML data set.
(TIF)

S9 Fig. Original microarray probe set gene expression scatter plots (RMAmode). The plots
show (a) estimated absolute expression values and (b) estimated log2 fold changes values for
original microarray probe sets. The plots show 60%most highly expressed genes in the Marioni
data set.
(TIF)

S10 Fig. Absolute expression correlation differences between RPA and RMAmodes. The
plots show the differences in Pearson correlation of absolute expression levels between the data
processed using RPA and RMAmethods in: (a) the Marioni et al. data set, (b) the LAML data
set. Positive values mean that the RPA correlation is higher. In other words, the plot shows the
difference between Fig 1 and S1 Fig.
(TIF)

S11 Fig. Differential expression correlation differences between RPA and RMAmodes. The
plots show the differences in Pearson correlation of differential expression levels between the
data processed using RPA and RMAmethods in: (a) the Marioni et al. data set, (b) the LAML
data set. Positive values mean that the RPA correlation is higher. In other words, the plot
shows the difference between Fig 5 and S5 Fig.
(TIF)
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