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Abstract

This study aimed to evaluate image quality, the detection rate of enlarged lymph nodes, and

radiation dose exposure of ultralow-dose and low-dose abdominopelvic computed tomogra-

phy (CT) in patients with lymphoma. Patients with lymphoma who underwent abdominopelvic

CT using dual-source scanner were retrospectively recruited from a single center. CT images

were obtained at 90 kVp dual-source mode reformatted in three data sets using the advanced

modelled iterative reconstruction algorithm: 100% (standard-dose CT), 66.7% (low-dose

CT), and 33.3% (ultralow-dose CT). Two radiologists analyzed subjective image quality and

detection of abdominal enlarged lymph nodes on ultralow-dose, low-dose, and standard-

dose CT blindly and independently. The results were compared with reference standards.

Three readers (two radiologists and one hematologist) reviewed overall image quality and

spleen size. In total, 128 consecutive CT scans (77 complete response, 44 partial response,

6 progressive disease, and 1 initial evaluation) from 86 patients (64 B-cell lymphoma, 14 T/

NK-cell lymphoma, and 8 Hodgkin’s lymphoma cases) were assessed. The enlarged lymph

node-based detection rates for two readers were 97.0% (96/99) and 94.0% (93/99) on stan-

dard-dose CT, 97.0% (96/99) and 94.0% (93/99) on low-dose CT, and 94.0% (93/99) and

89.9% (89/99) on ultralow-dose CT. Overall image quality was 3.8 ± 0.5, 3.9 ± 0.5, and 4.1 ±
0.5 on ultralow-dose CT; 4.7 ± 0.4, 4.6 ± 0.5, and 4.8 ± 0.3 on low-dose CT; and 4.8 ± 0.4, 4.7

± 0.4, and 4.9 ± 0.2 on standard-dose CT, according to two radiologists and one hematolo-

gist, respectively. Intraclass correlation coefficients of spleen size were 0.90 (95% confidence

interval [CI], 0.87–0.93), 0.91 (95% CI, 0.88–0.93), and 0.91 (95% CI, 0.88–0.93) on ultra-

low-dose, low-dose, and standard-dose CT, respectively. Mean effective radiation doses of

standard-dose, low-dose, and ultralow-dose CT were 5.7 ±1.8 mSv, 3.8 ± 1.2 mSv, and 1.9 ±
0.6 mSv, respectively. Our findings suggest that ultralow-dose and low-dose CT, even with

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0272356 August 11, 2022 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Yoon S, Yoo KH, Park SH, Kim H, Lee JH,

Park J, et al. (2022) Low-dose abdominopelvic

computed tomography in patients with lymphoma:

An image quality and radiation dose reduction

study. PLoS ONE 17(8): e0272356. https://doi.org/

10.1371/journal.pone.0272356

Editor: Gayle E. Woloschak, Northwestern

University Feinberg School of Medicine, UNITED

STATES

Received: January 8, 2022

Accepted: July 18, 2022

Published: August 11, 2022

Copyright: © 2022 Yoon et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data for this

study contain potentially identifying information.

The data are contained in the Supporting

Information files and available from the Data

Access Gil hospital contact via Young-Sup Shim

(shimbong78@gilhospital.com).

Funding: This research was supported by the Basic

Science Research Program through the National

Research Foundation of Korea and funded by the

Ministry of Science ICT and Future Planning

https://orcid.org/0000-0001-9935-2863
https://doi.org/10.1371/journal.pone.0272356
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0272356&domain=pdf&date_stamp=2022-08-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0272356&domain=pdf&date_stamp=2022-08-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0272356&domain=pdf&date_stamp=2022-08-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0272356&domain=pdf&date_stamp=2022-08-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0272356&domain=pdf&date_stamp=2022-08-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0272356&domain=pdf&date_stamp=2022-08-11
https://doi.org/10.1371/journal.pone.0272356
https://doi.org/10.1371/journal.pone.0272356
http://creativecommons.org/licenses/by/4.0/
mailto:shimbong78@gilhospital.com


radiation doses reduced by 66.7% and 33.3%, respectively, maintained adequate image

quality. These imaging modalities may be employed for follow-up lymphoma evaluation in

consideration of the long surveillance periods.

Introduction

Lymphomas account for 3.4% of all malignancies worldwide and consist of heterogeneous sub-

types (i.e., non-Hodgkin’s lymphomas and Hodgkin’s lymphoma) [1, 2]. The majority of lym-

phomas involve the lymph nodes and extralymphatic organs, and occur in young adults and

pediatric patients. A proportion of lymphomas are considered potentially curable diseases due

to improvements in treatment protocols [3]. The Lugano classification is used for lymphoma

staging and response assessment, and imaging modalities such as positron emission tomogra-

phy (PET)/CT and computed tomography (CT) play key roles in response assessment and sur-

veillance to evaluate lymph nodes and spleen [4–7]. Due to their long life expectancy, patients

with lymphoma require multiple CT examinations to evaluate treatment response and surveil-

lance after treatment. The cumulative radiation exposure of repetitive CT examinations in

pediatric and young adult patients may increase baseline cancer risk [8, 9]. Therefore, dose

reduction techniques for CT can be useful for patients with lymphoma in consideration of the

long surveillance periods.

Several studies have attempted low-dose CT to evaluate Hodgkin’s lymphoma in the thorax

[10] and in patients undergoing staging or restaging of lymphoma [11, 12]. Generally, a reduc-

tion in radiation dose is related to increased image noise and decreased image quality, which

may negatively impact diagnostic performance. However, in patients with lymphoma, particu-

larly during follow-up after treatment, measurement of pre-existing lesions or improvements

in lymphoma involvement constitute a major component of CT assessments. In this regard,

low-dose CT with reduced image quality may be sufficient for follow-up evaluation.

Recent advances in CT techniques have contributed to a reduction in radiation dose, such

as the implementation of automatic adjustment of tube potential, automated tube current

modulation, and iterative reconstruction (IR) [13, 14]. A new third generation of IR was

recently developed based on statistical-based to model-based IR [14–16]. Advanced modelled

IR (ADMIRE; Siemens Healthcare, Forchheim, Germany) [17] is a model-based IR that per-

mits a large reduction in image noise in raw data and additional dose reduction with improved

spatial resolution.

Dual-energy CT with dual-source scanners can be used to compare standard and low-dose

CT images by separating and combining data from each tube without the need for additional

examinations [18, 19]. In this study, we evaluated radiation dose exposure and image quality

of low-dose and standard-dose CT to compare the detection rates of enlarged lymph nodes of

low-dose and standard-dose CT for abdominal lymphoma evaluation and post-treatment fol-

low-up in patients with lymphoma.

Materials and methods

Ethics approval

Approval for this retrospective study was obtained from the institutional review board

(GAIRB2021-237) of the Gil Medical Center. All CT images were acquired using standard-
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dose CT scan, without additional radiation exposure. Thus, the informed consent was waived

because of the retrospective nature of the study.

Study participants

In total, 197 consecutive patients who underwent dual-source CT scans for hematologic assess-

ment at the hematologic department of Gil Medical Center from December 2018 to December

2020 were enrolled. All patients diagnosed with lymphoma were included. Patients underwent

CT for lymphoma evaluation, chemotherapy response, or surveillance after treatment. Among 98

consecutive patients with 140 CT scans who were eligible, 12 patients were excluded due to a pro-

tocol change (n = 7) and lack of a reference standard (n = 5). A final total of 86 consecutive

patients with 128 CT examinations were included in this study (Fig 1A). The study period, from

December 2018 to March 2019, partially overlapped with that of a previous dual-energy study

conducted in the same institution [20]. However, the previous study only included patients from

the oncologic department. Therefore, there were no overlapping patients between the two studies.

CT technique

Contrast-enhanced abdominopelvic CT examination was acquired above the dome of the dia-

phragm and below the symphysis pubis. All patients received intravenous injection of 1.5 mL/

kg of iopamidol (Pamiray 300; Dongkook Pharm., Korea), up to a maximum dose of 120 mL.

The injection was delivered using a power injector at an injection rate of 4 mL/s and fixed

injection duration of 75 s. CT scans were achieved at a fixed tube potential of 90 kVp using a

third-generation dual-source CT scanner (SOMATOM Force, Siemens Healthcare, For-

chheim, Germany) in dual-source mode with tube detector A (reference tube current: 100

mAs) and B (reference tube current: 200 mAs), using tube current dose modulation (CARE

dose 4D; Siemens Healthcare) and the ADMIRE algorithm (Fig 1B and Table 1). We used the

ADMIRE algorithm at a strength level of 2 out of 5, with an axial slice thickness of 5 mm and

coronal slice thickness of 3 mm.

Qualitative visual image analysis

Two radiologists (S.J.Y and S.H.P, with 5 and 10 years of abdominal radiologic experience radi-

ologists, respectively) reviewed the image analysis, and one hematologist (K.H.Y) reviewed the

overall image quality and spleen size only. The images of 384 CT examinations were reviewed

independently by three readers in a blinded manner. These interpretations were analyzed in

three reading sessions, some of which included one-third of the three CT image sets. The images

were reviewed anonymously, and the order of review was randomized with a 1-month washout

period between sessions. Lymphoma involvement was evaluated based on the Lugano classifica-

tion [4], with modifications: lymph nodes, spleen, liver, and other sites. An enlarged lymph

node was regarded as a short-axis diameter > 1 cm, and splenomegaly was defined as the lon-

gest length of the spleen> 12 cm. Suspicious masses or nodules in the adrenal glands or liver

were analyzed. Enlarged lymph nodes exhibiting a fatty hilum were considered to indicate a

reactive change. We measured the average diameter of lymph nodes (short-axis diameter>0.5

cm in each data set) on standard-dose, low-dose, and ultralow-dose CT. The overall image qual-

ity score for assessing CT images was subjectively measured using a 5-point (Table 2).

Quantitative image noise analysis

To achieve objective image quality, regions of interest (ROI) were placed in four regions including

psoas muscle, subcutaneous fat in the anterior abdominal wall, right hepatic lobe parenchyma,

PLOS ONE Low-dose abdominopelvic CT in patients with lymphoma

PLOS ONE | https://doi.org/10.1371/journal.pone.0272356 August 11, 2022 3 / 14

https://doi.org/10.1371/journal.pone.0272356


aorta lumen in L1 vertebral body level with same location in three image sets. The standard devia-

tions (SDs) in Hounsfield units (HU) were measured by a 1–3 cm2 ROI by a single-blinded reader

(S.J.Y.), as image noise. Mean attenuation values (HU) were measured for each ROI.

Radiation dose

The volume CT dose index (CTDIvol) and dose-length product were documented in the dose

page of the scanner. In the calculation of effective dose, tissue-weighting factors for the abdo-

men was used in millisieverts (mSv) (male, k = 0.013; female, k = 0.017) and pelvis (male,

k = 0.010; female, k = 0.016) using average values (male, k = 0.012; female, k = 0.017) [21, 22].

Fig 1. Flow diagram of patients. (a) Inclusion flow chart and (b) computed tomography (CT) examinations and

reconstruction methods.

https://doi.org/10.1371/journal.pone.0272356.g001
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Reference standards

Reference standards comprised PET-CT or MRI within 3 months, interval changes of the

lesion compared to serial CTs with patient’s symptoms, and clinician’s judgment based on

electronic medical records (EMRs). Response assessment was based on EMRs and was catego-

rized into complete, partial, stable, and progressive disease.

Statistical analysis

Radiation dose and objective image analyses were compared among the three CT scans

using analysis of variance followed by post hoc Bonferroni correction. Subjective image

evaluations of the three image analyses were compared using Kruskal-Wallis test adjusted

with Monte Carlo simulation. In each image set, the detection rate for enlarged lymph

nodes were compared with each other using Generalized Estimating Equations (GEE) with

adjustment for multiple comparisons using Bonferroni correction. Interobserver agreement

of enlarged lymph node detection among two readers was analyzed using kappa, and inter-

observer agreement of spleen size among three readers was assessed using intraclass correla-

tion coefficients, defined as follows: 0.01–0.20, slight; 0.21–0.40, fair; 0.41–0.60, moderate;

0.61–0.80, substantial; and 0.81–1, excellent. Statistical significance was set at P < 0.05.

After post hoc analysis, P-values < 0.01 were considered statistically significant. Statistical

analyses were performed using SAS version 9.4 (SAS Institute Inc., Cary, NC, USA) for all

data analyses.

Table 1. Reconstruction parameters.

Standard-dose Low-dose Ultralow-dose

Radiation dose exposure 100% 66.7% 33.3%

Tube detector Mix of detector A and B Tube detector A Tube detector B

Kilovolt (kV) 90 90 90

Automated tube voltage selection Off Off Off

Reference tube current (mAs) 300 (100%) 200 (66.7%) 100 (33.3%)

Automated tube current modulation On On On

Thickness of axial image 5 mm 5 mm 5 mm

Thickness of coronal image 3 mm 3 mm 3 mm

Pitch 1.15 1.15 1.15

Rotation time (sec) 0.5 0.5 0.5

https://doi.org/10.1371/journal.pone.0272356.t001

Table 2. Qualitative visual image analysis.

Variables Analysis

Organ Positive findings

Liver Nodules (except definite hemangiomas or cysts)

Spleen > 12 cm in length, mass, or nodule

Adrenal gland Nodules

Lymph nodes Enlarged, short diameter > 1 cm

Overall image quality 1, nondiagnostic quality, extremely severe artifacts, insufficient for diganosis

2, poor image quality, severe artifacts causing uncertainty

3, moderate image quality, moderate artifacts with mild restricted evaluation

4, good quality, slight artifacts with sufficient for diagnosis

5, excellent image quality, no artifacts

https://doi.org/10.1371/journal.pone.0272356.t002
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Results

Patient characteristics

The clinical characteristics of the patients are summarized in Table 3. Of the 86 patients with

128 CT scans, 57 were men and 29 were women, with a mean age ± standard deviation of

58.4 ± 16.3 years. Of patients, 33 underwent two or more CT examinations during the study

period (25 patients, 2 CT examinations; 8 patients, 3 CT examinations). Among patients, B-

cell lymphoma was the most common disease (n = 63, 73.3%), followed by T/NK-cell lym-

phoma (n = 14, 16.3%) and Hodgkin’s lymphoma (n = 8, 9.3%).

Lesion detection analysis

Table 4 compares standard-dose, low-dose, and ultralow-dose CT for the detection of lesions

in the aforementioned organs and enlarged lymph node analysis in patients with lymphoma.

The number of enlarged lymph nodes detected by two readers was higher on standard-dose

Table 3. Clinical characteristics of patients.

Parameter Value

Number of patients 86

Age (years), mean ± SD 58.4 ± 16.3

Men: women 57: 29

Height (cm) 164.1 ± 8.3

Weight (kg) 66.4 ± 13.6

Effective diameter (cm) 26.6 ± 3.2

BMI (kg/m2) 24.5 ± 3.7

< 18.5: thin 2 (2.3)

18.5–24.9: normal 47 (54.7)

25–29.9: overweight 29 (33.7)

30–34.9: moderate obesity 8 (9.3)

35–39.9: severe obesity 0

Histology

Non-Hodgkin’s lymphoma 78 (90.7)

B-cell lymphoma 63 (73.3)

T/NK-cell lymphoma 14 (16.3)

Hodgkin’s lymphoma 8 (9.3)

Patient class

Inpatient 5 (5.8)

Outpatient 81 (94.2)

CT examinations 128

Disease status

Initial 1 (0.8)

Progressive disease 6 (4.7)

Partial response 44 (34.4)

Complete response 77 (60.2)

Reference standard

PET/CT 46 (35.9)

CT 81 (63.3)

PET/CT and liver MRI 1 (0.8)

Note: Data are presented as number (%), unless indicated otherwise.

https://doi.org/10.1371/journal.pone.0272356.t003
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Table 4. Lesion detection in organs (a) and detailed enlarged lymph node (b) analysis.

(a) Number of detected lesions in organs

Standard-dose

CT

Low-dose CT Ultralow-dose

CT

Reference

standard

• Enlarged lymph node� 99

Lymph node based

Reader 1

Detection 97 97 94

False positive 1 1 1

False negative 3 3 6

Detection rate (%) 97.0 (96/99) 97.0 (96/99) 94.0 (93/99)

Reader 2

Detection 95 95 91

False positive 2 2 2

False negative 6 6 10

Detection rate (%) 94.0 (93/99) 94.0 (93/99) 89.9 (89/99)

Examination based 26

Reader 1 26 26 26

Reader 2 26 26 26

• Liver lymphoma involvement 0

Reader 1 0 0 0

Reader 2 0 0 0

• Nodule in adrenal glands 5

Reader 1 5 3 3

Reader 2 5 4 2

• Splenomegaly

Reader 1 20 22 23

Reader 2 24 24 22

(b) Number of enlarged lymph nodes

Standard-dose CT Low-dose CT Ultralow-dose CT

Left gastric area

Reader 1 5 5 5

Reader 2 5 5 5

Common hepatic area

Reader 1 8 8 7

Reader 2 9 9 8

Portocaval area

Reader 1 6 6 6

Reader 2 7 7 7

Retrocrural area

Reader 1 2 2 2

Reader 2 2 2 2

Paraaortic area

Reader 1 17 17 17

Reader 2 15 15 14

Aortocaval area

Reader 1 14 14 13

Reader 2 11 11 10

Common iliac area

(Continued)
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(n = 97 and 95) and low-dose CT (n = 97 and 95) than on ultralow-dose CT (n = 94 and

n = 93). The enlarged lymph node-based detection rates (i.e., number of detected true enlarged

lymph nodes/number of true enlarged lymph nodes) for two readers were 97.0% (96/99) and

94.0% (93/99) on standard-dose CT, 97.0% (96/99) and 94.0% (93/99) on low-dose CT, and

94.0% (93/99) and 89.9% (89/99) on ultralow-dose CT (Table 4A and Figs 2 and 3). After GEE

with adjustment for multiple comparisons using Bonferroni correction, there was no statistical

difference among three data sets by two readers (reader 1, Standard-dose CT vs. Ultralow-dose

CT, P = 0.256; Low-dose CT vs. Ultralow-dose CT, P = 0.256; reader 2, Standard-dose CT vs.

Ultralow-dose CT, P = 0.132; Low-dose CT vs. Ultralow-dose CT, P = 0.132). Pairwise com-

parisons revealed different numbers of enlarged lymph nodes in the common hepatic,

Table 4. (Continued)

Reader 1 15 15 15

Reader 2 16 16 16

Internal iliac area

Reader 1 4 4 3

Reader 2 5 5 4

External iliac area

Reader 1 26 26 26

Reader 2 25 25 25

https://doi.org/10.1371/journal.pone.0272356.t004

Fig 2. Abdominopelvic computed tomography (CT) images of a 23-year-old woman with Hodgkin’s lymphoma, complete remission state (body mass index, 24.2

kg/m2; effective diameter, 24.0 cm). The three different types of CT images, acquired according to the radiation dose (a-b: standard-dose CT, 5.6 mSv; c-d: low-dose CT,

3.7 mSv; e-f: ultralow-dose CT, 1.8 mSv), show the absence of enlarged lymph nodes and splenomegaly. Identical reports of the aforementioned features were also obtained

from two radiologists. The overall image quality score was 4 for the ultralow-dose CT images and 5 for the low-dose and standard-dose CT images, according to three

readers (two radiologists and one hematologist).

https://doi.org/10.1371/journal.pone.0272356.g002
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paraaortic, aortocaval, and internal iliac areas (standard-dose CT vs. ultralow-dose CT and

low-dose CT vs. ultralow-dose CT) among the three CT doses (Tables 4B and S1). The highest

number of nodules in the adrenal glands was observed on standard-dose CT (n = 5, both), fol-

lowed by low-dose CT (n = 3 and 4) and ultralow-dose CT (n = 3 and 2) by two readers.

The number of patients with splenomegaly on ultralow-dose, low-dose, and standard-lose

CT was determined to be 23, 22, and 23 for radiologist 1; 22, 24, and 24 for radiologist 2; and

16, 16, and 18 for the hematologist, respectively. Spleen size measured by three readers (radiol-

ogists and one hematologist was 10.7 ± 1.69, 10.6 ± 1.78, and 10.0 ± 0.28 cm on ultralow-dose

CT; 10.7 ± 1.70, 10.7 ± 1.80, and 10.0 ± 0.14 on low-dose CT; and 10.7 ± 1.70, 10.7 ± 1.79, and

10.0 ± 0.28 cm on standard-dose CT, respectively). We measured the average diameter of

lymph nodes (short-axis diameter >0.5 cm, a total of 170 lymph nodes in each data set) on

standard-dose, low-dose, and ultralow-dose CT, with no significant differences in the mean

lymph node diameter among them (0.7±0.3, 0.7±0.3, and 0.7±0.4, respectively).

Quantitative and qualitative image analysis

A comparison of objective CT image quality based on measurement of image noise in sub-

cutaneous fat, psoas muscle, liver, and abdominal aorta is presented in Table 5. Standard-

dose CT exhibited the lowest image noise (9.4–11.5 HU), followed by low-dose CT (11.0–

14.3 HU) and ultralow-dose CT (12.2–15.8 HU; P-value < 0.001; all post-hoc analysis).

Fig 3. Abdominopelvic computed tomography (CT) images of a 54-year-old man with follicular lymphoma,

partial response state (body mass index, 29.4 kg/m2; effective diameter, 27.0 cm). The three different types of CT

images, acquired according to the radiation dose (a-c: standard-dose CT, 6.8 mSv; d-f: low-dose CT, 4.5 mSv; g-i:

ultralow-dose CT, 2.3 mSv), show multiple enlarged paraaortic (white arrow), aortocaval (gray arrow), right common

iliac, and bilateral external iliac lymph nodes (black arrows). Identical findings for the aforementioned lesions were

reported by two radiologists. The overall image quality score was 4 for ultralow-dose CT images and 5 for low-dose

and standard-dose CT images, according to two radiologists; the image quality score was 5 for all the three types of CT

images according to one hematologist.

https://doi.org/10.1371/journal.pone.0272356.g003
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With regard to subjective image quality assessed by all readers, ultralow-dose CT exhibited

lower overall image quality (3.8–4.1; P < 0.001; Kruskal-Wallis test), while standard-dose

CT (4.7–4.9) and low-dose CT (4.6–4.8) exhibited higher overall image quality. There was

no significant difference in overall image quality between standard-dose and low-dose CT

(P-value [adjusted with Monte Carlo simulation] = 0.167, 0.121, and 0.088 for each reader,

respectively).

Inter-observer agreement

S1 Table presents the inter-reader agreement of enlarged lymph node detection. Inter-

reader agreement for enlarged lymph node detection by the two readers was excellent (κ =
0.83–1). Enlarged aortocaval lymph nodes on ultralow-dose CT exhibited the lowest inter-

reader agreement score (κ = 0.83) in both common iliac areas. Intraclass correlation coeffi-

cient of spleen size was 0.90 (95% confidence interval [CI]), 0.87–0.93), 0.91 (95% CI, 0.88–

0.94), and 0.91 (95% CI, 0.88–0.93) on ultralow-dose, low-dose, and standard-dose CT,

respectively.

Radiation dose parameters

Table 6 summarizes the dose parameters of the three CT image sets. Mean CTDIvol of stan-

dard-dose, low-dose, and ultralow-dose CT was 5.6 ± 1.5 mGy, 3.7 ± 1.0 mGy, and 1.9 ± 0.5

mGy, respectively. Mean effective radiation dose of standard-dose, low-dose, and ultralow-

dose CT was 5.7 ± 1.8 mSv, 3.8 ± 1.2 mSv, and 1.9 ± 0.6 mSv, respectively.

Table 6. Dose parameters of three CT image sets.

Standard-dose CT Low-dose CT Ultralow-dose CT P-value

CTDIvol (mGy) 5.6 ± 1.5 (2.5–11.0) 3.7 ± 1.0 (1.7–7.4) 1.9 ± 0.5 (0.8–3.6) < 0.001

Dose-length product (mGy-cm) 335.7 ± 108.4 (137.9–710.1) 223.9 ± 72.3 (92.0–473.6) 72.5 ± 20.1 (45.9–236.5) < 0.001

Effective dose (mSv) 5.7 ± 1.8 (2.3–12.1) 3.8 ± 1.2 (1.5–8.1) 1.9 ± 0.6 (0.8–4.0) < 0.001

https://doi.org/10.1371/journal.pone.0272356.t006

Table 5. Quantitative and qualitative image analysis of three CT image sets.

Standard-dose CT Low-dose CT Ultralow-dose CT P-value

Quantitative analysis (Hounsfield unit, HU)

Noise

Subcutaneous fat 9.4 ± 3.1 11.0 ± 3.1 12.2 ± 3.6 < 0.001

Psoas muscle 10.5 ±1.8 13.2 ± 2.6 14.5 ± 2.9 < 0.001

Liver 10.3 ± 2.0 12.7 ± 2.8 14.7 ± 2.7 < 0.001

Abdominal aorta 11.5 ± 2.9 14.3 ± 3.0 15.8 ± 3.3 < 0.001

Attenuation

Subcutaneous fat -113.8 ± 9.0 -113.8 ± 9.1 -112.1 ± 9.4 < 0.001

Psoas muscle 63.1 ± 7.6 63.5 ± 7.2 63.2 ± 7.2 < 0.001

Liver 122.0 ± 18.7 123.2 ± 18.9 120.6 ± 19.4 < 0.001

Abdominal aorta 188.9 ± 31.1 189.3 ± 31.3 190.4 ± 38.9 < 0.001

Overall image quality�

Reader 1 4.8 ± 0.4 4.7 ± 0.4 3.8 ± 0.5 < 0.001

Reader 2 4.7 ± 0.4 4.6 ± 0.5 3.9 ± 0.5 < 0.001

Reader 3 4.9 ± 0.2 4.8 ± 0.3 4.1 ± 0.5 < 0.001

�Readers 1 and 2 were both radiologists, and reader 3 was a hematologist.

https://doi.org/10.1371/journal.pone.0272356.t005
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Discussion

This study compared the radiation dose exposure, the detection rate of enlarged lymph nodes,

and image quality of standard-dose, low-dose, and ultralow-dose abdominopelvic CT using

the ADMIRE algorithm in patients with lymphoma. The enlarged lymph node-based detection

rate was 94.0−97.0% on standard-dose and low-dose CT, and 89.9−94.0% on ultralow-dose CT

according to two readers, with excellent inter-reader agreement. Ultralow-dose and low-dose

CT effectively reduced radiation dose by 66.7% and 33.3%, respectively, while maintaining

adequate image quality. We observed the same rate of detection of enlarged lymph nodes (i.e.,

> 1 cm in diameter) by two readers between low-dose and standard-dose CT. Although the

rate of detection of enlarged lymph nodes was slightly higher on standard-dose CT than on

ultralow-dose CT, there was no statistically significant difference between standard-dose and

ultralow-dose CT. We conjecture that the detection of enlarged abdominal lymph nodes can

be achieved in a relatively simple and clear manner by radiologists. The development of CT

techniques and image reconstruction algorithms, including ADMIRE, may facilitate higher

detection rates, even on ultralow-dose CT.

Several studies have reported non-inferior or comparable diagnostic performance for a spe-

cific diagnosis (e.g., urinary stones or acute appendicitis) of a relatively simple disease or organ

between low-dose abdominal CT and standard-dose CT [23–25]. However, the diagnostic per-

formance of low-dose CT for small or inconspicuous abdominal structures has been unsatis-

factory, even with the use of model-based IR [26, 27]. Due to high image noise in the

abdomen, low-dose CT has limitations in the evaluation of small lesions in neoplastic condi-

tions (e.g., liver metastasis and pancreatic cancer) and inflammatory diseases [18, 27, 28].

Small lesions with high image noise may obscure lesion detection due to similar attenuation as

the background [27, 29]. Compared to standard-dose CT, ultralow-dose CT exhibited a similar

rate of detection of enlarged lymph nodes in this study, while reducing the radiation dose by

33.3%. The high rate of detection of enlarged lymph nodes on ultralow-dose CT could be

underpinned by the abdominal lymph nodes being less affected by image noise due to definite

contrast differences between retroperitoneal or peritoneal fat and surrounding lymph nodes

with a clear margin (i.e., background and lesion sharpness). These findings suggest that ultra-

low-dose CT may be employed instead of standard-dose CT during follow-up of patients with

lymphoma. Notably, the interobserver agreement for abdominal lymph nodes was excellent in

our study. This could be due to the sparsity of other anatomical structures surrounding the

abdominal lymph nodes; as such, the diagnosis of enlarged lymph nodes exhibited small differ-

ences between the two readers despite the presence of image noise.

With regard to lymph node evaluation using low-dose CT, Paolini et al. reported that there

was no significant difference in the delineation of thoracic lymph nodes between contrast-

enhanced low-dose and standard-dose CT [30]. Mueller-Lisse et al. also reported that con-

trast-enhanced low-dose CT with approximately 1 mSv revealed equivalent delineation of tho-

racic lymph nodes compared to standard-dose CT [31]. In line with prior studies on thoracic

lymph nodes, our study revealed similar results regarding abdominal lymph node evaluation

using low-dose and ultralow-dose CT in patients with lymphoma.

Hérin et al. reported that reduced-dose CT with model-based IR could reduce the amount

of radiation delivered to patients with lymphoma while maintaining image quality comparable

to that of standard-dose CT with filtered-back projection [12]. Herein, we compared three CT

image sets using ADMIRE (i.e., without using a filtered-back projection comparison). We

implemented ADMIRE in actual practice and focused on the number of radiation doses to be

reduced in patients with lymphoma while maintaining image quality. Quantitative image

noise increased with a decrease in radiation dose. However, we observed that subjective visual
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image quality was comparable between standard-dose and low-dose CT, and there were no sig-

nificant differences in the results of lymph node evaluation between these image sets. Although

low-dose CT exhibited slightly increased objective image noise and comparable subjective

image quality compared to standard-dose CT, this may not affect the diagnosis of lymph node

detection. Nevertheless, ultralow-dose CT resulted in degradation of both qualitative visual

image quality and quantitative image noise analysis.

A blind image analysis was performed in this study for the independent evaluation of lymph

node enlargement in each image reading session. The use of low-dose CT as an imaging modality

for follow-up evaluation of lymphoma permits the use of initial standard-dose CT as a reference

and comparative examinations in actual practice. We predict better diagnostic performance of

enlarged lymph node detection, even using ultralow-dose CT, compared to the current results.

In consideration of the long-term follow-up period, low-dose and/or ultralow-dose CT offers a

safe and accurate alternative imaging modality to replace current standard-dose CT.

Our study has a few limitations. First, we only assessed changes in tube load (mAs) and a

single image reconstruction using ADMIRE, and we did not consider filtered-back projection.

Thus, the study protocol differs from clinical protocols, as a fixed kVp was used for both detec-

tion tubes without automatic tube voltage adjustment (Care kV). As various image acquisition

parameters can affect image quality in CT, our results may have limited generalizability. Sec-

ond, as images reconstructed with ADMIRE have different appearances, it is difficult to

achieve a true blinded analysis of subjective criteria. Third, because most of the patients who

underwent dual energy CT examination at our hospital were outpatients, most of the patients

with lymphoma included in the study were outpatients, and we predominantly focused on

treatment response. Therefore, our results may be applicable to surveillance of patients after

lymphoma treatment but not for patients with initial lymphoma evaluation, relapse, or sus-

pected progressive disease. Finally, we analyzed CT images with a slice thickness of 5 mm in

the axial direction and 3 mm in the coronal direction. Although these parameters can reflect

readings in actual practice, it may also lead to partial volume effect when measuring lymph

nodes since thin slices (e.g., 2 mm) were not analyzed.

In conclusion, our findings suggest that ultralow-dose and low-dose CT effectively reduce

radiation dose by 66.7% and 33.3%, respectively, while maintaining acceptable image quality

and can be used as an imaging modality for follow-up evaluation of lymphoma, in consider-

ation of the long-term follow-up period.
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