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Abstract

Estrogen signaling has turned out to be much more complex and exciting than previously
thought; the paradigm shift in our understanding of estrogen action came in 1996, when the
presence of a new estrogen receptor (ER), ERβ, was reported. An intricate interplay
between the classical ERα and the novel ERβ is of paramount importance for the final
biological effect of estrogen in different target cells.
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Introduction
Jensen and Jacobsen were the first to describe that the
biological effects of estrogen are mediated by a receptor
protein [1]. The cloning of the ER, today renamed ERα,
was reported in 1986 [2,3]. For a long time, it was
believed that only one ER existed; however, in 1995 a
second ER, ERβ, was cloned from a rat prostate cDNA
library by Gustafsson and colleagues [4••]. This finding
has lead to a paradigm shift in our understanding of estro-
gen action, as will be evident from the different reviews in
this issue of Breast Cancer Research.

ERββ and ERαα isoforms
Since the discovery of ERβ in rat prostate, several groups
have reported the cloning of ERβ from other species
[5–7] or different sized ERβ isoforms, some with extended
N-termini and others with truncations and/or insertions in
the C-terminal ligand binding domain (LBD). The original

ERβ clone encodes a protein of 485 amino acids, desig-
nated ERβ-485. ERβ-503 has an 18 amino acid residue in
frame insertion into the LBD, and has a considerably lower
affinity for E2 than ERβ-485. Both ERβ-503 and ERβ-485
bind to a consensus estrogen response element (ERE)
and heterodimerize with each other and with ERβ [8,9].
The coactivator SRC-1 interacts with both ERα and
ERβ-485 in an estrogen-dependent manner but not with
ERβ-503 [9]. An additional ERβ isoform, ERβcx [10], is
identical to ERβ-530 except that the last 61 C-terminal
amino acids (exon 8) are replaced by 26 unique amino
acid residues. The ERβcx isoform shows no ligand binding
activity and has no capacity to activate transcription of an
estrogen-sensitive reporter gene [10]. Furthermore, ERβcx
shows preferential heterodimerization with ERα rather
than with ERβ, inhibiting ERα DNA binding and having a
dominant negative effect on ligand-dependent ERβ
reporter gene transactivation [10].
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Various alternatively spliced forms of ERα have also been
reported [11–16]. Whether all isoforms or differentially
spliced versions of ERα and ERβ, respectively, are
expressed as proteins or have any major biological role
warrants further investigation.

ERα and ERβ are similar in their architecture to the other
members of the steroid/thyroid hormone nuclear receptor
superfamily [17–22] in that they are composed of inde-
pendent but interacting functional domains. Ligand-
induced gene modulation by hormone receptors is due to
ligand-induced conformational changes in the receptor.
These conformational changes lead to receptor dimeriza-
tion, receptor–DNA interaction, recruitment of and interac-
tion with co-activators and other transcription factors, and
the formation of a preinitiation complex [23–26].

In ERα, the N-terminal A/B domain encodes activation func-
tion 1 (AF1) [27–30]. Synthetic antiestrogens such as
tamoxifen, raloxifene and ICI 164,384 induce a partial
agonism on an ERE-based reporter gene in the presence of
ERα but pure estrogen antagonism with ERβ [7,31•,32]. In
ERα, different parts of AF1 are required to mediate the
agonism of E2 and the partial agonism of tamoxifen [30], a
particular function of ERα AF1 that is missing in ERβ [32].
Differences in the amino-terminal regions of ERα and ERβ
thus constitute a possible explanation for the difference
between ERα and ERβ in their response to various estro-
gens including antagonists such as tamoxifen and raloxifene.

The C or DNA binding domains of ERα and ERβ are
highly homologous [6] with identical P-box sequences
and, therefore, ERα and ERβ are likely to bind to different
EREs with similar specificity and affinity.

Activation function 2 (AF2) in the LBD constitutes the
ligand-dependent transcription activation function of nuclear
receptors [26,33–37]. In the crystal structure of ERα LBD,
complexed with E2 [38••], the agonist-induced positioning
of H12 over the ligand-binding pocket has been shown to
form the basis for the AF2 coactivator recruitment and inter-
action surface, together with amino acid residues in H3, H4,
and H5. In contrast, in the ERα and ERβ LBD–raloxifene
complexes, respectively [38••,39], H12 was displaced from
its agonist position over the ligand-binding cavity and
instead occupied the hydrophobic groove formed by H3,
H4, and H5, foiling the coactivator interaction surface.
Although E2 and raloxifene bind to the same cavity in the
receptor, these ligands induce a different conformation of
H12 in the LBD, discriminating an agonistic effect by E2
from estrogen antagonism by raloxifene. Surprisingly, H12
in the ERβ genistein structure did not adopt an agonist con-
formation [39] but a position more similar to an antagonist
conformation, a finding in agreement with the partial
(60–70% of E2) agonism of genistein acting via ERβ on an
ERE-driven reporter gene in cells [31•]. It is evident that

different ligands induce different receptor conformations
[24,40], and that different conformations of the receptor
affect the agonist efficacy and potency of ligands.

An interesting difference between ERα and ERβ is also
seen on an AP1 site. In the presence of ERα, typical ago-
nists such as E2 and diethylstilbestrol as well as the anti-
estrogen tamoxifen function as equally efficacious
agonists in the AP1 pathway, raloxifene being only a
partial activator. In contrast, in the presence of ERβ, the
antiestrogens tamoxifen and raloxifene behave as fully
competent agonists in the AP1 pathway, while estradiol
acts as an antagonist inhibiting the activity of both tamox-
ifen and raloxifene [41••].

Tissue distribution of ERββ and ERαα
ERβ is widely distributed in the organism. ERβ was origi-
nally cloned from rat prostate, which is one of the most
ERβ dense in the body. The ovaries in the female rodent
show a corresponding abundance of ERβ, mainly in the
granulosa cells. The tissues that appear to be richest in
ERβ are the central nervous system, the cardiovascular
system, the lung, the kidney, the urogenital tract, the
mammary gland, the colon, the immune system and the
reproductive organs. The significance of ERβ and ERα in
some tissues will now be discussed.

Breast tissue
The importance of estrogens in the development of female
breast tissue is well documented. Female aromatase defi-
cient patients, unable to convert C19 steroids (eg testos-
terone) to estrogens, showed no sign of breast
development at the onset of puberty [42–44]. Administra-
tion of estrogen to the two described female patients,
however, led to normal prepubertal and postpubertal
breast development. ERα knockout female mice have lost
their capacity to develop mammary gland tissue beyond
the embryonic and fetal stages despite elevated levels of
circulating estrogens (17β-estradiol).

More than 70% of primary breast cancers in women are
‘ER’ (actually ERα) positive and show estrogen-depen-
dent growth [45], and undergo regression when deprived
of supporting hormones. Patients whose breast tumors
lack significant amounts of ER rarely respond to endocrine
ablation or treatment with antiestrogens, whereas most
patients with ER-containing cancers benefit from such
treatment [46,47]. Immunochemical determination of ER in
tumor biopsies has become a routine clinical procedure
on which the choice of therapy is based. However, the
currently available immunochemical procedures for ER
measurements are based on ERα-specific antibodies that
do not detect ERβ protein (unpublished observations).

ERβ mRNA and protein have been detected in human
breast cancer biopsies and in human breast cancer cell
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lines [6,48–50]. With the use of receptor specific anti-
bodies, both ERα and ERβ were expressed in the normal
rat mammary gland, but the presence and cellular distrib-
ution of the two receptors was distinct [51•]. Further-
more, while the level and number of cells expressing ERβ
were more or less constant during prepubertal and
pubertal stages, and throughout pregnancy, lactation and
postlactation, the level and percentage of ERα-containing
cells varied dramatically. The possible role of ERβ in
normal breast tissue development and physiology or in
breast cancer development and/or therapy is, however,
as yet unknown [52,53•].

Urogenital tract
Estrogens are claimed to be effective in the treatment of
urge incontinence in postmenopausal women (see [54,55]
and references cited therein). It has recently been shown
that ERβ is highly expressed in the inner epithelial cell
layer of the rat bladder and urethra [56,57], which may
explain the beneficial effect of estrogens in urinary inconti-
nence and suggest that patients with urinary incontinence
might benefit from ERβ-selective agonist therapy.

Estrogens have been linked with prostate pathologies. It
has been shown in different species that estrogens syner-
gize with androgens in inducing glandular hyperplasia and
dysplasia, and adenocarcinoma in the prostate [58•].
Immunohistochemical studies have revealed that ERβ is
the predominant ER in the prostate, located in the epithe-
lial cells along the ductal network of the prostate. ERα has
been detected only in the stromal compartment of the
prostate [57,58•] (Weihua et al, manuscript submitted).
ERβ–/– mice display signs of prostatic hyperplasia with
aging [59]. This suggests that ERβ may protect against
abnormal prostate growth and that ERβ-selective ligands
would be of clinical relevance in the prevention and treat-
ment of neoplasia of the prostate.

Bone: development and homeostasis
There is compelling evidence that estrogens protect post-
menopausal women from bone loss and the development of
osteoporosis, maintaining a balance between bone resorp-
tion and bone formation [54,55,60–63]. As in other tissues,
estrogens probably have both direct and indirect effects in
maintaining a balanced bone metabolism. The likelihood of
important direct effects of estrogens on bone is based on
the presence of ERα in the bone-forming osteoblasts
[64–66] and in the bone-resorbing osteoclasts [67]. ERβ
mRNA has been found in primary rat osteoblasts and in rat
osteosarcoma cells [68]. It has been described in immortal-
ized human fetal osteoblasts that ERα and ERβ are differen-
tially expressed during osteoblast differentiation in vitro [69].

The cardiovascular system
The risk of women developing cardiovascular disease
increases dramatically after the menopause, suspected to

be a consequence of the cessation of estrogen produc-
tion by the ovaries. Estrogen replacement therapy has a
cardiovascular protective effect in postmenopausal
women, significantly decreasing the risk of developing ath-
erosclerosis and cardiovascular disease [54,55,70–74].

The estrogen receptors ERα and ERβ are expressed in
vascular endothelial cells [74–76], smooth muscle cells
[77–79], and in myocardial cells [56,80]. Various direct
effects of estrogen on vascular tissue have been reported
[73,74,80–82]: nongenomic vasodilatation as an effect of
estrogen on ion channel function [83] and nitric oxide syn-
thesis [84–87]; long-term effects by modulation of, for
example, prostaglandin synthase, nitric oxide synthase and
endothelin gene expression [88–93]; regulation of AT1
receptor density on vascular smooth muscle cells [94]; and
inhibition of injury-induced vascular intimal thickening
[95–97]. Furthermore, reduced heart contractility in
ovariectomized female rats was normalized following estro-
gen replacement [98], an effect explained in part by estro-
gen mediated changes in expression of contractile proteins
[80,99]. The precise functions of ERα and ERβ in protec-
tion of the vessel wall from injury-induced hyperproliferation
are still under active investigation. Estrogen can inhibit
hyperproliferation of the vascular smooth muscle cells after
injury in both ERα knockout and BERKO (ERβ–/–) mice
[100•–102•], possibly indicating that the effects of estro-
gen on the smooth muscle cells are not receptor mediated,
but possibly also indicating that the vesssel wall is one
location where ERα and ERβ have overlapping functions.
The answer to the question will be found when ERα/ERβ
double knockout mice are examined.

Central nervous system and the hypothalamus–pituitary axis
Estrogens are reported to influence a variety of functions in
the central nervous system such as learning, memory, aware-
ness, fine motor skills, temperature regulation, mood, and
reproductive functions [103]. Estrogens are also linked to
symptoms of depression and treatment of depressive illness.

The expression patterns of ERα and ERβ, respectively,
based on mRNA, autoradiographic or immunohistochemi-
cal studies of rat and mouse brain, indicate that there is
selective expression of one of the two ER subtypes in
certain areas of the brain, but that there are also areas
where they seem to be colocalized. ERα is more abundant
in the hypothalamus (preoptic, arcuate, periventricular, and
ventromedial nucleus) and in selected nuclei in the amyg-
dala (hippocampal area, medial and cortical nucleus)
[104–107]. A high level of ERβ mRNA has been found in
the medial preoptic, paraventricular and supraoptic
nucleus of the rat hypothalamus and in the medial amyg-
dala nucleus. Moderate to high ERβ mRNA is expressed in
olfactory bulbs, the bed nucleus of the stria terminalis, the
hippocampus, the cerebral cortex, the cerebellum, the
midbrain raphe and the basal forebrain [103,105–111].
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The hypothalamus–pituitary axis regulates overall endocrine
homeostasis in the body. Estrogen, through effects on the
hypothalamus–pituitary axis, modulates the expression
and secretion of hormones such as luteinizing hormone,
follicle stimulating hormone, growth hormone, and pro-
lactin, from the anterior pituitary gland [112]. Both ERα
and ERβ are expressed in the pituitary gland but ERα pre-
dominates [112,113], particularly in the gonadotrophs and
lactotrophs. Both ER subtypes are also expressed in the
preoptic area of the hypothalamus, which is involved in
regulating the expression of pituitary hormones, but ERβ is
predominant [105].

Concluding remarks
Our understanding of estrogen action has undergone a
radical change following the discovery of ERβ. Although not
addressed in this particular review, evidence is accumulat-
ing that ERα and ERβ may indeed regulate, at least partially,
separate and distinct gene networks. We are thus now
beginning to have tools to grasp many of the seemingly con-
fusing and contradictory aspects of estrogen action, partic-
ularly regarding tissue specific and cell specific effects of
estrogen. Varying ratios between ERα and ERβ in different
contexts seem to quite probably be of paramount impor-
tance for the finally obtained hormonal effects. This para-
digm shift in our concepts of estrogen action, needless to
say, will lead to many exciting new opportunities for pharma-
ceutical development in the field of women’s health.
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