Received 15 September 2016
Accepted 27 September 2016

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; discrete metal complex; nickel(II) thiocyanate; 2-chloropyridine; hydrogen bonding.

CCDC reference: 1506903

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \bigodot ACCESS

Crystal structure of diaquabis(2-chloropyridineκN)bis(thiocyanato- κN)nickel(II)

Stefan Suckert,* Inke Jess and Christian Näther

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Str. 2, D-24118 Kiel, Germany. *Correspondence e-mail: ssuckert@ac.uni-kiel.de

The asymmetric unit of the title compound, $\left[\mathrm{Ni}(\mathrm{NCS})_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{ClN}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, consists of one nickel(II) cation that is located on a center of inversion and one thiocyanate anion, one water molecule and one 2-chloropyridine ligand all occupying general positions. The $\mathrm{Ni}^{\mathrm{II}}$ cation is octahedrally coordinated by two terminal N -bound thiocyanato ligands, two aqua ligands and two N -bound 2chloropyridine ligands into discrete complexes. Individual complexes are linked by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen-bonding interactions into a layered network extending parallel to the $b c$ plane. Weak interactions of types $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ consolidate the crystal packing.

1. Chemical context

The synthesis of materials with interesting cooperative magnetic properties is still a major field in coordination chemistry (Zhang et al., 2011). One feasible strategy for the preparation of such compounds is to link paramagnetic cations with small anionic ligands such as, for example, thiocyanate anions to enable a magnetic exchange between the cations (Palion-Gazda et al., 2015; Massoud et al., 2013). In this regard, our group has reported on a number of coordination polymers with bridging thiocyanato ligands. Dependent on the metal cation and the neutral co-ligand, they show different magnetic phenomena including a slow relaxation of the magnetization, which is indicative for single-chain magnetism (Werner et al., 2014, 2015a,b,c). In the context of this research, discrete complexes are likewise of interest because such compounds can be transformed into the desired polymeric systems by thermal decomposition (Näther et al., 2013). In view of our systematic studies, we became interested into compounds based on 2-chloropyridine as co-ligand, for which only two different polymorphs were found for representatives containing Zn or Co (Wöhlert et al., 2013). In a more recent study, investigations were also carried out for Ni that led to the title compound being characterized by single crystal X-ray diffraction. Unfortunately, no single-phase crystalline powder could be synthesized, which prevented further investigations of its physical properties.

2. Structural commentary

The asymmetric unit of the title compound, $\left[\mathrm{Ni}(\mathrm{NCS})_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NCl}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, consists of one $\mathrm{Ni}^{\mathrm{II}}$ cation, one thiocyanate anion, one water molecule and one neutral 2-chloropyridine co-ligand. The cation is located on a center of inversion whereas all ligands are located on general positions.

The $\mathrm{Ni}^{\mathrm{II}}$ cation is coordinated by two terminal N -bound inorganic anionic ligands, two water molecules and two 2-chloropyridine ligands that are coordinated via the pyridine N atom in an all-trans configuration (Fig. 1). As expected, and in agreement with values reported in literature (Đaković et al., 2008; Werner et al., 2015b), the $\mathrm{Ni}-\mathrm{N}$ bond lengths to the thiocyanato ligands are significantly shorter[2.018 (3) \AA] than to the pyridine N atom of the neutral 2-chloropyridine ligand [2.208 (3) Å].

3. Supramolecular features

In the crystal, discrete complexes are linked by pairs of intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds between one of the two water H atoms and the thiocyanato S atoms of a neighboring complex into centrosymmetric dimers that are further

Figure 1
View of a discrete complex with labelling and displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) $-x+\frac{1}{2},-y+\frac{3}{2}$, , z.+1.]

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 11-\mathrm{H} 21 \cdots \mathrm{~S} 1^{\mathrm{i}}$	0.95	2.99	$3.904(4)$	162
$\mathrm{C} 13-\mathrm{H} 23 \cdots \mathrm{~S}^{1 i}$	0.95	2.99	$3.796(4)$	143
$\mathrm{C} 14-\mathrm{H} 24 \cdots \mathrm{Cl}^{\mathrm{iii}}$	0.95	2.96	$3.796(4)$	147
$\mathrm{O} 1-\mathrm{H} 1 O 1 \cdots \mathrm{~S} 1^{\text {iv }}$	0.82	2.39	$3.175(2)$	160
$\mathrm{O} 1-\mathrm{H} 2 O 1 \cdots \mathrm{~S} 1^{\mathrm{v}}$	0.82	2.53	$3.239(2)$	145
$\mathrm{O} 1-\mathrm{H} 2 O 1 \cdots \mathrm{Cl}^{\text {vi }}$	0.82	2.75	$3.180(3)$	115

Symmetry codes: (i) $-x, y+1,-z+\frac{1}{2}$; (ii) $-x, y,-z+\frac{1}{2}$; (iii) $x, y-1, z$; (iv) $x,-y+1, z+\frac{1}{2}$; (v) $-x+\frac{1}{2},-y+\frac{1}{2},-z+1$; (vi) $-x+\frac{1}{2},-y+\frac{3}{2},-z+1$.
connected into chains along the b axis (Fig. 2, Table 1). Neighbouring complexes are additionally linked in the same direction by pairs of $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds between the chloro substituent of one complex and one pyridine H atom of a neighbouring complex (Fig. 2, Table 1). These chains are further linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonding between the second water H atom of one complex and a thiocyanato S atom of a neighbouring complex into layers parallel to the $b c$ plane (Fig. 3, Table 1). Within these layers, weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding is present (Table 1). Weak intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ interactions are also observed (Figs. 2 and 3, Table 1).

4. Database survey

To the best of our knowledge, there are only four coordination compounds containing thiocyanato and 2-chloropyridine ligands deposited in the Cambridge Structure Database (Version 5.37, last update 2015; Groom et al., 2016). The structures consist of tetrahedrally coordinated metal cations (Co and Zn) where each metal cation is surrounded by two 2-chloropyridine ligands as well as two thiocyanate anions (Wöhlert et al., 2013). A general search for coordination compounds with 2 -chloropyridine ligands resulted in 16 structures including the aforementioned ones. Two examples relate to a Pd compound, similar to the Co and Zn ones, however with the $\mathrm{Pd}^{\mathrm{II}}$ cation in a square-planar conformation coordinated by two 2-chloropyridine ligands as well as two azide anions (Beck et al., 2001) as well as a Cu compound with a square-pyramidal coordinated metal cation surrounded by two 2-chloropyridine ligands, one water ligand and two chloride anions (Jin et al., 2005).

Figure 2
View of the hydrogen-bonded chain that elongates along the b axis. Hydrogen bonds are shown as dashed lines.

Figure 3
Crystal structure of the title compound showing the hydrogen-bonded layers with hydrogen bonds shown as dashed lines.

5. Synthesis and crystallization

$\mathrm{Ba}(\mathrm{NCS})_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}, \mathrm{Ni}\left(\mathrm{SO}_{4}\right) \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and 2-chloropyridine were purchased from Alfa Aesar. $\mathrm{Ni}(\mathrm{NCS})_{2}$ was synthesized by stirring $17.5 \mathrm{~g} \quad \mathrm{Ba}(\mathrm{NCS})_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O} \quad(57 \mathrm{mmol})$ with 15.0 g $\mathrm{Ni}\left(\mathrm{SO}_{4}\right) \cdot 6 \mathrm{H}_{2} \mathrm{O}(57 \mathrm{mmol})$ in 500 ml water. The green residue was filtered off and the filtrate was dried using a rotary evaporator. The homogeneity was checked by X-ray powder diffraction and elemental analysis. Crystals of the title compound suitable for single crystal X-ray diffraction were obtained by the reaction of $26.2 \mathrm{mg} \mathrm{Ni}(\mathrm{NCS})_{2}(0.15 \mathrm{mmol})$ with $56.0 \mu \mathrm{l}$ 2-chloropyridine $(0.6 \mathrm{mmol})$ in ethanol $(1.0 \mathrm{ml})$ after a few days.

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2. The CH H atoms were positioned with idealized geometry and were refined in a riding model with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The OH H atoms were located in a difference map, and their bond lengths constrained to $0.82 \AA$, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

Acknowledgements

This project was supported by the Deutsche Forschungsgemeinschaft (Project No. NA 720/5-1) and the State of Schleswig-Holstein. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

References

Beck, W., Fehlhammer, W. P., Feldl, K., Klapötke, T. M., Kramer, G., Mayer, P., Piotrowski, H., Pöllmann, P., Ponikwar, W., Schütt, T., Schuierer, E. \& Vogt, M. (2001). Z. Anorg. Allg. Chem. 627, 17511758.

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Đaković, M., Popović, Z. \& Smrečki-Lolić, N. (2008). J. Mol. Struct. 888, 394-400.

Table 2
Experimental details.
Crystal data Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
$\left[\mathrm{Ni}(\mathrm{NCS})_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{ClN}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
437.99

Monoclinic, C2/c
200
19.5045 (15), 7.5486 (5),
14.9387 (11)
125.560 (7)
1789.3 (3)

4
Mo $K \alpha$
1.63
$0.14 \times 0.09 \times 0.06$

STOE IPDS1
Numerical (X-RED32 and
X-SHAPE; Stoe, 2008)
0.796, 0.881

7195, 1568, 1321
0.086
0.596
$0.049,0.123,1.03$
1568
107
H -atom parameters constrained $0.87,-0.87$

Computer programs: X-AREA (Stoe, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), XP in SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 1999) and publCIF (Westrip, 2010).

Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Jin, Z.-M., Li, Z.-G., Tu, B., Shen, Z.-L. \& Hu, M.-L. (2005). Acta Cryst. E61, m2566-m2567.
Massoud, S. S., Guilbeau, A. E., Luong, H. T., Vicente, R., Albering, J. H., Fischer, R. C. \& Mautner, F. A. (2013). Polyhedron, 54, 26-33.

Näther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. \& Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696-2714.
Palion-Gazda, J., Machura, B., Lloret, F. \& Julve, M. (2015). Cryst. Growth Des. 15, 2380-2388.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe \& Cie, Darmstadt, Germany.
Werner, J., Rams, M., Tomkowicz, Z. \& Näther, C. (2014). Dalton Trans. 43, 17333-17342.
Werner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. \& Näther, C. (2015a). Inorg. Chem. 54, 2893-2901.
Werner, J., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G., Suckert, S. \& Näther, C. (2015b). Eur. J. Inorg. Chem. 2015, 32363245.

Werner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. \& Näther, C. (2015c). Dalton Trans. 44, 14149-14158.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Wöhlert, S., Jess, I., Englert, U. \& Näther, C. (2013). CrystEngComm, 15, 5326-5336.
Zhang, S.-Y., Zhang, Z.-J., Shi, W., Zhao, B., Cheng, P., Liao, D.-Z. \& Yan, S.-P. (2011). Dalton Trans. 40, 7993-8002.

supporting information

Acta Cryst. (2016). E72, 1492-1494 [doi:10.1107/S2056989016015218]

Crystal structure of diaquabis(2-chloropyridine- $\kappa \mathrm{N}$) bis(thiocyanato$\kappa \mathrm{N}$) nickel(II)

Stefan Suckert, Inke Jess and Christian Näther

Computing details

Data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Diaquabis(2-chloropyridine- $\kappa \mathrm{N}$) bis(thiocyanato- $\kappa \mathrm{N}$)nickel(II)

Crystal data

$\left[\mathrm{Ni}(\mathrm{NCS})_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{ClN}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=437.99$
Monoclinic, C2/c
$a=19.5045$ (15) \AA
$b=7.5486$ (5) \AA
$c=14.9387$ (11) \AA
$\beta=125.560(7)^{\circ}$
$V=1789.3$ (3) \AA^{3}
$Z=4$

Data collection

STOE IPDS- 1
diffractometer
Phi scans
Absorption correction: numerical
(X-Red and X-Shape; Stoe, 2008)
$T_{\text {min }}=0.796, T_{\text {max }}=0.881$
7195 measured reflections
$F(000)=888$
$D_{\mathrm{x}}=1.626 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 7195 reflections
$\theta=2.8-25.1^{\circ}$
$\mu=1.63 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Block, blue
$0.14 \times 0.09 \times 0.06 \mathrm{~mm}$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.123$
$S=1.03$
1568 reflections
107 parameters
0 restraints
Hydrogen site location: mixed
H -atom parameters constrained

1568 independent reflections
1321 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.086$
$\theta_{\text {max }}=25.1^{\circ}, \theta_{\text {min }}=2.8^{\circ}$
$h=-23 \rightarrow 23$
$k=-8 \rightarrow 8$
$l=-17 \rightarrow 17$

$$
w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0887 P)^{2}\right]
$$

$$
\text { where } P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3
$$

$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.87 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.87 \mathrm{e} \AA^{-3}$
Extinction correction: SHELXL-2014/7
(Sheldrick 2015),
$\mathrm{Fc}{ }^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.0046 (11)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$
Ni1	0.2500	0.7500	0.5000	$0.0294(3)$
N1	$0.2189(2)$	$0.5551(4)$	$0.3900(2)$	$0.0374(7)$
C1	$0.2063(2)$	$0.4433(4)$	$0.3291(3)$	$0.0307(7)$
S1	$0.18836(7)$	$0.28294(11)$	$0.24339(8)$	$0.0404(3)$
N10	$0.1155(2)$	$0.7772(4)$	$0.4334(3)$	$0.0360(7)$
C10	$0.0670(2)$	$0.9202(4)$	$0.4075(3)$	$0.0367(8)$
C11	$-0.0154(3)$	$0.9163(6)$	$0.3732(3)$	$0.0500(10)$
H21	-0.0466	1.0227	0.3568	0.060^{*}
C12	$-0.0520(3)$	$0.7528(6)$	$0.3630(4)$	$0.0586(12)$
H22	-0.1088	0.7447	0.3395	0.070^{*}
C13	$-0.0039(3)$	$0.6027(6)$	$0.3879(4)$	$0.0520(10)$
H23	-0.0271	0.4888	0.3814	0.062^{*}
C14	$0.0780(3)$	$0.6201(5)$	$0.4222(3)$	$0.0425(8)$
H24	0.1104	0.5153	0.4391	0.051^{*}
C11	$0.11007(7)$	$1.12552(11)$	$0.41519(9)$	$0.0523(4)$
O1	$0.26098(19)$	$0.5775(3)$	$0.6135(2)$	$0.0506(8)$
H1O1	0.2506	0.5933	0.6588	0.076^{*}
H2O1	0.2750	0.4730	0.6262	0.076^{*}

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	$0.0383(4)$	$0.0205(4)$	$0.0375(4)$	$0.0053(2)$	$0.0267(3)$	$0.0031(2)$
N1	$0.0443(18)$	$0.0298(14)$	$0.0434(17)$	$0.0060(11)$	$0.0285(15)$	$-0.0008(12)$
C1	$0.0350(18)$	$0.0247(15)$	$0.0417(19)$	$0.0052(12)$	$0.0276(17)$	$0.0077(13)$
S1	$0.0613(7)$	$0.0251(4)$	$0.0505(6)$	$-0.0030(3)$	$0.0415(5)$	$-0.0032(3)$
N10	$0.0388(17)$	$0.0317(14)$	$0.0423(17)$	$0.0040(11)$	$0.0264(15)$	$0.0018(11)$
C10	$0.036(2)$	$0.0375(17)$	$0.0383(19)$	$0.0087(14)$	$0.0225(17)$	$0.0037(14)$
C11	$0.036(2)$	$0.064(2)$	$0.043(2)$	$0.0151(18)$	$0.019(2)$	$0.0064(18)$
C12	$0.034(2)$	$0.087(4)$	$0.050(3)$	$-0.0007(19)$	$0.022(2)$	$-0.004(2)$
C13	$0.042(2)$	$0.057(2)$	$0.054(3)$	$-0.0120(19)$	$0.026(2)$	$-0.0078(19)$
C14	$0.042(2)$	$0.0371(18)$	$0.051(2)$	$-0.0066(14)$	$0.029(2)$	$-0.0054(15)$
C11	$0.0574(7)$	$0.0308(5)$	$0.0770(8)$	$0.0163(4)$	$0.0438(6)$	$0.0128(4)$
O1	$0.079(2)$	$0.0367(13)$	$0.0661(18)$	$0.0270(13)$	$0.0597(18)$	$0.0243(12)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Ni} 1-\mathrm{N} 1^{\mathrm{i}}$	$2.018(3)$	$\mathrm{C} 10-\mathrm{Cl1}$	$1.734(4)$
$\mathrm{Ni} 1 — \mathrm{~N} 1$	$2.018(3)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.389(6)$

Ni1-O1	2.048 (2)
Ni1-O1 ${ }^{\text {i }}$	2.048 (2)
Ni1-N10	2.208 (3)
Ni1-N10 ${ }^{\text {i }}$	2.208 (3)
N1-C1	1.158 (4)
C1-S1	1.645 (3)
N10-C10	1.336 (4)
N10-C14	1.352 (4)
C10-C11	1.375 (6)
N1- ${ }^{\text {i }}$ Ni1-N1	180.0
N1- ${ }^{\text {i }}$ - $11-\mathrm{O} 1$	87.27 (12)
N1-Nil-O1	92.73 (12)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{O} 1^{\mathrm{i}}$	92.73 (12)
$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{Ol}^{\text {i }}$	87.27 (12)
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{Ol}^{\text {i }}$	180.0
N1- ${ }^{\text {i }}$ Ni1- ${ }^{\text {N10 }}$	90.88 (11)
N1-Ni1-N10	89.12 (11)
O1-Ni1-N10	87.55 (11)
O1- ${ }^{\text {i }}$ Ni1- N 10	92.45 (11)
N1 ${ }^{\text {i }}$ - $\mathrm{Ni} 1-\mathrm{N} 10^{\mathrm{i}}$	89.11 (11)
N1-Ni1-N10 ${ }^{\text {i }}$	90.88 (11)
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{N} 10^{\text {i }}$	92.45 (11)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{N} 10^{\mathrm{i}}$	87.55 (11)
N10-Ni1-N10 ${ }^{\text {i }}$	180.0
C1-N1-Ni1	175.7 (3)
N1-C1-S1	179.4 (3)
C10-N10-C14	115.6 (3)
C10-N10-Nil	131.4 (2)

$\mathrm{C} 11-\mathrm{H} 21$	0.9500
$\mathrm{C} 12-\mathrm{C} 13$	$1.377(6)$
$\mathrm{C} 12-\mathrm{H} 22$	0.9500
$\mathrm{C} 13-\mathrm{C} 14$	$1.372(6)$
$\mathrm{C} 13-\mathrm{H} 23$	0.9500
$\mathrm{C} 14-\mathrm{H} 24$	0.9500
$\mathrm{O} 1-\mathrm{H} 1 \mathrm{O} 1$	0.8198
$\mathrm{O} 1-\mathrm{H} 2 \mathrm{O} 1$	0.8201

112.9 (2)

$\mathrm{C} 14-\mathrm{N} 10-\mathrm{Ni1}$	$112.9(2)$
$\mathrm{N} 10-\mathrm{C} 10-\mathrm{C} 11$	$124.6(4)$
$\mathrm{N} 10-\mathrm{C} 10-\mathrm{C} 11$	$117.9(3)$
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 11$	$117.4(3)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$118.3(4)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{H} 21$	120.8
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{H} 21$	120.8
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 11$	$118.4(4)$
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{H} 22$	120.8
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 22$	120.8
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 12$	$119.0(4)$
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{H} 23$	120.5
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{H} 23$	120.5
$\mathrm{~N} 10-\mathrm{C} 14-\mathrm{C} 13$	118.0
$\mathrm{~N} 10-\mathrm{C} 14-\mathrm{H} 24$	118.0
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{H} 24$	129.3
$\mathrm{Ni} 1-\mathrm{O} 1-\mathrm{H} 1 \mathrm{O} 1$	131.5
$\mathrm{~N} 11-\mathrm{O} 1-\mathrm{H} 2 \mathrm{O} 1$	99.1
$\mathrm{H} 1 \mathrm{O} 1-\mathrm{O} 1-\mathrm{H} 2 \mathrm{O} 1$	

Symmetry code: (i) $-x+1 / 2,-y+3 / 2,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 11 — \mathrm{H} 21 \cdots \mathrm{~S} 1^{\mathrm{ii}}$	0.95	2.99	$3.904(4)$	162
$\mathrm{C} 13 — \mathrm{H} 23 \cdots 1^{\mathrm{iii}}$	0.95	2.99	$3.796(4)$	143
$\mathrm{C} 14 — \mathrm{H} 24 \cdots \mathrm{Cl}^{\text {iv }}$	0.95	2.96	$3.796(4)$	147
$\mathrm{O} 1 — \mathrm{H} 1 O 1 \cdots \mathrm{~S}^{\mathrm{v}}$	0.82	2.39	$3.175(2)$	160
$\mathrm{O} 1 — \mathrm{H} 2 O 1 \cdots \mathrm{~S} 1^{\text {vi }}$	0.82	2.53	$3.239(2)$	145
$\mathrm{O} 1 — \mathrm{H} 2 O 1 \cdots \mathrm{Cl}^{\mathrm{i}}$	0.82	2.75	$3.180(3)$	115

Symmetry codes: (i) $-x+1 / 2,-y+3 / 2,-z+1$; (ii) $-x, y+1,-z+1 / 2$; (iii) $-x, y,-z+1 / 2$; (iv) $x, y-1, z$; (v) $x,-y+1, z+1 / 2$; (vi) $-x+1 / 2,-y+1 / 2,-z+1$.

