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Abstract: Low back pain (LBP) is now regarded as the first cause of disability worldwide and 

should be a priority for future research on prevention and therapy. Intervertebral disc (IVD) 

degeneration is an important pathogenesis of LBP. Platelet-rich plasma (PRP) is an autologous 

blood concentrate that contains a natural concentration of autologous growth factors and cyto-

kines and is currently widely used in the clinical setting for tissue regeneration and repair. PRP 

has great potential to stimulate cell proliferation and metabolic activity of IVD cells in vitro. 

Several animal studies have shown that the injection of PRP into degenerated IVDs is effective 

in restoring structural changes (IVD height) and improving the matrix integrity of degenerated 

IVDs as evaluated by magnetic resonance imaging (MRI) and histology. The results of this basic 

research have shown the great possibility that PRP has significant biological effects for tissue 

repair to counteract IVD degeneration. Clinical studies for evaluating the effects of the injection 

of PRP into degenerated IVDs for patients with discogenic LBP have been reviewed. Although 

there was only one double-blind randomized controlled trial, all the studies reported that PRP 

was safe and effective in reducing back pain. While the clinical evidence of tissue repair of 

IVDs by PRP treatment is currently lacking, there is a great possibility that the application of 

PRP has the potential to lead to a feasible intradiscal therapy for the treatment of degenerative 

disc diseases. Further large-scale studies may be required to confirm the clinical evidence of 

PRP for the treatment of discogenic LBP.
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Epidemiology of low back pain (LBP) and its 
association with intervertebral disc (IVD) 
degeneration
LBP, an extremely common symptom in populations of all ages from children to 

the elderly, is significantly associated with personal, social, and economic burdens 

worldwide. In 2012, a systematic review of the global prevalence of LBP reported 

that the point prevalence of activity-limiting LBP was estimated to be ~12%, whereas 

the 1-month prevalence was 23%.1 The prevalence of LBP was higher among females 

than among males across all age groups and was relatively high during adolescence. 

An international survey of pain from the data of the Health Behavior in School-aged 

Children: WHO collaborative cross-national survey (HBSC) showed that 37.0% of the 

adolescents reported LBP monthly or more frequently.2 Several epidemiological stud-

ies have shown that the prevalence of LBP was highest during middle age. Therefore, 

LBP has a major societal economic impact.
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More recently, the Global Burden of Disease (GBD) in 

2015 reported that the global point prevalence of activity-

limiting LBP was 7.3% (540 million people in the world), 

and LBP is now regarded as the first cause of disability world-

wide.3 The authors of GDB 2015 suggest that LBP should 

be a priority for future research on prevention and therapy.

Traditionally, the notion that the cause of LBP is unclear 

in about 85% of the patients, referred to as having “non-

specific LBP”, has been perpetrated over recent decades. 

However, recent epidemiological, radiological, and clinical 

studies have shown accumulating evidence that the specific 

nociceptive origin of LBP can be identified by a compre-

hensive diagnosis including radiological, interventional, 

and physical examinations by spine and/or orthopedic 

specialists.4–10

Epidemiological studies on large population samples 

have recently provided evidence that LBP has a significant 

association with lumbar disc degeneration.8,9,11 A cross-

sectional study of young individuals from 13 to 20 years of 

age showed a stronger correlation between disc degeneration 

and LBP than that of adult populations.8,12 DePalma et al10 

also reported that younger patients tend to have a higher 

probability of having a discogenic origin of LBP.

The progression of IVD degeneration is known to lead to 

ruptures (including tears and/or cleft formation) within IVD 

tissues. Because of the absence of blood supply, IVD tissues 

have little potential for self-repair. A previous report showed 

that 39% of the chronic LBP patients had the presence of 

internal disc disruption evaluated by computed tomography 

(CT) images.13 On the other hand, annulus fibrosus (AF) 

tears in the posterior AF area are known as high-intensity 

zones (HIZs) and are observed as high-intensity signals on 

T2-weighted magnetic resonance (MR). Previous reports 

showed that HIZs were identified in 28%–59% of the cases 

among symptomatic LBP patients (see review by Jha et al14). 

Peng et al15,16 reported that the formation of vascularized 

granulation tissue from the NP to the outer AF along the fis-

sures, in which immunoreactive nerve fibers were identified, 

was found in the HIZ area collected from lumbar surgery. 

In addition, Dongfeng et al17 reported that the presence of 

TNF-α and CD68-positive cells was found in the HIZ area, 

suggesting that an HIZ may be a specific signal for the inflam-

matory reaction of painful IVDs. Aoki et al18 have shown 

that nerve fibers (protein gene product 9.5 – immunoreac-

tive) were observed in scar tissues (extruded disc tissues) in 

the rabbit annular-puncture disc degeneration model. These 

previous reports suggest that disc rupture would not only 

induce inflammatory tissue reaction but also nociceptive 

nerve growth around tissue scars that would be associated 

with the chronic pain of discogenic origin.

Pathological mechanism of IVD 
degeneration and its association 
with pain
Biochemical features of ivD degeneration
The IVD consists of an outer AF, which is rich in collagens 

accounting for its tensile strength, and an inner nucleus 

pulposus (NP), which contains large proteoglycans that retain 

water to maintain the osmotic pressure required for resistance 

against loading by compression. A normal (healthy) IVD is 

basically an avascular tissue and only the most outer layer 

of the AF is innervated by sinuvertebral nerves consisting 

of spinal sensory and postganglionic sympathetic fibers.19–21

Although the exact mechanism of IVD degeneration 

remains unknown, the biochemical changes typical of the 

degenerative IVD are known to include progressive decreases 

in proteoglycan and collagen type II contents with subsequent 

dehydration and increased content of collagen type I leading 

to tissue fibrosis.22,23 Importantly, pro-inflammatory cyto-

kines, such as IL-1 and tumor necrosis factor-alpha (TNF-α), 

are thought to significantly affect matrix homeostasis during 

IVD degeneration by stimulating the production of nitric 

oxide, matrix metalloproteinases (MMPs), and aggrecanases, 

finally resulting in the destruction of the extracellular matrix 

(ECM) of both AF and NP tissues.22,24–26

In the process of disc degeneration, these pro-inflamma-

tory cytokines and inflammation-related molecules, including 

neurotrophic factors, are considered to be responsible for the 

pathogenesis of discogenic LBP.19

Neurotrophic factors have been shown to play a signifi-

cant role in the transmission of physiological and pathological 

pain (see review by García-Cosamalón et al21). Among these, 

the neurotrophin family is known to play a role in inflam-

matory responses and pain transmission by increasing the 

expression of pain-related peptides in response to inflam-

mation in local tissues.21

The neurotrophin (NT) family, including nerve growth 

factor (NGF), brain-derived neurotrophic factor (BDNF), and 

NT-3 and its receptor, has also been shown to be expressed 

in the IVD; these expressions are upregulated in degenerated 

and painful discs.27,28 These expressions of the NT family have 

been shown to be regulated by pro-inflammatory stimuli, 

such as IL-1β and TNF-α. The NGF released in inflamma-

tory IVDs may act directly on nociceptive nerve fibers and 

sensory neurons to trigger hyperalgesic effects. The mutual 

www.dovepress.com
www.dovepress.com


Journal of Pain Research  2019:12 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

755

Akeda et al

interaction between pro-inflammatory cytokines and the NT 

family is considered to play a central role in the pathomecha-

nism of discogenic LBP.

Platelet-rich plasma (PRP)
Definition of PRP and clinical application 
in orthopedic fields
PRP is an autologous blood concentrate that contains a natural 

concentration of autologous growth factors and cytokines. 

PRP has been widely used in the clinical setting for tissue 

regeneration and repair.29,30 Recently, especially in the field 

of sports medicine and orthopedics, PRP has demonstrated 

regenerative ability to repair injured tissues, including 

tendons, ligaments, and cartilage, all of which have a low 

intrinsic healing potential.30–34

PRP has recently been applied in the treatment of Achilles 

and patella tendinopathies. These common sport-related inju-

ries often resist conservative medical management because 

the tendon is an avascular tissue with low intrinsic healing 

potential.31 In their systemic review of the clinical effects 

of PRP injection on Achilles tendinopathy (12 papers) and 

patella tendinopathy (three papers), di Matteo et al31 reported 

that, although there are few randomized controlled trials, 

most studies showed that the intratendinous injection of PRP 

significantly reduced pain and improved functional scores.

PRP has also been applied for the treatment of osteoar-

thritis (OA). A recent meta-analysis of Level I randomized 

controlled trials (10 trials with a total of 1,069 patients) found 

that PRP injections were more effective for pain relief and 

functional improvement than injections of placebo (saline) 

and hyaluronic acid (HA) in the treatment of knee OA. Spe-

cifically, one study showed significant improvement in pain 

and functional scores than the placebo (saline) at 6 and 12 

months post-injection and HA at 12 months post-injection.35 

From the results of these clinical studies, the authors of the 

meta-analysis suggest that PRP is a promising treatment for 

cartilage injuries and relieving pain symptoms.

Biology of PRP and its classification
The main function of platelets is to contribute to hemostasis 

through adhesion, activation, and the aggregation process. 

In response to vessel injury, platelets are activated and their 

granules release coagulation factors that generate a fibrin 

clot. In addition to the factors that coagulate blood, activated 

platelets release growth factors. These growth factors increase 

inflammation and revascularization and accelerate epithelial 

regeneration in the inflammatory and proliferative stages of 

wound healing.29

Platelets contain the following three types of secretory 

granules: α-granules, dense granules, and lysosomes. Recent 

proteomic analyses revealed that >3,000 bioactive proteins 

are released from activated platelets. Among the three types 

of granules, α-granules are the major storage organelles for 

secreted proteins, containing adhesion proteins, clotting fac-

tors and inhibitors, fibrinolytic factors and their inhibitors, 

proteases and anti-proteases, growth factors and mitogenic 

factors, chemokines and cytokines, anti-microbial proteins, 

and others.36 Lysosomes are known to contain proteases, such 

as cathepsins and elastases, and other enzymes, including 

phosphatases and glycosidases.36

Once platelets are activated, these bioactive proteins are 

generated and released to the damaged tissues, synergistically 

regulating multiple pathways, including cell proliferation, 

cellular chemotaxis, angiogenesis, cell differentiation, and 

ECM synthesis.29,30,36

PRP has been classified by Dohan Ehrenfest et al37 and 

DeLong et al.38 These classifications are based on the num-

ber of leukocytes and fibrin content and include four types 

of PRP preparation. Leukocyte-poor platelet-rich plasma 

(P-PRP) contains low numbers of leukocytes and low fibrin 

density.37 Leukocyte and platelet-rich plasma (L-PRP) con-

tains high numbers of leukocytes and low fibrin density.37 

Pure platelet-rich fibrin (P-PRF) contains low number of 

leukocytes and high fibrin density. Leukocyte- and platelet-

rich fibrin (L-PRF) contains high numbers of leukocytes and 

high fibrin density37 (Table 1). DeLong et al developed the 

PAW classification based on the number of platelets (P), the 

activation system (A), and the presence of white blood cells 

(leukocytes), as described in Table 1. It is extremely important 

to include this information to evaluate the effect of PRP in 

vitro, in vivo, and in clinical trials. Unfortunately, only 10% 

of the published articles include this comprehensive informa-

tion.39 The type of PRP prepared by commercially available 

equipment is well summarized in the original classification 

papers37,38 and review book chapter.40

PRP activation
PRP activation is one of the major factors that influence 

the outcome of studies. For in vitro studies, it is important 

to activate and use soluble components for culture, unless 

the cultures are in contact with a collagen matrix, for 

example, which induces endogenous activation. For in vivo 

and clinical studies, exogenous activation or endogenous 

activation techniques have been used. Activation will result 

in degranulation of platelets and release of α granules that 

contain growth factors. Activation also induces fibrinogen 
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cleavage that promotes matrix formation.40 PRP activation 

is usually induced by the addition of calcium chloride and/

or thrombin, freezing and thawing, or exposure to collagen 

(especially likely to occur in vivo). For in vitro studies, a 

freezing and thawing procedure (>6 times is recommended) 

is suitable because no additional component needs to be 

added. In vivo collagen activation also does not require an 

additional component, such as thrombin, but the extent of 

release of growth factors may differ.41 These differences in 

the activation method for clinical trials make it difficult to 

accurately assess the result of the studies.

PRP for IVD repair
The use of PRP containing multiple growth factors concen-

trated at high levels has grown in orthopedic practice even 

though its biological mechanisms need further exploration. 

Currently, biological molecules prepared in an autologous 

fashion are not regulated for clinical use by the US Food and 

Drug Administration (FDA).42,43 However, the preparation 

of PRP produced by various apparatuses for “point of care” 

separation of a patient’s own blood in the operating room is 

regulated as an FDA 510(k) cleared device. Alternatively, 

PRP can be produced by local blood banks.

However, the preparation of PRP varies greatly and may 

be the cause for the differing biological activities reported 

among the studies.44 It has even been reported that different 

activation methods of PRP affect its physical form and can 

also change the release of bioactive molecules.41 A systematic 

review performed on PRP literature from 2006 to 2016 by 

Chahla et al39 suggested that there was a need to standardize 

Table 1 Classification of PRP

Dohan Ehrenfest Classification60

PRP type Leukocyte Fibrin density

Pure platelet-rich plasma Low Low
Leukocyte- and platelet-rich plasma High Low
Pure platelet-rich fibrin Low High
Leukocyte- and platelet-rich fibrin High High
PAW Classification61

Platelet Exogenous
activation

WBC
Total WBC Neutrophil

P1≤ baseline (1´) x A: above baseline (buffy-coat system) α: above baseline
P2 baseline – 0.75 M/μL (empty)

endogenous activation
B: below baseline (plasma based-system) β: below baseline

P3 0.75 M – 1.25 M/μL    
P4≥1.25 M/μL    

Note: example: P2-x-Bβ.
Abbreviations: M, million; P, platelet; PRP, platelet-rich plasma; wBC, white blood cell; x, exogenous.

PRP preparation and composition so that studies are repro-

ducible and comparison among different studies could be 

achieved. Overall, most studies focusing on the effects of 

PRP in IVD tissues demonstrate significant biological effects.

in vitro effects of PRP on ivD cells
Studies focusing on the in vitro effects of PRP on IVD cells 

seem promising, many suggesting that PRP has the poten-

tial to be a great therapeutic agent for IVD degeneration 

(Table 2). The effects of PRP (growth factors) are also well 

summarized in several review articles.45–47

Akeda et al reported that a PRP soluble releasate 

stimulated cell proliferation and increased proteoglycan 

and collagen synthesis in alginate-cultured porcine IVD 

cells without affecting their phenotypic stability.48 PRP 

had stronger stimulative effects in the AF region compared 

with the NP. Chen et al49 demonstrated the PRP-stimulated 

proliferation of NP cells and reported that the optimum 

concentration of PRP designated by TGF-β1 was 1 ng/mL. 

They also showed the enhancement of three-dimensional 

(3D)-engineered tissue formation and matrix gene expres-

sion (COL2, SOX9, and AGN), as well as accumulation of 

glycosaminoglycans (GAGs) and that the signaling pathway, 

SMAD2/3 phosphorylation, was activated by PRP. The same 

group reported that PRP promotes recovery of COL2, AGN 

mRNA expression in degenerated discs after chymopapain 

treatment using a porcine whole-disc culture system.50 Pirvu 

et al51 reported that a platelet lysate increased cell prolifera-

tion and GAG accumulation in monolayer cultures of bovine 

AF cells and the maintenance of the spherical shape of cells 
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in whole-disc organ culture. Khalaf et al52 determined the 

effects of PRP on the biomechanical properties of whole-

disc organ cultures treated with trypsin.53 PRP reversed the 

loss of mechanical properties (elastic modulus and hydraulic 

permeability) and GAG content of degenerated discs induced 

by trypsin. Yang et al54 tested the effects of rabbit PRP and 

found the stimulative effects of PRP on COL2, AGN, SOX9 

gene expression and suppression of COLX gene expression. 

These effects were inhibited by a TGF-β1/Smad2/3 signal-

ing pathway inhibitor. Hondke et al55 examined the effects 

Table 2 in vitro effects of PRP on ivD cells

Study Agent Target Dose and ACT Effects

Akeda (2006)48 PRP (leukocyte 
poor)

Porcine ivD cells; 
alginate beads

10% porcine PRP
ACT; thrombin + CaCl2

Mild increase in cell proliferation; marked 
increase in PG and collagen synthesis, and PG 
accumulation.

Chen (2006)49 PRP Human NP cells PRP (defined as TGF-β1 
equivalent)
ACT; thrombin

NP cell proliferation and aggregation; optimum 
at 1 ng TGF-β1 concentration in PRP. Formation 
of three-dimensional tissue construct ↑
COL2, AGN, SOX-9 mRNA ↑, GAG 
accumulation ↑
Phosphorylation of Smad 2/3 ↑, apoptosis ↓

Chen (2009)50 PRP Porcine ivD organ 
culture, degeneration 
induced with 
chymopapain

Porcine PRP (10%, cell 
culture) or ivD (not 
known)
ACT; thrombin

Promoted NP cell viability, chondrogenic 
redifferentiation in cell cultures (details not 
presented). Significant recovery of COL2 AGN 
mRNA expression after chymopapain treatment 
in organ culture

Mietsch (2013)56 TGF-β1 and PRP Human MSCs and NP 
cells

10% human PRP
10 ng/mL TGF-β1
ACT; freeze and thaw 
only

MSC chondrocytic differentiation PRP< TGF-β1, 
mainly proliferation

Liu (2014)58 PRP immortalized human 
NP cells with LPS

PRP equivalent to 1 ng/mL 
TGF-β1

Restored diminished chondrogenic markers 
(SOX9, COL2, and AGN) and deleterious 
inflammatory responses (IL-1, TNF, and MMP3) 
induced by LPS.

Kim (2014)57 PRP releasate Human NP cells on 
collagen matrix

5% and 10% PRP ACT; 
CaCl2

Counteracted inflammatory effects (AGN, 
COL2 ↓, MMP3, COX2 ↑) by iL-1 and TNF-α in 
gene expressions

Pirvu (2014)51 PRP and platelet 
lysate

Bovine AF cells, bovine 
ivD organ culture

25%–50% human PRP
25%–50% human platelet 
lysate
ACT: sonication and 
freezing

50% platelet lysate – DNA and GAG ↑
Organ culture – spherical cell morphology

Khalaf (2015) 
and Nikkhoo 
(2017)52,53

PRP Porcine ivD organ 
culture, degeneration 
induced with trypsin

1 mL porcine PRP PRP recovered mechanical properties (elastic 
modulus and hydraulic permeability) and GAG 
content of denatured discs

Yang (2016)54 PRP Rabbit NP cells 2.5% rabbit PRP releasate
ACT: thrombin+CaCl2

COL2, AGN, SOX9 mRNA ↑, COLX ↓
TGF-β1 inhibitor (blocks TGF-β1/Smad2/3 
signaling pathway) counteracted PRP effects

Cho (2016)59 PRP Porcine AF cells with 
TNF-α

Porcine PRP COL2 and AGN mRNA ↑, MMP1 mRNA, 
protein ↓

Yamada (2017)60 PRP releasate Human disc cells from 
spine surgery patients

Human PRP releasate
ACT: CaCl2

iL-1β, MMP13, NGF mRNA ↓, TGF-β1 mRNA ↑

wang (2018)62 P-PRP and R-PRP Rabbit NP-derived 
stem cells

5%–20% rabbit P-PRP or 
R-PRP
ACT: not described

P-PRP: AGN, COL2 mRNA and protein ↑, iL-
1β, TNF-α, iL-6, -8, MMP1, MMP13 mRNA ↓, 
iL-1β, TNF-α production ↓
R-PRP: similar to P-PRP, but to a lesser extent

Hondke 
(2018)55

PRP Human early and 
advanced AF cells in 
PGA-HA scaffold

5% PRP
ACT: freezing and thawing

Stimulated migration and cell viability in early 
and advanced AF cells. COL2 mRNA ↑, COL1 
and 3 mRNA ↓

Abbreviations: ACT, activation; AF, annulus fibrosus; AGN, aggrecan; BMP-2, bone morphogenetic protein-2; COL2, type II collagen; COX-2, cyclooxygenase-2; GAG, 
glycosaminoglycan; ivD, intervertebral disc; LPS, lipopolysaccharide; MMP; metalloproteinase; MSC, mesenchymal stem cell; NGF, nerve growth factor; NP, nucleus pulposus; 
PG, proteoglycan; PGA-HA, polyglycolic acid–hyaluronan; PRP, platelet-rich plasma; P-PRP, Leukocyte-poor PRP; R-PRP, leukocyte-rich PRP; TNF, tumor necrosis factor.
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of PRP on AF cells from early stages of degeneration (Pfir-

rmann grades 2–3) and advanced degeneration (Pfirrmann 

grades 4–5). PRP stimulated cell migration and cell viability 

in both early and advanced degeneration AF cells, but the 

response was stronger in the early grade AF cells than in the 

advanced stage cells.

On the other hand, Mietsch et al56 reported that PRP 

has stimulative effects on cell proliferation in NP and mes-

enchymal stem cell (MSC) cultures but did not stimulate 

chondrocytic differentiation when compared to TGF-β1. They 

concluded that the application of PRP in human NP tissue 

engineering is not suitable. In their experiment, the activation 

was a single freezing and thawing after irradiation, and the 

concentration of TGF-β1 was not analyzed in this treatment 

but after acetic acid/urea treatment. For in vitro experiments, 

the spontaneous activation with a collagen matrix is not 

expected; the differences in activation methods may result in 

varied conclusions.41 Further studies may be needed to confirm 

the concentration of TGF-β1 in specific PRP preparations.

The anti-inflammatory effects of PRP have also been 

reported as one mechanism for therapeutic effects by several 

groups. PRP was demonstrated to have anti-inflammatory 

effects in inflammatory conditions, typically increasing chon-

drogenic markers and suppressing catabolic pathways. Kim 

et al57 reported that PRP releasate counteracted  inflammatory 

effects, such as the suppression of AGN and COL2 expres-

sions and stimulation of MMP3 and COX2 expressions. Using 

immortalized human NP cells, Liu et al58 also demonstrated 

that PRP restored diminished chondrogenic markers (SOX9, 

COL2, and AGN) and diminished inflammatory responses 

(IL-1β, TNF-α, and MMP3) induced by lipopolysaccharide. 

Cho et al59 reported that PRP stimulated COL2 and AGN gene 

expressions and inhibited MMP-1 expression under TNF-

α-stimulated conditions; the production of MMP-1 induced 

by TNF-α was also inhibited. Yamada et al60 also reported 

that PRP releasate significantly suppressed gene expressions 

of IL-1β, MMP3, and NGF and stimulated that of TGF-β1 

using human disc cells obtained from spine surgery samples 

(seven donors, 25–78-year old). In this in vitro study, stored 

PRP releasates that were prepared for a clinical trial61 and 

extra PRP releasates were used (Figure 1).

Wang et al62 performed a study using rabbit NP-derived 

stem cells obtained from degenerated discs of rabbit and 

compared the effects of P-PRP and leukocyte-rich PRP 

(R-PRP). P-PRP stimulated AGN and COL2 at both mRNA 

and protein levels and inhibited TNF-α, IL-6, -8, MMP1, and 

MMP13 mRNA expressions, as well as IL-1β and TNF-α 

protein production. These results illustrate the importance 

of the characteristics of the PRP used. Further studies using 

human PRP and IVD cells may provide further clinically 

relevant information.

Overall, PRP was effective in stimulating cell prolif-

eration and ECM metabolism. The anti-apoptotic and anti-

inflammatory effects of PRP may contribute to disc repair 

and symptom relief in patients. Given the risks of using 

animal serum for tissue engineering and limited clinical 

development in growth factor therapy, autologous blood 

may gain favor as a source of growth factors and serum 

supplements needed for stimulating cells to regenerate IVD 

tissues. However, as discussed earlier, the standardization 

of study reports and quality assessment of PRP preparation 

are essential to bridge the gap between in vitro studies and 

in vivo and clinical studies.

in vivo effects of PRP in ivD 
degeneration animal models
Many in vivo studies reported similar results with those found 

in vitro, showing the restorative effects of PRP in joint and 

musculoskeletal degeneration (Table 3).63 However, because 

there is minimal standardization in terms of the activation and 

Figure 1 effect of PRP releasate on the mRNA expression of iL-1β (A), MMP-3 (B), NGF (C), and TGF-β (D) by human ivD cells.
Notes: iL: iL-1β (1.0 ng/mL), iL + PRP: iL-1β (1.0 ng/mL) + 10% PRP. **P<0.05.
Abbreviations: ivD, intervertebral disc; MMP, matrix metalloproteinase; NGF, nerve growth factor; PRP, platelet-rich plasma.
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preparation of PRP, variance in results is expected.39 Addi-

tionally, some animal studies use combinatorial treatments of 

PRP with other inhibitors/carriers to examine the pathways 

in which PRP helps retard IVD degeneration.

Nagae et al64 reported, for the first time, that PRP-

impregnated gelatin hydrogel microspheres (PRP-GHM) 

were effective in retarding IVD degeneration, as assessed by 

histological grading and increasing proteoglycan content in 

Table 3 in vivo effects of PRP in ivD degeneration animal models

Study Agent (volume) Species Sample 
size 
(N)

Injection 
site

Model
Timing of Tx
Follow-up

Effects

Nagae (2007)64 Rabbit PRP in gelatin 
hydrogel microsphere 
(20 μL)
ACT: none

Rabbit 36 Lumbar Nucleotomy
Tx 2 w later
2, 4, and 8 w follow-up

PRP + GHM group had less 
degeneration and increased PG; 
PRP + PBS group showed no 
differences

Sawamura 
(2009)65

Rabbit PRP in gelatin 
hydrogel microsphere 
(20 μL)
ACT: none

Rabbit 128 Lumbar Nucleotomy
Tx 2 w later
2, 4, 8 w follow-up

PRP + GHM had greater disc 
height, water content, AGN 
and COL2 mRNA ↑ n; fewer 
apoptotic cells in NP

Chen (2009)50 PRP (volume NA)
ACT: not reported

Porcine 14 Thoracic 
lumbar

Chymopapain
Tx 1 w later
4, 8 w follow-up

increased AGN and COL2 
gene expression, histological 
improvement, and disc height 
increase

Gullung (2011)66 PRP (100 μL)
ACT: not reported

Rat 18 Lumbar Needle puncture
Tx 0, 2 w later
2, 4 w follow-up

Disc height increased in the 
immediate injection group. 
Histological improvement. earlier 
intervention – better.

Obata (2012)67 PRP releasate (20 μL)
ACT: auto-serum + 
CaCl2

Rabbit 12 Lumbar Needle puncture (18G) 
Tx 4 w later
2, 4, 6, 8 w follow-up

Disc height increased, no 
significant MRI T2 signal

Gui (2015)68 PRP (100 μL)
ACT: thrombin

Rabbit 36 Lumbar Needle puncture
Tx 2, 4 w later
2 w follow-up

Disc height maintained, NP signal 
intensity maintained. Significantly 
low MRi grading

wang (2016)69 PRP (200 μL)
ACT: no activation

Rabbit 40 Lumbar Needle puncture (21G)
Tx 2 w later
1, 2, 8 w follow-up

PRP – moderate effect on MRi 
intensity, disc height
PRP + BMSC better than PRP: 
well-preserved eCM. Cell density 
increased T2 signal intensity, 
MRi grading, and COL2 mRNA 
expression i

Yang (2016)54 PRP (15 μL)
ACT: thrombin+ CaCl2

Rabbit 24 Lumbar Needle puncture (18G)
Tx 4 w later
0, 4, 8, 12 w follow-up

T2 signal intensity: PRP> control 
or PRP + TGF-β inhibitor
Histology: PRP-less degeneration, 
strong COL2 staining, and 
SMAD2/3-positive cells

Hou (2016)70 PRP (40 μL)
PRP + BMSC
PRP + BMP2 – BMSC
BMP2 – BMSC
ACT: thrombin + CaCl2 
injection after agents

Rabbit 60 Lumbar Needle puncture (21G)
Tx 2 w later
4, 8 w follow-up

Col2 and PG staining and MRi 
grade
PRP + BMP2 – BMSC> PRP + 
BMSC > PRP

Abbreviations: ACT, activation, AGN, aggrecan, BMSC, bone marrow-derived mesenchymal stem cell; BMP2, bone morphogenetic protein 2; COL2, type ii collagen; 
eCM, extracellular matrix; GHM, gelatin hydrogel microsphere; ivD, intervertebral disc; MRi, magnetic resonance imaging; PG, proteoglycan; PRP, platelet-rich plasma; TX, 
treatment; w, weeks.

the rabbit nucleotomy disc degeneration model. In this experi-

ment, an injection of PRP without microspheres did not show 

positive therapeutic effects. They, therefore, concluded that 

the use of gelatin hydrogel microspheres that immobilized 

growth factors provided a better therapeutic effect compared 

to PRP alone. No activation was performed for the PRP alone 

group. They also suggested that the time of impregnation 

into gelatin microspheres allowed released growth factors 
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from platelets to be immobilized. A subsequent study by 

Sawamura et al65 revealed that disc height and MR imaging 

(MRI) grading scores after an injection of PRP-GHM were 

significantly higher than the nucleotomy only group or the 

PRP group. These results were associated with increased 

AGN and COL2 mRNA expressions and decreased numbers 

of apoptotic cells 2 weeks after the injection.

Two months after PRP injections, Chen et al50 found 

increased expressions of collagen II mRNA and aggrecan, 

improvement in disc height index, and differentiation of 

osteogenic MSCs in the porcine disc degeneration model 

induced by chymopapain. Gullung et al66 showed that mor-

phology and high fluid content and disc height remained nor-

mal immediately after an injection of PRP in the rat lumbar 

disc needle puncture model. Additionally, Obata et al67 found 

that using only PRP releasate also showed similar restorative 

results in a rabbit needle puncture model, suggesting that 

there are ways to optimize PRP injection treatments. Gui 

et al68 reported similar results using thrombin-activated PRP, 

but also a positive effect on MRI signal intensity, in the rabbit 

annular puncture model at both 2 and 4 weeks post injury.

Yang et al54 confirmed their in vitro experiment results 

presented earlier in the rabbit model for the involvement 

of the TGF-β signaling pathway in the effects of PRP. The 

positive effects of PRP on MRI and collagen staining and 

Smad2/3 cell numbers were significantly suppressed by the 

co-injection of a TGF-β1 inhibitor.

Wang et al69 injected PRP with bone marrow-derived mes-

enchymal stem cells (BMSCs) in the rabbit annular puncture 

model and found that the ECM and cell density were well 

preserved, as well as an increase in T2 signal intensity, MRI 

grading, and strong immuno-positive staining for Col II. MRI 

scores of the PRP group were similar to those of the PRP+ 

BMSC group for 2 weeks, but the efficacy was diminished at 

8 weeks. They predicted that the injected PRP was activated 

by the surrounding tissues and interacted with BMSCs.

Hou et al70 reported that BMSCs transduced with bone 

morphogenetic protein 2 (BMP2) in PRP gel inhibited disc 

degeneration and enhanced production of the ECM in the NP.

PRP treatment is potentially effective in restoring disc 

height of mice, rabbit, and rat models, reducing histological 

degeneration grade, and increasing MRI T2 image signals. 

The recent meta-analysis of the animal experiment data 

supports the restoration of disc height and histology, as 

well as an increase in MRI signal intensity.71 As such, PRP 

injection may be a promising therapy for retarding disc 

degeneration. A consensus shows that PRP, as well as its 

releasate, is effective in retarding and possibly reversing the 

effects of IVD  degeneration. More studies are now focus-

ing on either combining PRP injection with other agents or 

PRP activation pathways to determine how PRP is effective 

and to discover limitations as well as ways to optimize this 

potential treatment.

Clinical studies of PRP for LBP 
patients
intradiscal injection
The first prospective preliminary clinical trial for the safety 

and efficacy of intradiscal injection therapy using PRP for 

discogenic LBP was reported in 2011 (Table 4).72 This study 

used PRP releasate prepared by a local blood center that was 

activated with autologous serum and CaCl
2
 and included six 

patients who had chronic LBP for >3 months. The results of 

this study showed that mean pain scores (VAS and Roland-

Morris Disability Questionnaire [RDQ]) before treatment 

were significantly decreased at 1 month, and these were sus-

tained for 6 months after treatment, although mean T2 values 

did not significantly change. A subsequent report including 14 

patients with an average period of 10 months follow-up also 

showed the analgesic effect of PRP releasate.61 In the later 

study, the mean pain scores of over 70% of the patients before 

treatment were significantly decreased at 1 month, and this 

was generally sustained throughout the observation period, 

although VAS scores of two patients and the RDQ score of 

one patient returned to higher levels following treatment. No 

patient experienced adverse events or significant narrowing 

of disc height. In this study, platelets were isolated by the 

buffy coat (BC) method, which contributes to fewer white 

blood cells and lower concentrations of pro-inflammatory 

cytokines. According to the PRP classification system 

reported by Dohan Ehrenfest et al,37 the PRP preparation 

process used in these studies by Akeda et al is classified as 

“pure PRP”, which contains fewer white blood cells. The 

PRP was activated with CaCl
2
 and autologous serum, and 

the soluble releasate following centrifugation was used for 

the intradiscal injection of patients. Importantly, the soluble 

releasate used in these studies could be sterilized using a 

membrane filter while being injected into the target discs, 

conferring the advantage of reducing the risk of infection 

associated with the injection procedure. Second, the soluble 

releasate can be stored at –80°C and prepared for the future 

treatment of recurrent pain.

Bodor et al73 included case examples in their book chap-

ters. These authors performed intradiscal PRP injections for 

47 thoracic or lumbar discs of 35 patients.73 PRP without 

leukocytes or erythrocytes was prepared using a commercial 
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kit (Cascade Autologous Platelet System; ConMed Linvatec; 

MTF biologics, Edison, NJ, USA), and no activators (CaCl
2
 

or thrombin) were used. Two-thirds of the patients reported 

positive responses in numerical rating scales (NRS) and the 

Oswestry Disability Index (ODI) scores. In their study, most 

patients showed improvement of LBP at 1 week to 2 months 

that was sustained. However, the report lacks details of their 

clinical outcomes.

Navani et al74 reported a case series study to examine the 

effects of PRP intradiscal injection on six patients. Fifty per-

centage of the verbal pain scale (VPS) scores of all patients 

decreased by 3 months, and low pain levels were maintained 

until the 6-month follow-up. The short forum (SF)-36 also 

improved in both physical and mental scores.

Levi et al75 reported a prospective clinical trial of 22 

patients investigating the effects of intradiscal PRP injec-

tions on discogenic back pain. The PRP was prepared using a 

Smartprep (Harvest, MA, USA) procedure pack, which makes 

L-PRP.76 At the 6-month follow-up, 47% had a successful 

outcome defined as at least 50% improvement in VAS and at 

least 30% improvement in ODI. Before the 1.5 mL injection 

of PRP, 0.6 mL of contrast, 0.4 mL of gentamicin (40 mg/

mL), and 0.5 mL of 4% lidocaine were injected to confirm the 

needle position and for discitis prophylaxis and pain control, 

respectively. The authors speculated that the addition of these 

substances might have had an adverse effect on their results.

For the first time, Tuakli-Wosornu et al77 reported a 

double-blind randomized controlled trial of intradiscal 

PRP therapy for discogenic LBP.78 The participants were 

randomized into treatment or control groups in a 2:1 ratio, 

respectively. PRP was prepared using a commercial kit 

(Harvest). The activation procedure was not described. It is 

worth noting that they used a contrast to test the presence of 

concordant pain before the injection of PRP. At the 8-week 

follow-up, statistically significant improvements in NRS 

best pain, functional rating index (FRI), and patient satisfac-

tion (NASS outcome Questionnaire) were observed in the 

treatment group, compared to the control group. Fifty-six 

percentage (15/27) of the participants were satisfied (NASS 

Outcome Questionnaire) with the treatment, whereas only 

18% (3/17) of control participants were satisfied. The major-

ity of patients (68.2%) in the control group requested that 

they receive PRP treatment. The significant effects of PRP 

in NRS worst pain, FRI function, and SF-36 pain and SF-36 

function scores were sustained for 2 years.78 However, the 

outcomes were not compared after 8 weeks because of the 

lack of control group follow-up.

In summary, six clinical studies that evaluated the effect 

of intradiscal injection of PRP on low back patients have been 

reported. However, these previous reports included one single 

case report, two case series, two prospective trails, and only 

one double blind randomized controlled trial. Therefore, at 

present, the clinical evidence of intradiscal therapy of PRP 

for treatment of discogenic LBP remains insufficient. More 

clinical studies, especially randomized controlled trials, are 

needed to evaluate whether PRP is effective for treating 

degenerative disc disease.

Other injection procedures for LBP
PRP has been used in several different injection methods to 

treat LBP. Aufiero et al79 reported a case series study show-

ing that P-PRP facet joint injections improved >50% of the 

symptoms of all five patients. Kirchner et al80,81 performed 

intradiscal and intraarticular facet infiltrations for 86 patients 

with plasma rich in growth factor (PRGF), which includes 

a twofold increase in the platelet count of peripheral blood 

with scarce numbers of leukocytes. The PRGF was prepared 

using the PRGF system IV (BTI-Biotechnology Institute, 

Vitoria, Álava, Spain) and activated with 10% weight/volume 

calcium chloride immediately before injection. VAS scores 

significantly decreased from 8.4±1.1 before treatment to 4.0, 

1.7, and 0.8 at 1, 3, and 6 months after treatment, respec-

tively. Ninety percentage of patients showed excellent (VAS 

0–3) results.

Wu et al82 conducted a prospective study to investigate 

autologous PRP intraarticular injections for lumbar facet 

joint syndrome patients. During the 3-month follow up, VAS, 

RDQ, and ODI scores gradually and significantly improved 

(–4.42, P<0.05; no data shown, P<0.05; and –28.0, P<0.05, 

respectively). They also reported a randomized controlled 

study to compare the efficacy of PRP injection to that of 

corticosteroid (5 mg/mL betamethasone).83 Both PRP and 

corticosteroid injection showed significant analgesic effects 

at all time points of the 6-month follow-up in VAS, RDQ, 

and ODI scores (P<0.01). Interestingly, those scores of the 

corticosteroid group reversed and worsened at the 2-month 

time point after injection, whereas those of the PRP group 

showed a sustained trend of improvement. At the 1-week 

and 1-month time points, although those scores of the cor-

ticosteroid group were significantly better than those of the 

PRP group (P<0.05), opposite results were seen at 6 months 

(P<0.05).

Bhatia and Chopra84 reported an efficacy study of the 

epidural injection of autologous PRP for patients with lumbar 
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Table 4 Clinical studies of PRP for LBP patients

Study Study design Number of 
patients

Diagnostic 
discography

Injection 
method

PRP preparation 
method

Characteristics 
of PRP

Volume 
of whole 
blood

Injection 
volume of 
PRP

Follow-up 
period

Outcome measure Maximum 
improvement 
time point

Comment

Intradiscal injection
Akeda et al 
(2011)72

Prospective 
preliminary trial

6 Yes intradiscal Buffy coat method P-PRP releasate 
ACT: CaCl2+ 
autoserum

200 mL 2 mL 6 M vAS (7.1→1.8**) and RDQ (11→3.2**) 6 M

Bodor et al 
(2014)73

Case series 35 Yes intradiscal Cascade Autologous 
Platelet System 
(ConMed Linvatec)

P-PRP ACT: no 9 mL 2 mL 2–10 M NRS and ODi (positive response of 2/3 
patients)

1 w–2 M

Navani and Hames 
(2015)74

Case series 6 Yes intradiscal P-PRP system 
(emCyte)

L-PRP ACT: no 60 mL 1.5–3 mL 24 w vPS (50% decrease in 6 patients) 24 w

Levi et al (2016)75 Prospective trial 22 Partial intradiscal Smartprep (Harvest) L-PRP ACT: no 30 or 60 mL 1.5 mL 6 M 47% patients (both vAS 50% and ODi 
30% improvement)

6 M PRP injection just after 0.6 mL of 
contrast, 0.4 mL of gentamicin, and 
0.5 mL of lidocaine

Tuakli-wosornu 
et al (2016)77 
Monfett et al 
(2016)78

Double-blind 
randomized 
controlled trial

36 treatments and 
22 controls

Yes intradiscal Smartprep (Harvest) L-PRP ACT: no 30 mL 1–2 mL 8 w (RCT) FRi (control 44–PRP 38*), NRS, 
SF-36, and modified NASS Outcome 
Questionnaire

1–2 years PRP injection just after 1–2 mL 
injection of contrast

Akeda et al 
(2017)61

Prospective trial 14 Yes intradiscal Buffy coat method P-PRP releasate 
ACT: CaCl2+ auto 
serum

200 mL 2 mL 10 M vAS (7.5→3.1**) and RDQ 
(12.6→5.1**)
T2-value: no change

1 M Discography on different days from 
PRP injection

Lutz (2017)90 Single case report 1 Yes intradiscal Arteriocyte 
(Magellan)

L-PRP
ACT: N/D

N/D 1.5 mL 12 M improvement
T2 nuclear signal intensity↑, type i 
Modic changes↓

N/A PRP injection just after injection of 
contrast

Non-intradiscal injections (facet, epidural, and intramuscular) 
Aufiero et al 
(2015)79

Case report 5 N/A intraarticular 
(facet)

N/D P-PRP ACT: no N/D Multiple 
injection

6–12 M vAS N/A  

Kirchner and 
Anitua (2016)80,81

Observational 
retrospective pilot 
study

86 Yes intradiscal and 
intraarticular

PRGF system iv 
(BTi-Biotechnology 
institute, vitoria, 
Álava, Spain)

PRGF ACT: CaCl2 9 mL 4 mL (disc) 
and 2 mL 
(facet)

6 M vAS (8.4→0.8**)
91% excellent
8.1% moderate

6 M

wu et al (2016)82 Prospective study 19 N/A intraarticular 
(facet)

Centrifuge
2 times soft spin

N/D 5–10 mL 0.5 mL 3 M vAS (7.05→2.63, P<0.05)
RDQ (P<0.05)
ODi (54.3→26.3, P<0.05)

3 M  

Bhatia and Chopra 
(2016)84

Pilot study 10 N/A epidural Blood bank
No detail

N/D 100 mL 5 mL 3 M vAS, MODQ index, and SLRT 
(most of the patients improved in all 
evaluations)

3 M  

Hussein and 
Hussein (2016)85

Prospective trial 104 N/A intramuscular 
(weekly injection 
for 6 weeks)

PRP method L-PRP ACT: CaCl2 50 mL 2.5 mL 2 years NRS (8.81→3.5**) and ODi 
(36.7→14.7**)

12–18 M  

wu et al (2017)83 Randomized 
controlled study

21 (PRP)
23 (betamethasone)

N/A intraarticular 
(facet)

Centrifuge
2 times soft spin

N/D 5–10 mL 0.5 mL 6 M PRP> betamethasone (vAS, RDQ, and 
ODi)

6 M  

Cameron and 
Thielen (2017)86

Prospective trial 50 N/A Circumferential 
manner into 
posterior spine 
area

N/D N/D N/D N/D 5 years vAS (–77% improvement) and ODi No description LBP caused by spinal disc 
herniation

Comella et al 
(2017)87

Prospective trial 15 No intradiscal N/D PRP mixed with 
stromal vascular 
fraction

N/D 1 mL 6 M (safety 
12 M)

vAS (5.6→3.6**), PPi (2.6→1.8*), BDi, 
ODi, SM-MPQ, SF-12, and DPQ

6 M  

Note: *P<0.05 and **P<0.01.
Abbreviations: ACT, activation; BDi, Beck Depression inventory; DPQ, Dallas Pain Questionnaire; FRi, Functional Rating index; LBP, low back pain; L-PRP, leukocyte- and 
platelet-rich plasma; M, months; MODQ, Modified Oswestry Disability Questionnaire; N/A, not applicable; N/D, no description; NRS, Numeric Rating Scale; ODI, Oswestry 
Disability index; PPi, present pain intensity; P-PRP, Leukocyte-poor PRP; PRP, platelet-rich plasma; RDQ, Roland-Morris Disability Questionnaire; SF, Short Form; SF-MPQ, 
Short-form McGill Pain Questionnaire; SLRT, Straight Leg Raising Test; vPS, verbal pain scale; w, weeks.
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Table 4 Clinical studies of PRP for LBP patients

Study Study design Number of 
patients

Diagnostic 
discography

Injection 
method

PRP preparation 
method

Characteristics 
of PRP

Volume 
of whole 
blood

Injection 
volume of 
PRP

Follow-up 
period

Outcome measure Maximum 
improvement 
time point

Comment

Intradiscal injection
Akeda et al 
(2011)72

Prospective 
preliminary trial

6 Yes intradiscal Buffy coat method P-PRP releasate 
ACT: CaCl2+ 
autoserum

200 mL 2 mL 6 M vAS (7.1→1.8**) and RDQ (11→3.2**) 6 M

Bodor et al 
(2014)73

Case series 35 Yes intradiscal Cascade Autologous 
Platelet System 
(ConMed Linvatec)

P-PRP ACT: no 9 mL 2 mL 2–10 M NRS and ODi (positive response of 2/3 
patients)

1 w–2 M

Navani and Hames 
(2015)74

Case series 6 Yes intradiscal P-PRP system 
(emCyte)

L-PRP ACT: no 60 mL 1.5–3 mL 24 w vPS (50% decrease in 6 patients) 24 w

Levi et al (2016)75 Prospective trial 22 Partial intradiscal Smartprep (Harvest) L-PRP ACT: no 30 or 60 mL 1.5 mL 6 M 47% patients (both vAS 50% and ODi 
30% improvement)

6 M PRP injection just after 0.6 mL of 
contrast, 0.4 mL of gentamicin, and 
0.5 mL of lidocaine

Tuakli-wosornu 
et al (2016)77 
Monfett et al 
(2016)78

Double-blind 
randomized 
controlled trial

36 treatments and 
22 controls

Yes intradiscal Smartprep (Harvest) L-PRP ACT: no 30 mL 1–2 mL 8 w (RCT) FRi (control 44–PRP 38*), NRS, 
SF-36, and modified NASS Outcome 
Questionnaire

1–2 years PRP injection just after 1–2 mL 
injection of contrast

Akeda et al 
(2017)61

Prospective trial 14 Yes intradiscal Buffy coat method P-PRP releasate 
ACT: CaCl2+ auto 
serum

200 mL 2 mL 10 M vAS (7.5→3.1**) and RDQ 
(12.6→5.1**)
T2-value: no change

1 M Discography on different days from 
PRP injection

Lutz (2017)90 Single case report 1 Yes intradiscal Arteriocyte 
(Magellan)

L-PRP
ACT: N/D

N/D 1.5 mL 12 M improvement
T2 nuclear signal intensity↑, type i 
Modic changes↓

N/A PRP injection just after injection of 
contrast

Non-intradiscal injections (facet, epidural, and intramuscular) 
Aufiero et al 
(2015)79

Case report 5 N/A intraarticular 
(facet)

N/D P-PRP ACT: no N/D Multiple 
injection

6–12 M vAS N/A  

Kirchner and 
Anitua (2016)80,81

Observational 
retrospective pilot 
study

86 Yes intradiscal and 
intraarticular

PRGF system iv 
(BTi-Biotechnology 
institute, vitoria, 
Álava, Spain)

PRGF ACT: CaCl2 9 mL 4 mL (disc) 
and 2 mL 
(facet)

6 M vAS (8.4→0.8**)
91% excellent
8.1% moderate

6 M

wu et al (2016)82 Prospective study 19 N/A intraarticular 
(facet)

Centrifuge
2 times soft spin

N/D 5–10 mL 0.5 mL 3 M vAS (7.05→2.63, P<0.05)
RDQ (P<0.05)
ODi (54.3→26.3, P<0.05)

3 M  

Bhatia and Chopra 
(2016)84

Pilot study 10 N/A epidural Blood bank
No detail

N/D 100 mL 5 mL 3 M vAS, MODQ index, and SLRT 
(most of the patients improved in all 
evaluations)

3 M  

Hussein and 
Hussein (2016)85

Prospective trial 104 N/A intramuscular 
(weekly injection 
for 6 weeks)

PRP method L-PRP ACT: CaCl2 50 mL 2.5 mL 2 years NRS (8.81→3.5**) and ODi 
(36.7→14.7**)

12–18 M  

wu et al (2017)83 Randomized 
controlled study

21 (PRP)
23 (betamethasone)

N/A intraarticular 
(facet)

Centrifuge
2 times soft spin

N/D 5–10 mL 0.5 mL 6 M PRP> betamethasone (vAS, RDQ, and 
ODi)

6 M  

Cameron and 
Thielen (2017)86

Prospective trial 50 N/A Circumferential 
manner into 
posterior spine 
area

N/D N/D N/D N/D 5 years vAS (–77% improvement) and ODi No description LBP caused by spinal disc 
herniation

Comella et al 
(2017)87

Prospective trial 15 No intradiscal N/D PRP mixed with 
stromal vascular 
fraction

N/D 1 mL 6 M (safety 
12 M)

vAS (5.6→3.6**), PPi (2.6→1.8*), BDi, 
ODi, SM-MPQ, SF-12, and DPQ

6 M  

Note: *P<0.05 and **P<0.01.
Abbreviations: ACT, activation; BDi, Beck Depression inventory; DPQ, Dallas Pain Questionnaire; FRi, Functional Rating index; LBP, low back pain; L-PRP, leukocyte- and 
platelet-rich plasma; M, months; MODQ, Modified Oswestry Disability Questionnaire; N/A, not applicable; N/D, no description; NRS, Numeric Rating Scale; ODI, Oswestry 
Disability index; PPi, present pain intensity; P-PRP, Leukocyte-poor PRP; PRP, platelet-rich plasma; RDQ, Roland-Morris Disability Questionnaire; SF, Short Form; SF-MPQ, 
Short-form McGill Pain Questionnaire; SLRT, Straight Leg Raising Test; vPS, verbal pain scale; w, weeks.
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disc herniation/prolapse on MRI, who also had >4 weeks 

LBP and a positive straight leg raising test (SLRT). After an 

injection of PRP, patients showed a gradual improvement of 

symptoms, in terms of VAS scores, Modified Oswestry Dis-

ability Questionnaire (MODQ) index, and SLRT that were 

sustained for 3 months. VAS scores did not change during 

the first hour but decreased significantly at the 3-week and 

3-month time points. Most patients also showed MODQ 

scores <30% and improved SLRTs >70 at 3 months.

Hussein and Hussein85 showed the effects of autologous 

platelet, leukocyte-rich plasma injections for LBP accompa-

nied with atrophied lumbar multifidus muscle and monoseg-

mental degenerated IVDs. Patients were treated with weekly 

injections for 6 weeks and were followed-up for 24 months. 

Patients demonstrated a significant gradual improvement of 

NRS scores from 8.8 to 3.45 and ODI scores from 36.7 to 

14.6 by 12 months. These improvements were sustained until 

the 24-month follow-up.

Cameron and Thielen86 reported that PRP injected in a 

circumferential manner subfascially into the lateral masses, 

facet joints, and the other areas around the posterior spine 

contributed to a significant improvement of VAS by 77%. 

Sixty-eight percentage of the patients reported more than a 

75% improvement of symptoms.

Comella et al87 determined the efficacy of an intradis-

cal injection in 15 patients with stromal vascular fraction 

(SVF) resuspended in PRP. SVF was prepared with an adi-

pose SVF preparation kit (US Stem Cell, Inc. Sunrise, FL, 

USA), but there was no description about the preparation of 

PRP. Patients demonstrated statistically significant improve-

ments in several parameters, including flexion, pain ratings, 

VAS, present pain intensity (PPI), and Short-form McGill 

Pain (SF-MPQ) Questionnaire, and Short-form 12-physical 

component summary.

Discussion
Because activated platelets can release more than several 

thousand bioactive proteins, those concentrates known as 

PRP must have multiple important molecular functions, 

including inflammation, angiogenesis, cell migration, and 

metabolism for tissue repair and regeneration.29 Interestingly, 

in vitro studies by cells from the musculoskeletal system 

showed that PRP has potential to stimulate cell proliferation 

and metabolic activity.63 It should be emphasized that these 

cell-activating effects of PRP were also identified by cells 

from IVDs that are an avascular tissue with a low intrinsic 

healing potential.48,49,51,55

Our review of the in vitro effects of PRP on IVD cells 

showed that PRP has not only anabolic effects but also 

anti-inflammatory effects. It has been reported that the 

anti-inflammatory properties of PRP are associated with its 

inhibitory effects on the nuclear factor-κB (NF-κB) signal-

ing pathway in multiple cell types.88,89 In addition, bioactive 

molecules released from PRP would also induce cells to 

produce and secrete additional biologically active molecules. 

We speculate that these complex and harmonized biological 

functions of PRP would change the pathologic conditions 

of degenerated IVDs to anabolic and anti-inflammatory 

conditions by the local injection of PRP. The results of the 

updated review of animal studies showed that the intradiscal 

injection of PRP would be effective in restoring structural 

changes and improving the matrix integrity of degenerated 

IVDs; this would further support the anabolic effects of PRP 

within degenerated IVDs in these animal models.

Clinical studies of PRP for LBP patients commonly 

showed that the intradiscal injection of PRP was effective 

in reducing back pain; however, a double-blind randomized 

controlled trial has only been conducted by Tuakli-Wosornu 

et al.77,78 Furthermore, only a few clinical trials that evalu-

ate the radiological changes of disc degeneration have been 

reported.61,90 Clinical image findings that PRP particularly 

stimulated tissue repair within degenerated IVDs have 

not been confirmed. Further large-scale studies, such as 

multicenter and/or society-led clinical trials using the same 

isolation and/or activating protocol of PRP, may be required 

to confirm the clinical evidence of PRP for the treatment of 

LBP resulting from degenerative disc disease.

Conclusion
In this review, we describe the effects of PRP with a focus 

on intradiscal therapy from basic to clinical research for the 

treatment of discogenic LBP caused by degenerative disc 

diseases. In vitro and in vivo (animal) studies revealed that 

PRP has significant biological effects to stimulate IVD cells 

to repair tissues.

In general, previous clinical reports suggested that an 

intradiscal injection of various preparations of PRP (leuko-

cyte rich- or poor-PRP, with/without activation, and platelets 

themselves or platelet releasate) into degenerated discs of 

patients with LBP provided positive effects on pain relief. 

It should be noted that only one double-blinded study with 

contrast agents in a limited number of patients and without 

characterization of PRP preparation showed some positive 

effects in limited outcome measures.77 Therefore, it remains 
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to be answered whether PRP has specific biological effects 

on pain generation in LBP patients.

From a safety standpoint, the injection of a releasate (only 

the fluid element, not the cellular element) isolated from 

activated PRP may be advantageous because of the possible 

use of the pre-filtration technique. The pharmacokinetics of 

factors released from PRP or PRP releasate have not been 

reported. The distribution of leukocytes and platelets in discs 

may be limited, and the activation mechanism of platelets in 

situ is not well known. These points should be clarified in 

preclinical studies.

Because the preparation of autologous PRP using a com-

mercial PRP concentration system as a point of care product 

is a simple and short-time procedure, intradiscal therapy with 

PRP itself is highly feasible in clinical use if the mechanism 

of action is completely revealed. To support this contention, 

well-designed clinical trials should be conducted. Comparisons 

between leukocyte-rich and poor PRP (including various prepa-

ration equipment/devices) and pre-activation or in situ activation 

should be performed. Other clinical factors, such as the simul-

taneous injection of contrast agents, especially in consideration 

of recently reported deleterious effects of contrast agents, must 

be taken into consideration. The practical limitations of these 

studies to compare various PRP preparations include the require-

ment of devices from multiple manufacturers and lack of funding 

for clinical trials supported by these manufacturers. Therefore, 

contributions from academic societies or governmental bodies 

(such as the NIH or European commission) are essential.

In conclusion, large-scale double-blind randomized stud-

ies with well-controlled preparation conditions and sufficient 

power, as well as proper analyses of PRP components, will 

be required to establish an evidence-based and standardized 

treatment of LBP.
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