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The noisy computation hypothesis of developmental dyslexia (DD) is

particularly appealing because it can explain deficits across a variety of

domains, such as temporal, auditory, phonological, visual and attentional

processes. A key prediction is that noisy computations lead to more variable

and less stable word representations. A way to test this hypothesis is through

repetition of words, that is, when there is noise in the system, the neural

signature of repeated stimuli should be more variable. The hypothesis was

tested in an functional magnetic resonance imaging experiment with dyslexic

and typical readers by repeating words twelve times. Variability measures

were computed both at the behavioral and neural levels. At the behavioral

level, we compared the standard deviation of reaction time distributions of

repeated words. At the neural level, in addition to standard univariate analyses

and measures of intra-item variability, we also used multivariate pattern

analyses (representational similarity and classification) to find out whether

there was evidence for noisier representations in dyslexic readers compared

to typical readers. Results showed that there were no significant differences

between the two groups in any of the analyses despite robust results within

each group (i.e., high representational similarity between repeated words,

good classification of words vs. non-words). In summary, there was no

evidence in favor of the idea that dyslexic readers would have noisier neural

representations than typical readers.
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Introduction

Fluent reading is a critical skill for personal and professional
development in all modern societies (Beddington et al., 2008).
Yet, a substantial portion of children have severe and long-
lasting difficulties in learning to read despite conventional
instruction, normal intelligence, and adequate socio-cultural
opportunities (World Health Organisation [WHO], 2010). This
neurodevelopmental disorder is called developmental dyslexia
(DD), which affects between 5 and 17% of children (Snowling,
2000; Demonet et al., 2004; Norton et al., 2015).

A large number of theories have been proposed to explain
the causes of DD, such as theories that highlight temporal
deficits (Vandermosten et al., 2010; Goswami, 2011; Casini
et al., 2018), auditory deficits (Boets et al., 2007), phonological
deficits (Bradley and Bryant, 1978; Baldeweg et al., 1999;
Helenius et al., 1999; Snowling, 2001; Ramus et al., 2003; Ziegler
et al., 2009), attentional deficits (Facoetti et al., 2000, 2006,
2008), visual deficits (Stein and Walsh, 1997; Stein, 2014), or
cerebellar deficits (Nicolson et al., 2001; Nicolson and Fawcett,
2005). There is some consensus that no single-deficit theory
can currently explain the multifactorial nature of the deficits
observed in DD (Pennington, 2006; Perrachione et al., 2016;
Ziegler et al., 2019; O’Brien and Yeatman, 2021). Thus, a more
general theory is needed to explain the variety of sensory deficits
associated with DD.

One elegant theory that has the potential to explain the
various facets of DD is the neural noise hypothesis (Hancock
et al., 2017). Neural noise can be defined as a stochastic
variability in the neural response to repeated presentations of
the same stimulus. For example, a neuron that spikes at widely
variable intervals in response to repeated stimulus presentations
is considered to be noisier than one that spikes at nearly the same
time following each presentation. The link with DD seems rather
straightforward: an excessive amount of neural noise impairs the
capacity of populations of neurons to maintain stable patterns of
activity, which is detrimental to both forming and maintaining
representations.

How can one explain that excessive amounts of neural noise
specifically affect learning-to-read more than other language
processes? It could be argued that in most language processing
situations, our brains are used to “cleaning-up” partial or
incorrect bottom-up information using context (Pitt and
Samuel, 1995). This is different in a learning-to-read situation.
In the initial stages of reading acquisition, children have to learn
the mapping between isolated graphemes and phonemes to set
up the decoding network (Ziegler and Goswami, 2005; Ziegler
et al., 2014, 2020). In this situation, “noisy” letter or phoneme
information is detrimental because the same letter needs to
map onto a single stable phoneme representation (B- > /b/and
not/p/). Indeed, it has been shown in computational modeling
that small amounts of noise in phoneme representations quickly
result in catastrophic learning (Harm and Seidenberg, 1999;

Ziegler et al., 2014, 2020; Perry et al., 2019). Similarly, small
amounts of noise will also prevent the reading system from
creating stable visual representations of letters and words, which
will impair orthographic learning (Ziegler et al., 2014).

Strong evidence for the neural noise theory comes from
studies that investigated the consistency of auditory brainstem
responses to speech syllables in normal hearing children with
a wide range of reading abilities (Hornickel et al., 2009;
Hornickel and Kraus, 2013). The auditory brainstem response
to speech closely mimics the spectrotemporal features of the
stimulus. Hornickel and Kraus (2013) found that poor readers
have significantly more variable auditory brainstem responses
to speech than do good readers, independent of resting
neurophysiological noise levels. Liebig et al. (2020) have shown
that the neural stability of the auditory brainstem response to
isolated syllables (e.g., /da/) measured at kindergarten predicted
reading and spelling performance 2 years later.

One way to measure neural noise is through stimulus
repetition. When neural noise is excessive, the neural encoding
of repeated items should be more variable and neural adaptation
to repeated items should be reduced. Excessive neural noise
might make it difficult to establish robust short-term perceptual
representations which are the basis for neural adaptation effects
(Garrido et al., 2009). Indeed, Perrachione et al. (2016) showed
that adults and children with dyslexia exhibited significantly
diminished neural adaptation for a wide variety of repeated
stimuli (spoken words, written words, visual objects, and
faces). Similarly, Gertsovski and Ahissar (2022) showed no
neural adaptation to repeated sounds in auditory cortex and
other higher-level regions in adults with dyslexia compared
to typically developing readers. This might also explain why
individuals with dyslexia may have an impairment “anchoring”
to consistent stimulus statistics in order to exploit sensory
history for learning (Ahissar et al., 2006; Ahissar, 2007; but see
Ziegler, 2008). Zhang et al. (2021) used electroencephalography
(EEG) with frequency-tagging to track the temporal evolution
of speech-structure learning (a structured vs. a random stream
of repeated tri-syllabic pseudowords) in children with dyslexia
and found that the learning of implicit speech structures built
up more slowly in children with dyslexia than in typically
developing readers. Studies in the visual domain reported
slower perceptual decision making in individuals with dyslexia
(Stefanac et al., 2021; Manning et al., 2022), which may be related
to excessive perceptual noise. However, not all studies reported
greater neural variability to be associated with poorer reading.
In particular, Malins et al. (2018) showed a positive relationship
between trial-by-trial activation variability in the left inferior
frontal gyrus (IFG) pars triangularis and reading skill suggesting
that greater levels of neural variability were associated with
better reading skills.

A few studies focused on the effects of repetition and
prediction rather than neural variability or neural adaption.
Using an odd-ball paradigm, Beach et al. (2022b) recorded
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magnetoencephalography (MEG) as adults with and without
dyslexia were passively exposed to speech syllables. In both
groups, standards generated by as few as two repetitions
were distinct from deviants, indicating normal sensitivity to
repetition in dyslexia. However, only in the control group
did standards become increasingly different from deviants
with repetition. In another study Beach et al. (2022a) focused
on prediction errors by presenting repeated words or faces
with a high probability of stimulus repetition vs. a high
probability of stimulus change. They found that the neural
prediction error (as measured by EEG) was significantly
weaker in dyslexia than the control group for both faces
and words. These results were taken to suggest that “many
of the mechanisms that give rise to neural adaptation as
well as mismatch responses are intact in dyslexia, with
the possible exception of a putatively predictive mechanism
that successively integrates recent sensory information into
feedforward processing” (Beach et al., 2022b, p. 1). Finally,
Pugh et al. (2008) used an animacy judgment task (living/non-
living) to investigate the effects of stimulus repetition in
normal and dyslexic readers in functional magnetic resonance
imaging (fMRI). In every block, six words were repeated six
times in a pseudorandom fashion and intermixed with 20
unrepeated words that served as unrepeated control words.
Their results showed that repetition had a similar (facilitatory)
effect on reaction time and accuracy for both normal and
dyslexic readers. In the critical regions of the left-hemisphere
reading network, typically developing readers showed reduced
activation for repeated words while dyslexic readers showed
increased activation with repetition in these same reading-
related sites, suggesting that the left-hemisphere reading
circuitry in adolescent dyslexics is poorly tuned but not wholly
disrupted.

In the present study, we wanted to test the neural noise
theory more directly by investigating whether behavioral and
neural responses to repeated words are more variable across
repetitions for dyslexic readers. As suggested by Hancock et al.
(2017), “systems-level multimodal imaging studies that measure
response variability in reading disorders, such as using phase
locking measures in EEG or single-trial estimates of BOLD
response (. . .), can provide a direct test of the basic premise
of our hypothesis” (p. 445). We followed their suggestion by
measuring single-trial estimates of BOLD response in an fMRI
experiment for 36 words that were repeated 12 times both
for a group of dyslexic and typical readers. The present study
was conducted with adult dyslexics who all had a history of
childhood dyslexia and were referred to us from a regional
clinical reference center of dyslexia with a formal diagnosis of
dyslexia. Although one could argue that testing adult university
students with dyslexia is suboptimal because the neural noise
deficit might have been compensated for, we believe that one can
make the opposite case. That is, reading compensation strategies
might affect reading outcomes but they should not alleviate

neural noise. Thus, it seems to be a fair comparison to investigate
neural noise differences in groups that no longer show massive
behavioral differences.

Variability measures were computed for the two groups both
at the behavioral and neural level. At the behavioral level, we
compared the standard deviation of reaction time distributions
when participants read aloud the same set of words 12 times.
At the neural level, we first looked at standard univariate
(whole-brain) analyses and univariate region of interest analysis.
In line with the neural adaptation results (Perrachione et al.,
2016), we expected to find that the key regions of the reading
system should be less sensitive to repetition in adults with DD
than typical readers. We then looked at measures of intra-item
variability in the BOLD signal to repeated words. That is, we
compared the standard deviation of the beta values for multiple
repetitions of the same words between the two groups. If the
brain responses to repeated items were noisier in DD, dyslexic
readers would show greater amounts of variability than typical
readers. We then used multivariate pattern analyses, namely
representational similarity (Kriegeskorte et al., 2008) and
multivariate pattern classification (Pisner and Schnyer, 2020) to
further explore the predictions of the neural noise hypothesis.
Again, the logic was straightforward: If neural representations of
written words were noisier for adults with DD, neural similarity
between repeated words should be reduced in adults with DD.
Similarly, if neural responses to repeated words were noisier
in adults with DD, a classifier that was trained to discriminate
words from hash marks should perform less well for adults with
DD than for typical readers. The various predictions of the study
are illustrated and summarized in Figure 1.

Materials and methods

Participants

Twenty adults with dyslexia and 20 skilled readers aged
between 20 and 29 years participated in the present study.
All participants were university students and native speakers
of French. They were recruited at Aix-Marseille University
(France) from a wide variety of academic programs (i.e., in
each group, 55% of the participants were enrolled in social
science programs and 45% were enrolled in science programs).
The university students with dyslexia were recruited through a
national clinical reference center of learning disorders (Centre
de Référence des Troubles des Apprentissages at the Salvator
Hospital in Marseille) and the Mission Handicap (University
Medical Service) of Aix-Marseille University. They were all
diagnosed with dyslexia in primary school and had received
remedial teaching for an average of 5.34 years (SD = 0.41).
Furthermore, they reported having struggled with reading from
childhood to adulthood. The group of dyslexic readers (DYS)
and the group of typical readers (CTR) were matched on gender
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FIGURE 1

Testing the neural noise theory. Main predictions of the neural noise theory for the various analyses. DYS: dyslexic readers, CTR: typical readers,
FG: fusiform gyrus, IFG: inferior frontal gyrus.

(DYS: 9 females and 11 males; CTR: 11 females, 9 males),
chronological age [DYS = 22.95 ± 2.56, CTR = 23.45 ± 2.42,
t(38) = −0.64, p = 0.53], verbal IQ [DYS = 38.20 ± 5.15,
CTR = 39.58 ± 4.26, t(38) = −1.11, p = 0.28], and non-verbal
IQ [DYS = 41.60 ± 8.33, CTR = 42.20 ± 7.45, t(38) = −0.24,
p = 0.81]. The study conforms to recognized standards of the
World Medical Association Declaration of Helsinki and was
approved by the National Ethics Committee for Biomedical
Research. All participants gave written informed consent and
received €50 for their participation.

Stimuli and procedure

Reading level assessment
The reading level of the participants was assessed with two

standardized reading tests. The first was the Adult Reading
History Questionnaire (ARHQ, Lefly and Pennington, 2000),
which is a self-report questionnaire used to diagnose the history
of reading difficulties, which includes items on reading habits,
reading and spelling abilities, reading speed, attitudes toward
school and reading, additional assistance received, repeating
grades or courses and effort required to succeed, separately from
elementary school, secondary school, post-secondary education,
and current life (Deacon et al., 2012). Participants answer each
item on a 5-point Likert-type scale ranging from 0 to 4. The total

score is divided by the maximum possible score (92), resulting in
a proportion score ranging from 0 to 1. Higher scores indicate
greater reading difficulties. Norms are available from an adult
sample of 1,107 participants (Fichten et al., 2014). In addition,
they performed the Alouette reading test (Lefavrais, 2005),
which is a sensitive standardized reading fluency test for adults
with dyslexia (Cavalli et al., 2017a) with excellent psychometric
properties (Bertrand et al., 2010). Norms are available from an
adult sample of 164 participants (Cavalli et al., 2017a). The
critical variable was reading efficiency (CTL) using the following
equation: CTL = A × 180/RT, where A is the number of words
correctly read (self-corrections included) and RT is the reading
time.

Reading aloud task (in scanner)
For the reading aloud task, we selected 34 French words with

frequencies ranging from 1 to 125.8 per million (Mean = 26.03,
SD = 38.37) (New et al., 2004), and lengths ranging from 2 to
10 letters (Mean = 6.79, SD = 1.70). The words were presented
in 40-point, Arial font. While 34 hash mark combinations were
used as baseline, the number of each hash mark combination
was matched with the length of each word. All stimuli were
presented in white against a black background and subtended
about 1.4◦ of visual angle for each letter.

The stimuli were presented using an in-house software
developed in the NI LabVIEW environment (Bitter et al., 2017).
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The software was launched and real-time synchronized with
the MR acquisition using a NI-PXI 6289 digital input/output
hardware, which also allowed vocal and motor answers
recording. The participants lied in the MRI scanner and
the stimuli were projected through a mirror onto a screen
(1024 × 768), the 768 × 768 square field of view covered a
20◦ FOV angle. Each trial started with a fixed cross presented
at the center of the screen for 340 ms, after a blank of 680 ms,
a word was displayed for 680 ms, and the participants were
instructed to read the words aloud while ignoring the hash
marks (see Figure 2). The inter-trial interval jittered from 544
to 1,564 ms. There were 4 runs for each participant, each
run was composed of 136 trials made of 34 words repeated
three times and 34 hash mark combinations. The trials in each
run were presented pseudo randomly and the order of 4 runs
was counterbalanced across participants. Along with the fMRI
signal, participants’ answers were recorded together using the
FOMRI-II microphone (Optoacoustics Ltd., Or-Yehuda, Israel).

Localizer task (in scanner)
The localizer task was adapted from a 5-min fast acquisition

procedure designed by Pinel et al. (2007), which has shown to
successfully activate the brain regions of auditory and visual
perception, motor system, reading, language comprehension
and mental calculation at an individual level. Eight types of
stimuli were used: flashing horizontal checkerboards, flashing
vertical checkerboards, visual motor instructions, auditory
motor instructions, visual sentences, auditory sentences, visual
subtraction, auditory subtractions. Each type of stimuli was
presented in 10 successive trials in a randomized order for each
participant. Flashing checkerboards were presented for 136 ms
on each trial and participants were instructed to passively view
the checkboards. For visual stimuli, each trial was composed of
four successive screens of 272 ms and participants gave their
responses by pressing the left or right button. For auditory
stimuli, each trial lasted between 2,040 and 3,672 ms and
participants also gave their responses by pressing the left or right
button. The inter-trial interval ranged from 408 to 6,528 ms. The
presentation of visual and auditory stimuli and the recording of
responses were done in the same way as in the reading aloud
task.

Data acquisition

The MRI data were acquired on a SIEMENS MAGNETOM
Prisma 3T scanner with a 64-channel head coil at the Centre
IRM-INT@CERIMED (INT, UMR 7289 CNRS–Aix-Marseille
University). The functional images were acquired using a
T2∗-weighted gradient-echo planar sequence with 54 slices
per volume [repetition time (TR) = 1.224 s, echo time
(TE) = 30 ms, multi-band acceleration factor = 3, voxel
size = 2.5 mm × 2.5 mm × 2.5 mm, flip angle = 65◦, field of

view (FOV) = 210 mm × 210 mm, matrix size = 84 × 84]. The
anatomical image was acquired using high-resolution structural
T1-weighted image with 256 slices (TR = 2.4 s, TE = 2.28 ms,
voxel size = 0.8 mm × 0.8 mm × 0.8 mm, flip angle = 8◦,
FOV = 256 mm × 256 mm, matrix size = 320 × 320). A fieldmap
acquisition (54 slices per volume, TR = 7.06 s, TE = 59 ms,
voxel size = 2.5 mm × 2.5 mm × 2.5 mm, flip angle = 90◦,
FOV = 210 mm × 210 mm, matrix size = 84 × 84) was collected
to estimate and correct the B0 inhomogeneity. A total of 1096
functional scans were acquired over 4 runs (5.59 min per run)
for the reading task, and 256 functional scans were acquired in
one run (5.22 min) for the localizer task.

Data analyses

Behavioral data analysis
Because the reading aloud responses were recorded in the

scanner, the wave files had to be denoised in order to determine
the onset time. Denoising was performed using the Wavelet
Signal Denoiser toolbox of Matlab.1 We then used the Praat
software (Boersma, 2001) to determine the onset of each reading
aloud response (RT) and judge whether the word pronounced
correctly. The data from one participant was excluded from the
behavioral data analysis because of missing data.

Then, we calculated the mean accuracy and mean RT of each
group. We used a two-factorial analysis of variance (ANOVA)
with group (DYS vs. CTR) and repetition (12 repetitions) as
factors to test for significant differences between the two groups.
The assumption of sphericity was checked by Mauchly’s test, and
if it was violated, the Greenhouse–Geisser correction was used to
correct the F-test results.

The standard deviation of the RT distribution across
12 repetitions for each word was measured to analyze the
variability, and a two-sample t-test was conducted to analyze the
differences in RT variability between the two groups.

Univariate analysis of the functional magnetic
resonance imaging data
Whole-brain analysis

The fMRI data was preprocessed and analyzed using
SPM12 software (Wellcome Institute of Cognitive Neurology,
London, UK).2 First, we used the fieldmap images to measure
field inhomogeneities, then the functional (EPI) images were
realigned using the fieldmap for distortion and motion
correction. The anatomical (T1) images were coregistered to
the mean image of realigned EPI images. The coregistered
T1 image was segmented into Gray Matter (GM), White
Matter (WM), CerebroSpinal Flux (CSF), Bone tissue and Soft

1 https://www.mathworks.com/help/wavelet/ref/
waveletsignaldenoiser-app.html

2 https://www.fil.ion.ucl.ac.uk
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FIGURE 2

Illustration of the experimental procedure and timing in the reading aloud task that was performed in the scanner.

tissue, and normalized into standard Montreal Neurological
Institute (MNI). Finally, the realigned EPI images were also
normalized into MNI space using the deformation field image
obtained during the anatomical normalization process, and
spatially smoothed with a 5 mm full-width at half-maximum
(FWHM) isotropic Gaussian kernel. The explicit masks included
GM, WM, and CSF.

Prior to the first-level analysis, EPI images were denoised
by GLMdenoise toolbox (Kay et al., 2013). The functional
data in the first-level models were high pass filtered with
a cut-off of 128 s and corrected for autocorrelation by an
autoregressive model of order 1. A general linear model (GLM)
in SPM12 was used to estimate the parameters. There were six
regressors for the experimental conditions in each run, three
for word repetitions and three for hash mark repetitions, and
one regressor for runs. The duration of each event was 1.222 s.
The onset and duration of each stimulus were convolved with
the canonical hemodynamic response function and modeled as
regressors in the design matrix.

T-contrast maps were computed separately for the lexicality
effect and the word repetition effect using a voxel-based random
effect analysis (RFX). The lexicality effect was obtained by
subtracting activation in the control condition (hash marks)
from activation in the word condition. The word repetition
effect was measured by identifying regions exhibiting a change
in BOLD responses across three repetitions in each of the four
runs that fit a linear function (i.e., 1 × 1st repetition, 0 × 2nd
repetition, −1 × 3rd repetition). The contrast maps from the
first-level analyses were used to conduct the second-level one-
sample t-test to test for significant group differences for the two
effects. The activation areas were labeled using the Anatomical
Automatic Labeling (AAL) package (Tzourio-Mazoyer et al.,
2002).

Univariate region of interest analysis

For the univariate analysis on ROIs, we chose eight
anatomical ROIs that are typically reported in studies of normal

and impaired reading (Paulesu et al., 2014; Martin et al.,
2015; Rueckl et al., 2015): left and right IFG, left and right
fusiform gyrus (FG), left and right angular gyrus (AG), and
left and right supramarginal gyrus (SMG). In addition, we
used dorsal extrastriate cortex (hOC3d) as a purely visual
control area (Kujovic et al., 2013). These ten anatomical
ROIs were generated from SPM Anatomy toolbox (Eickhoff
et al., 2005) and the WFU_PickAtlas.3 They are shown in the
Supplementary Figure 1.

The preprocessing was similar to the univariate whole-brain
analysis. However, the images were not spatially normalized or
smoothed to take advantage of high spatial-frequency pattern
information within each participants’ data (Kriegeskorte et al.,
2006). They were also denoised using the GLM Denoise toolbox.
All ROIs were converted into the native space of each participant
using the inverse of the transformation matrix that was used to
normalize the T1 image into the standard MNI space.

For a given ROI mask, we extracted each subject’s percent
signal change4 using “mean” calculation across voxels. For each
effect (“Lexicality” and “Repetition”), we obtained a matrix
of percent signal changes per subject (n = 20) and per ROI
(n = 10). The outliers (values that were greater than 2.5 standard
deviations above or below the median) in a given ROI were
replaced by the mean computed across subjects.

For each ROI, we performed one-tailed permutation tests5

to compare the distribution of the percent signal changes of
a given condition (“Lexicality” or “Repetition”) to the null
hypothesis (normal distribution) within a group of subjects or
between the two groups. Statistical tests were conducted using
2000 permutations and two types of multiple comparisons,
False Discovery Rate (FDR, Benjamini and Hochberg, 1995) and
Bonferroni’s (Bland and Altman, 1995).

3 https://www.nitrc.org/projects/wfu_pickatlas/

4 http://marsbar.sourceforge.net/faq.html#how-do-i-extract-
percent-signal-change-from-my-design-using-batch

5 https://github.com/lrkrol/permutationTest
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Intra-item variability

For the intra-item variability analysis, preprocessing was
identical to the univariate ROI analysis. The same words
were repeated three times in each run. To make a reasonable
comparison with hash marks that were always the same except
that they varied in length, we selected five hash marks that
repeated more than three times per run and we extracted only
the first three repetitions in each run. The activation of each
single trial (34 words × 3 repetitions and 5 hash marks × 3
repetitions for 4 runs, 468 trials in total) was estimated using
the Least Squares All (LSA) model (all trials are estimated
simultaneously in a single model) following the methodology of
Mumford et al. (2014). A GLM in SPM12 was used to estimate
the parameters. There were 117 regressors in each run, including
102 regressors for each word and 15 regressors for each hash
mark, and also one regressor for runs. The duration of each
event was 1.222 s. The onset and duration of each stimulus were
convolved with the canonical hemodynamic response function
and modeled as regressors in the design matrix. We therefore
obtained 468 beta maps for each participant.

The individual and functional regions of interest (ROIs)
were obtained from the localizer task. Because the functional
data were not normalized or smoothed, we did the same for
the localizer data. Participant specific contrasts of “reading
sentences” vs. “flashing checkboards” were calculated to identify
the reading network of each participant (Pinel et al., 2007). Only
the voxels that were active at a voxel-wise statistical threshold of
p < 0.001 (without correction for multiple comparisons) were
included in the individual functional ROI. The 10 anatomical
ROIs were the same as those used in the univariate ROI analysis.
We then extracted the data from all the images masked with each
ROI for each participant.

Given that each word was repeated for three times in four
runs, we had 12 masked beta maps for each word. Because some
of the beta values of some voxels were outliers, we replaced
these extreme values (beta values greater than 2.5 standard
deviations above or below the mean) in a masked beta map
by the mean beta value of all voxels. We then calculated the
standard deviation of the 12 beta maps voxel by voxel in a given
ROI for each word, then averaged all the standard deviations in
this ROI to obtain the mean variability of each word. Finally,
the mean variabilities of the 34 words were averaged to obtain
the mean variability of each participant. In order to compare
the mean variability between the dyslexic and control groups,
we performed a two-sample t-test. These analysis steps were
repeated for each ROI.

Multivariate pattern analysis for functional
magnetic resonance imaging data
Representational similarity analysis

For the representational similarity analysis, the
preprocessing and first-level analysis of the fMRI data were the
same as the intra-item variability analysis. We also used the

same functional localizer ROI and the same anatomical ROIs.
Thus, the analysis was based on 12 masked t maps for each
word and hash mark.

The representational dissimilarity matrix (RDM) was
obtained by measuring the correlation distance between each
pair of conditions, i.e., 1 min the linear correlation between
neural patterns of two conditions (Haxby et al., 2001; Aguirre,
2007; Kiani et al., 2007) which characterizes the dissimilarity
between different activity patterns. In our case, we wanted to
know if neural similarity between repeated words in adults with
DD would be weaker than in typical readers. Thus, we measured
the correlation distance between each word repetition, which
resulted in a 12 × 12 repetition representational dissimilarity
matrix for each word. The RDM of each word across the
12 repetitions within a given ROI was calculated using the
CosMoMVPA toolbox (Oosterhof et al., 2016). In order to
reduce the influence of the differences across runs, the RDM
was subtracted from the mean of the entire matrix. Then the
demeaned RDMs of all the words were averaged to get the
mean RDM of each subject. For the statistical group analysis,
we averaged all the values in the lower triangular part of the
mean RDM leaving out the diagonal as the mean dissimilarity
of 12 word repetitions for each subject. A two-sample t-test was
performed to assess the differences between the dyslexic and the
control groups. These analysis steps were repeated for each ROI.

Support vector machine classification of words and
hash marks

For the classification analysis, preprocessing of fMRI data
was the same as before, i.e., the images were not spatially
normalized or smoothed. The explicit masks used for the
statistical analysis included gray matter, white matter, and
cerebrospinal flux.

The first-level analysis was different from the other analysis,
because we used all the hash marks here. The activation of
each single trial (34 words × 3 repetitions and 34 hash marks
for 4 runs, 544 trials in total) was estimated using the Least
Squares All (LSA) model (all trials are estimated simultaneously
in a single model). A GLM in SPM12 was used to estimate
the parameters. There were 136 regressors for all experimental
conditions in each run, including 102 regressors for each word
and 34 regressors for each hash mark, and also one regressor
for runs. The duration of each event was 1.222 s. The onset and
duration of each stimulus were convolved with the canonical
hemodynamic response function and modeled as regressors in
the design matrix. T-contrast maps were computed separately
for each trial using a voxel-based random effect analysis (RFX).
We therefore obtained 544 t-contrast maps for each participant.

We used Nilearn,6 a Python package of machine learning for
neuroimaging data (Pedregosa et al., 2011) to classify words and
hash marks for each participant. We used supervised learning

6 https://nilearn.github.io
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and cross-validation. That is, the model was first trained with
the labeled data and then tested on new unlabeled data to
predict the labels. A Support Vector Machine (SVM) classifier
with linear kernel was used to learn associations between data
patterns and labels. In order to avoid overfitting, fourfold cross-
validation was used to split data into training sets and testing
sets. Because our data were imbalanced in the distribution of the
target classes (408 words vs. 136 hash marks), Stratified Shuffle
Split iteration was used to ensure that relative class frequencies
were approximately preserved in each train and validation
fold. Stratified Shuffle Split can create splits by preserving the
same percentage for each target class as in the complete set.
Classification performance was quantified by measuring the area
under the receiver operating characteristic (ROC) curve (i.e.,
ROC-AUC score), which avoids inflated performance estimates
for imbalanced datasets.

Permutation testing was used to evaluate the significance
of the cross-validated score. The p-value approximates the
probability that the score would be obtained by chance. It is
calculated as (C + 1)/(n_permutations + 1), where C is the
number of permutations whose score is greater than or equal to
the true score. The n-permutation was set to 1000. Thus, the best
possible p-value is 1/(n_permutations + 1) = 0.00099 and the
worst is 1.0. We then performed a two-sample t-test to compare
the ROC-AUC scores for the two groups.

Results

Reading level assessment

As expected, the results on the ARHQ showed that the
ARHQ score of the dyslexic group was significantly higher than
that of the control group [DYS = 0.58 ± 0.08, CTR = 0.33 ± 0.08,
Cohen’s d = 3.12, t(38) = 9.57, p < 0.001]. The results of
the standardized reading test (Alouette) showed that dyslexic
group obtained significantly lower scores than the control group
[DYS = 368.79 ± 73.00, CTR = 493.03 ± 60.73, Cohen’s
d = −1.85, t(38) = −5.85, p < 0.001]. When compared to the
published norms of these two tests, the scores of our sample
of dyslexic readers were 2.0 standard deviations above the
published norms on the ARHQ (Fichten et al., 2014) and 2.2
standard deviations below the published norms the Alouette test
(Cavalli et al., 2017a).

Reading aloud task (in the scanner)

The mean accuracy was at ceiling with 99.9% for the controls
and 99.4% for the dyslexic readers. We therefore analyzed only
reading aloud latencies (RTs). For each participant, outliers
with 2.5 standard deviation above and below the mean RT
were deleted. There was no significant difference in the

number of outliers between two groups [DYS = 8.65 ± 2.87,
CTR = 8.74 ± 3.26, t(37) = 0.09, p = 0.93]. The mean RT for
the dyslexic group was 621 ms and that for the control group
was 552 ms. The results of ANOVA showed a significant main
effect of group [F(1,37) = 5.373, p = 0.026] and a significant
main effect of repetition [F(11,407) = 2.863, p = 0.001]. However,
the interaction effect between group and repetition was not
significant [F(11,407) = 0.810, p = 0.630]. The results are plotted
in Figure 3A. Because the strongest repetition effects were
obtained in the first three repetitions (i.e., the first run), we
repeated the ANOVA with the first three repetitions only. The
results were identical to the previous analysis with a significant
main effect of group [F(1,37) = 6.143, p = 0.018], a significant
main effect of repetition [F(2,74) = 9.906, p = 0.001] and
no significant interaction between the effects of group and
repetition [F(2,74) = 1.419, p = 0.248].

In order to analyze the differences in RT variability across
the two groups, we calculated the standard deviation across the
12 repetitions for each word. However, because the mean RTs of
two groups were significantly different, we used the coefficient of
variation (i.e., the ratio of the standard deviation to the mean)
instead of the standard deviation across the 12 repetitions for
each word. We then averaged the coefficients of variation across
the 12 repetitions of each item for each participant. As can be
seen in Figure 3B, there was no significant difference between
two groups on the mean coefficient of variation [t(38) = −0.599,
p = 0.553]. The results for each participant are shown in
Figure 3C. In sum, there is no evidence for greater variability
for repeated words in adults with dyslexia as compared to typical
readers.

Univariate analysis of the functional
magnetic resonance imaging data

Whole-brain analysis
We first analyzed whether there were any differences

between the two groups in response to words. We therefore
contrasted words against hash marks for each participant using
a voxel-based random effect analysis (RFX). We then performed
a one-sample t-test to obtain the mean activation of each
contrast in each group, which were labeled using the Anatomical
Automatic Labeling (AAL) package. Finally, we compared the
activation of each contrast between two groups with a two-
sample t-test. All reported results use an uncorrected voxel-wise
statistical threshold of p < 0.001, and a cluster-wise threshold
of p < 0.05 corrected for multiple comparisons over the
whole brain. Correction for multiple comparisons was based on
Random Field Theory as implemented in the SPM12 software
(Nichols, 2012).

For typical readers, we found word-specific activation
mainly in bilateral superior temporal gyrus, left post-central
gyrus, left thalamus, right rolandic operculum, right middle
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FIGURE 3

Results of reading aloud latencies. (A) Mean reaction times (RTs) across the twelve repetitions for both typically developing (CTR) and dyslexic
readers (DYS), (B) scattered box plots of mean coefficients of variation of RTs for both CTR and DYS, (C) scattered box plots of mean coefficients
of variation of RTs calculated for each word across the 12 repetitions and for each participant.

FIGURE 4

Univariate whole-brain results of the Lexicality effect (words
minus hash marks). Statistical t-maps for dyslexic readers (DYS,
n = 20) and controls (CTR, n = 20) are projected on left (L) and
right (R) cortical surfaces (from MNI standard human cortex)
using an uncorrected voxel-wise threshold of p < 0.001 and a
cluster-wise threshold with FDR correction of q < 0.05.

temporal gyrus, and right cerebellum (see the upper part
of Figure 4). For dyslexic readers, we found word-specific
activation mainly in bilateral superior temporal gyrus, bilateral
precentral gyrus, left putamen, right pallidum and bilateral
cerebellum (see the lower part of Figure 4). The full list of

FIGURE 5

Univariate whole-brain results of the deactivation/repetition
effect (a decreased activation across repetitions that fit a linear
function). Statistical t-maps for dyslexic readers (DYS) and
controls (CTR) are projected on left (L) and right (R) cortical
surfaces (from MNI standard human cortex) using an
uncorrected voxel-wise threshold of p < 0.001 and a
cluster-wise threshold with FDR correction of q < 0.05.

activation clusters is presented in Supplementary Tables 1, 2
for controls and dyslexic readers, respectively. The two-sample
t-test did not show any significant differences between the two
groups (at a voxel-wise statistical threshold of p < 0.001 without
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FIGURE 6

Univariate ROI results of the Lexicality effect (words minus hash marks). Percent signal change is displayed for each group (DYS and CTR) for
each of the 10 predefined ROIs. The asterisks indicate significant effects *p < 0.05 or **p < 0.01 after correcting for multiple comparisons using
FDR. DYS: dyslexic readers, CTR: typical readers, IFG: inferior frontal gyrus, FG: fusiform gyrus, AG: angular gyrus, SMG: supramarginal gyrus,
hOc3d: Dorsal extrastriate cortex, L: left hemisphere, R: right hemisphere.

correction, and a cluster-wise threshold of q < 0.05 with FDR
correction).

We then analyzed whether dyslexic readers showed weaker
repetition (deactivation) effects than controls. For this purpose,
we calculated repetition effect contrasts, which identify regions
exhibiting a change in BOLD responses across three repetitions
that fit a linear function. The results are shown in Figure 5. In
typical readers, we found a linear deactivation/repetition effect
in left precentral gyrus, bilateral lingual gyrus, bilateral inferior
temporal gyrus, right middle occipital gyrus, left cerebellum, left
inferior temporal gyrus and left middle temporal gyrus (see the
upper part of Figure 5). For dyslexic readers, we found a linear
deactivation/repetition effect in right lingual gyrus, left inferior
occipital gyrus, left middle occipital gyrus, left fusiform gyrus,
left cerebellum (see the lower part of Figure 5). The full list of
activation clusters is presented in Supplementary Tables 3, 4
for controls and dyslexic readers, respectively. The results of a
two-sample t-test showed no significant differences between the
two groups (at an uncorrected voxel-wise statistical threshold of
p < 0.001, and a cluster-wise threshold of q < 0.05 with FDR
correction).

Univariate region of interest analysis
We performed an additional univariate ROI analysis using

the 10 ROIs mentioned before. Because the behavioral data
showed larger repetition effect in the first run, we focused on
a ROI analysis of the first run to make sure we would not
miss a potential effect. The analysis for all runs is found in the
Supplementary material.

For the first run, we found a significant lexicality effect in
the left IFG (p = 0.005 with FDR correction) and the right IFG
(p = 0.005 with FDR correction) for the control group (see
the upper part of Figure 6 and Supplementary Table 5). For
the dyslexic group, we found a significant lexicality effect in
the left IFG (p = 0.015 with FDR correction) and the left FG
(p = 0.037 with FDR correction) (see the lower part of Figure 6
and Supplementary Table 5). A two-sample t-test showed that
dyslexic readers exhibited a significantly greater lexicality effect
than typical readers only in the right FG (p = 0.033 uncorrected)
(see the Supplementary Table 5).

As concerns the repetition deactivation effect, we found a
significant deactivation in the right FG (p = 0.030 with FDR
correction) for the control group (see the upper part of Figure 7
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FIGURE 7

Univariate ROI results of the deactivation repetition effect (regions that show a linear decrease in activation). Percent signal change is displayed
for each group (DYS and CTR) and for each of the ten predefined ROIs. The asterisks indicate significant effects *p < 0.05 after correcting for
multiple comparisons using FDR. DYS: dyslexic readers, CTR: typical readers, IFG: inferior frontal gyrus, FG: fusiform gyrus, AG: angular gyrus,
SMG: supramarginal gyrus, hOc3d: Dorsal extrastriate cortex, L: left hemisphere, R: right hemisphere.

and Supplementary Table 6) and in the left FG (p = 0.050 with
FDR correction) for the dyslexic group (see the lower part of
Figure 7 and Supplementary Table 6). There was no significant
difference between the two groups in any of the ROIs (see the
Supplementary Table 5). The results for all runs were similar to
those of the first run (see Supplementary Tables 7, 8).

Intra-item variability
Because each item was repeated three times in each of

the four runs (12 repetitions), the intra-item variability was
obtained by calculating the standard deviation of the beta maps
of twelve repetitions voxel by voxel in a given ROI for each
word. Note that this approach gave rise to some extreme outlier
beta values (for a similar problem, see Malins et al., 2018,
p. 2983). We therefore replaced the extreme values (beta values
of a voxel greater than 2.5 standard deviations above or below
the mean) in a masked beta map by the mean beta value of
all voxels. There was no significant difference between the two

groups in the number of outlier voxels that were excluded
[DYS = 41878 ± 11903 (SD), CTR = 37264 ± 8103 (SD),
t(38) = 1.43, p = 0.16]. The overall percentage of trimmed
outlier voxels was 2.03% for the dyslexic group and 1.98% for
the control group. The mean variability was then calculated by
averaging all the standard deviations in a given ROI. Finally,
the mean variability of each subject was calculated by averaging
the mean variability of all the words. The mean intra-word
variability of two groups in each ROI is shown in Figure 8.
Potential group differences were assessed using a two-sample
t-test for each ROI (p-values were corrected for multiple
comparisons using FDR). The results showed no significant
differences between two groups for intra-word variability in
each ROI (all ps > 0.05).

Interestingly, intra-word variability seemed smaller in left
FG than all other regions. To test for this, we conduced paired
t-tested of left FG variability against all other ROIs. For the
control group, the activity in left FG was significantly less
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FIGURE 8

The mean intra-word variability (mean SD) across the 12 repetitions of beta values in each ROI for the control (CTR) and dyslexic (DYS) group.
IFG: inferior frontal gyrus, FG: fusiform gyrus, AG: angular gyrus, SMG: supramarginal gyrus, hOc3d: dorsal extrastriate cortex, L: left
hemisphere, R: right hemisphere.

variable than in all the other ROIs (all ps < 0.01, corrected
for multiple comparisons) except right FG (p = 0.29). For
the dyslexic group, left FG was significantly less variable than
activity in the localizer, bilateral extrastriate cortex, bilateral IFG,
bilateral AG, and right SMG (all ps < 0.01, corrected for multiple
comparisons), but it was not significantly different from right
FG and left SMG (ps > 0.1).

Multivariate pattern analysis

Representational similarity analysis
For the representational dissimilarity matrix (RDM)

analyses, we calculated the RDM values across the 12 repetitions
in a given ROI for each word. The mean RDM of each subject
was computed by averaging the RDMs of all the words. The
mean RDM of word repetitions in each ROI of two groups
is displayed in Figure 9. For the statistical group analysis,
the mean dissimilarity value for each subject was obtained by
averaging all RDM values (i.e., the lower triangle of the matrix
leaving out the diagonal). A two-sample t-test was used to assess
the difference of dissimilarity in RDM between the dyslexic and
control groups for each ROI (t-values and p-values of each ROI
are shown in Figure 9). As above, the p-values were corrected
for multiple comparisons using FDR. The results showed that
there were no significant differences in the RDMs between the
two groups in any of the ROIs (all ps > 0.05).

Support vector machine classification of words
and hash marks

A Support Vector Machine (SVM) classifier was used to
classify words and hash marks (see section “Materials and

methods”). Classification performance was measured through
the ROC-AUC score. The p-values of the permutation test were
less than 0.05 in all the ROIs for most subjects. It indicates that
the classifier was able to classify words and hash marks for most
subjects with high accuracy. The ROC curves and mean ROC
scores of the two groups in each ROI are displayed in Figure 10.

In order to compare the ROC-AUC scores of the two groups,
a two-sample t-test was performed (t-values and p-values of each
ROI are shown in Figure 10). It can be seen that the accuracy
for the dyslexic group was significantly higher than that of the
control group in left SMG (p = 0.02). No significant group
differences were obtained in the other ROIs.

Discussion

The goal of the present study was to put the neural noise
hypothesis to a direct test by investigating whether there was
any evidence for excessive neural noise in adults with dyslexia
when neural noise was equated with greater variability in the
behavioral and neural responses to repeated presentations of the
same stimulus (Hancock et al., 2017). We had participants read
aloud words in an MRI scanner and the words were repeated
12 times across four runs intermixed with hash marks, which
provided the baseline condition.

The behavioral and univariate results can be summarized as
follows. First, the reading level assessment and the reading aloud
data in the scanner clearly showed that our university students
with dyslexia performed more poorly on all reading measures
than the control group (weaker ARHQ scores, weaker fluency
in a standardized reading test and slower RTs in reading aloud).
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FIGURE 9

The mean RDMs for repeated words in each ROI. The values in the matrix show the dissimilarity between each pair of repetitions (the higher the
value, the lower the similarity). Potential group differences were assessed with a two-sample t-test (see t and p-values). DYS: dyslexic readers,
CTR: typical readers, IFG: inferior frontal gyrus, FG: fusiform gyrus, AG: angular gyrus, SMG: supramarginal gyrus, hOc3d: dorsal extrastriate
cortex, L: left hemisphere, R: right hemisphere.

The effect sizes of the differences on the standardized tests varied
between 2.1 and 3.5 standard deviations below the mean of the
controls, which clearly confirms that reading performance in
our group of adult dyslexic readers was still in a pathological
range and this was true even when compared to normative adult
samples (Fichten et al., 2014; Cavalli et al., 2017a). Thus, despite
being university students, our sample of adult dyslexic readers
read significantly more slowly than controls. Slow reading is a
hallmark of DD in adults (Pennington et al., 1990; Lefly and
Pennington, 2000; Cavalli et al., 2017b). Second, both groups

showed a significant RT decrease across repetitions. However,
the repetition effect was not different for the two groups, which
goes against a key prediction of the neural noise hypothesis
that dyslexic readers should benefit less from repetition than
controls. A similar finding was reported by Pugh et al. (2008)
who showed significant repetition effects but no interaction
between the effects of group and repetition in a word reading
paradigm. Third, in the univariate analyses, there was clear
evidence for significant repetition effects (neural adaptation) in
left FG in adults with dyslexia that was not different to that
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FIGURE 10

Classification performance (ROC curves) of a Support Vector Machine classifier in each ROI. The mean ROC scores of the two groups are
shown in the bottom right corner, t-values and p-values of a two-sample t-test are shown in the upper left corner, the shaded areas
correspond to ± 1 SD of the ROC curve. DYS: dyslexic readers, CTR: typical readers, IFG: inferior frontal gyrus, FG: fusiform gyrus, AG: angular
gyrus, SMG: supramarginal gyrus, hOc3d: Dorsal extrastriate cortex, L: left hemisphere, R: right hemisphere.
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of typical readers. The same regions also showed significant
lexicality effects in dyslexics that were not different to those of
controls. Similar findings have been reported by Beach et al.,
2022a,b who found repetition effects in adult dyslexia that
were quantitatively and qualitatively not different from those of
typically developing readers.

The strongest test of the neural noise hypothesis was the
intra-item variability analysis (Garrett et al., 2010; Malins et al.,
2018). Because each item was repeated three times in each of
the four runs (12 repetitions), the intra-item variability could
be obtained by calculating the standard deviation of the beta
values of 12 repetitions voxel by voxel for each word in a given
ROI. Although the results showed some interesting variations
of intra-item variability across the ROIs (e.g., the smallest
variability was obtained in left fusiform gyrus in line with its key
role as the visual word form system, see Dehaene and Cohen,
2011), there was absolutely no evidence for greater variability in
the neural response to repeated words in adults with dyslexia.

Given that multiple levels of representation are involved
in reading single words (visual representations of letter shape,
orthographic representations of letter identity and order,
phonological representations of the word’s pronunciation,
and semantic representations of its meaning) and they are
distributed over a large reading network (Hoffman et al., 2015),
we used two multivariate pattern analyses (RSA and SVM
classification) that are more sensitive to the distributed nature of
the information than our previous analyses (Fischer-Baum et al.,
2017). The key prediction for the RSA analysis was that if neural
responses to repeated words were noisier, then representational
similarity across repeated words should be weaker. Although we
found greater representational similarity for word repetitions
that occurred with the same run than between different runs,
there was again no evidence for noisier neural representations
for adult dyslexic readers than controls. In our final test of
the neural noise theory, we used a state-of-the art classification
algorithm. In this analysis, we no longer looked at variability or
similarity across repeated items, but we simply let the classifier
do the classification on words vs. Hash marks on the basis of
the distributed neural patterns in the data that are present in
various ROIs. If the neural responses to words were noisier in
adults with dyslexia, the classifier should perform more poorly
for adults with dyslexia. Although group mean classification
performance was good with AUC-ROC scores between 0.62 and
0.88 depending on the ROI, there were again no differences
between the two groups except for superior classification of
adult dyslexic readers over controls in left supramarginal gyrus.
The supramarginal gyrus belongs to the dorsal route involved
in phonological decoding. Superior classification performance
of adult dyslexics in that ROI might suggest that they still rely
to a greater extent on the less automatized dorsal route than the
ventral route when reading words aloud.

A potential problem of our classification null effect is the
fact that the word-hash mark classification might have been too

coarse to reveal subtle differences in neural representation of
word representations. That is, the differences between words
and hash marks might be so big that classification performance
would not be affected even if word representations were noisier
in adults with dyslexia. A stronger test would have been to
compute the classification of one word (all its presentations)
against another word (all its presentations). However, we
had too few presentations of each word to conduct this
analysis. Another potential problem is that hash marks did not
require a reading aloud response whereas word did. Thus, the
classifier could have exploited differences in articulatory output
processes to make successful classifications. However, if this
were the case, we should have obtained better classification
performance in Broca’s area than in fusiform gyrus, which
was not the case. In fact, there is little reason to believe that
articulatory output processes should affect neural activation
in fusiform gyrus.

Taken together, we found no evidence for increased neural
noise in adults with dyslexia as defined by greater variability in
the behavioral and neural responses to repeated presentations
of the same stimulus. Our findings contrast with those of
Perrachione et al. (2016) who found less neural adaptation in
dyslexic adults for repeated words than for controls. However,
the neural adaptation paradigm is very different from our
paradigm because, in the neural adaptation paradigm, a single
item (e.g., the word “bank”) is presented eight times in a row and
participants passively viewed the words. In our paradigm, words
were repeated 12 times but they were intermixed with other
words and hash marks and participants were asked to make an
active response. It is clearly the case that our paradigm is less well
suited to measure neural adaptation than that of Perrachione
et al. (2016) but more work is needed to fully understand the
differences between neural adaptation and repetition paradigms
(Pugh et al., 2008).

At first sight, our results seem to be inconsistent with
the findings of Malins et al. (2018) who showed that trial-
by-trial activation variability in the left IFG pars triangularis
was associated with reading skills in a sample of school-aged
children. However, in their study, the correlation was positive
with greater levels of neural variability being associated with
better reading skills. While we did not find greater variability
for typically developing readers either, it is worth noting that
their results are opposite to the predictions of the neural noise
hypothesis. Indeed, the authors suggest that neural variability
could be beneficial in developing readers.

One explanation for why we might not have seen neural
noise effects could be that the repetition of words, which was
our experimental “trick” to study neural noise (variability across
repetitions), actually had the opposite effect of “cleaning-up”
short-term memory representations for repeated items. Thus,
the massive repetition might have rendered the task too easy
to tap differences in the quality of underlying representations.
This is in line with the finding of Pugh et al. (2008)
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who showed that after only three repetitions of the same
words, the left-hemisphere reading network showed a normal
response to written words in dyslexic participants. Although
we cannot exclude this possibility, it is worth pointing out
that our adults with dyslexia still showed slower reading
aloud performance than controls even after 12 repetitions.
One obvious shortcoming of the present study is that our
dyslexic participants were university students, which might
have compensated for their lower-level orthographic and
phonological deficits by using context or higher level-linguistic
information (Cavalli et al., 2017b,c). Repetition might be one
of the contextual factors that is used strategically by adult
dyslexic readers to compensate for their persistent low-level
orthographic processing deficits. However, while it is easy to
see how such compensation strategies can improve reading
performance, it is less obvious to see how reading compensation
could alleviate neural noise. It would be important to do a
similar study with children and contrast neural adaption and
neural noise paradigms. Clearly, more work is needed to put this
exciting hypothesis to further test.
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