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The recent upsurge in microbial genome data has revealed that hemoglobin-like (HbL) proteins may be widely distributed among
bacteria and that some organisms may carry more than one HbL encoding gene. However, the discovery of HbL proteins has been
limited to a small number of bacteria only. This study describes the prediction of HbL proteins and their domain classification
using a machine learning approach. Support vector machine (SVM) models were developed for predicting HbL proteins based
upon amino acid composition (AC), dipeptide composition (DC), hybrid method (AC + DC), and position specific scoring
matrix (PSSM). In addition, we introduce for the first time a new prediction method based on max to min amino acid residue
(MM) profiles. The average accuracy, standard deviation (SD), false positive rate (FPR), confusion matrix, and receiver operating
characteristic (ROC) were analyzed. We also compared the performance of our proposed models in homology detection databases.
The performance of the different approaches was estimated using fivefold cross-validation techniques. Prediction accuracy was
further investigated through confusion matrix and ROC curve analysis. All experimental results indicate that the proposed
BacHbpred can be a perspective predictor for determination of HbL related proteins. BacHbpred, a web tool, has been developed

for HbL prediction.

1. Introduction

Hemoglobin, the oxygen carrying protein first discovered in
humans, was thought to be present exclusively in eukaryotes,
but this old paradigm changed when a Hb-like (HbL) protein
was discovered in the bacterium Vitreoscilla [1]. HbL proteins
have now been detected in all kingdoms of life. The recent
upsurge in genome data has indicated that HbL proteins
may be widely distributed among bacteria and may perform
a myriad of functions apart from simple oxygen binding
and storage [2]. HbL proteins found in bacteria display
large variations in their amino acid sequences and structural
organization. However, the basic architecture of the globin
fold and amino acid residues needed for maintaining a
common structural organization are conserved throughout
the globin family. Three distinct structural organizations have
been observed in bacterial hemoglobin: single domain HbL
proteins exhibiting a classical globin-like fold, truncated HbL

proteins displaying truncation in their helical structure, and
chimeric HbL proteins where the globin domain is integrated
with other domains having different functions [3]. Func-
tionally, the chimeric HbL proteins (flavohemoglobin) have
been further classified into three groups: (1) globin domain
with only distant similarity to the FAD-domain (FAD—
insignificant according to Pfam), (2) flavohemoglobin pro-
teins containing additional cytochrome reductase domain at
their C-terminus and a FAD/NAD-binding FR-type domain,
and (3) globin with FAD/NAD-binding FR-type domain.

It is interesting to note that multiple HbL proteins may
be present in one bacterium [4, 5]. At present, over 7
million bacterial protein sequences are available on the NCBI
website, but only 1447 bacterial HbL proteins have been
identified through experimental or bioinformatics analysis
so far (all bacterial sequences annotated with the keyword
“hemoglobin” in NCBI). Among these, only a small number
of HbL proteins have been experimentally validated. It is
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thus likely that many HbL encoding genes have not yet
been discovered. Looking into the diverse functions of HbL
proteins in bacteria (e.g., oxygen metabolism, environmental
stress management, virulence, signal transduction, and redox
regulations) [6, 7], it is important to identify HbL proteins
in bacteria in order to better understand the role and
functionality of this important class of proteins. Hence, a
facile online prediction system to detect the occurrence of
new HbL proteins in bacteria sequence data was needed.

During the last decade, the number of known protein
structures has increased enormously due to rapid advance-
ment in structural genomics, which has inspired the devel-
opment of various prediction tools for the characterization
of novel protein sequences [8]. The SVM approach has been
successfully applied to predict peptide features and to various
types of protein classification/prediction methods including
structure and function prediction. For example, the SVM
approach has been used to predict antibacterial peptides and
secretory proteins and it was shown that SVM performed
generally better than artificial neural networks (ANN) [9,
10]. SVM based methods have been originally developed
to predict the subcellular localization of human proteins
[11], structural classes, and DNA-binding proteins [12, 13].
In addition, various prediction methods based on position
specific scoring matrix (PSSM) have been described in the
literature [14, 15].

Previously, there have been several SVM based methods
proposed in the literature to deal with functional proteins,
such as G-protein coupled receptors, RNA-binding proteins,
and DNA-binding proteins [16-20]. To the best of our knowl-
edge, in silico prediction methods are not yet available for
HbL proteins such as bacterial HbL proteins using machine
learning approaches. In the past, bioinformatics studies
have classified and assigned sequences to particular oxygen-
binding proteins using SVM, but this does not include
bacterial HbL proteins [21]. Hence, an analysis of computer-
based prediction is needed to identify new bacterial HbL
proteins.

Finally, a web server for the prediction of bacterial HbL
proteins has also been made freely available that implements
and demonstrates various SVM models. This server allows
users to submit one-letter amino acid sequence in the text
area provided in the submitted form. The sequence should
be in plain text without any header format. It takes a
single sequence as input and predicts the corresponding HbL
subclass/family protein.

2. Results and Discussion

Support vector machines have been used to develop predic-
tion methods for several functional classes of proteins, such
as subcellular localization, DNA-binding proteins, and RNA-
binding protein recognition sites [22]. We have developed a
series of SVM modules to predict HbL proteins with high
accuracy. In this study, we address two types of inquiry:
(1) the discrimination of potential HbL from non-HbL
proteins sequences with their subclassification into their
three subfamilies and (2) the assignment of domains into
five distinct HbL proteins domains. SVM modules have been
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developed for the prediction of HbL proteins using amino
acid composition (AC) and dipeptide composition (DC),
PSSM, and MM profiles and hybrid approach (AC + DC).
Performances were analyzed to identify methods of high
prediction accuracy. The method described here will assist
those who are working on bacterial HbL proteins.

2.1. Composition Analysis. Supplementary Figure-la (see
Supplementary Material available online at http://dx.doi.org/
10.1155/2016/8150784) shows a comparison of the amino acid
composition of known HbL proteins to the composition of
sequences from the randomly picked set of proteins (non-
HbL), as described in methods. Overall the amino acid
composition distribution of HbL proteins is similar to other
proteins; we have calculated the median scores between HbL
and non-HbL proteins, finding that residues Ala(A), Glu(E),
and His(H) are 0.5% more in HbL proteins. The residues
Ser(S) and Thr(T) are present by more than 0.5% in non-HbL
than the HbL proteins.

The amino acid compositions of each HbL protein sub-
family are shown in Supplementary Figure-1b. It can be
seen that most amino acid residues are evenly distributed in
similar proportions. However, certain types of amino acid
residues present variable abundance between classes. The
amino acid distributions are within the HbL subfamilies, sHb
class Lys(K) is most abundant amino acid present in more
than 8%, and Ile(I) and Asn(N) are having more 3% than
the other HbL subclasses according to their median scores. In
flavoHb, Ala(A), Gly(G), GIn(Q), Ser(S), Thr(T), and Val(V)
residues are having less than 2% and it is better than the other
two subclasses. In trHb, residue Arg(R) is the most abundant
residue of presence of above 2%; residues Asp(D), Phe(F),
Pro(P), and Trp(W) are having presence of less than 2% and
it shows to be better than the other HbL class according to
median scores.

2.2. Prediction of HbL Proteins Using AC, DC, PSSM, and
MM Profile. In order to discriminate HbL proteins from
other protein sequences, we developed and evaluated the
performance of SVM models based on amino acid composi-
tion (AC) and dipeptide composition (DC), PSSM, and MM
profiles. We systematically calculated the accuracy, sensitivity,
specificity, and MCC; the performance results are shown
in Table L. In this study, we have chosen the default cutoft
0.0 which shows the best MCC. The above 0.0 (negative)
thresholds also predict the HbL and non-HbL correctly.
Single amino acid composition (AC) models resulted in
maximum accuracy of 86.14% with MCC 0.82. Similarly,
SVM models developed from dipeptide composition (DC)
achieved a maximum accuracy of 83.02% with MCC 0.78.
The PSSM profile based prediction accuracy was 90.20% with
MCC 0.89. Further, the MM residues profile achieved 86.28%
accuracy with 0.83 MCC. The best overall sensitivity (SN) and
specificity (SP) were achieved from all approaches (AC, DC,
PSSM, and MM); the detailed results are shown in Table 1.
The PSSM profile achieved the maximum accuracy (90.20%)
and sensitivity (97.76%) with high confidence MCC (0.89),
over all developed modules. In the fivefold cross-validation
test, the average accuracy and standard deviation (SD) were
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TABLE 1: Performance of various SVM modules of HbL proteins
predictions with non-HbL and HbL classification (single domain,
two domains (flavoHbs) and truncated Hbs (trHb)) developed using
various methods: amino acids (AC), dipeptides (DC), PSSM, and
MM profiles.

Methods ACC SN SP  MCC Parameter

y C

AC 8614 9618 7611 0.82 25 400

HbL DC  83.02 9478 7127 078 1 375
versus PSSM 9020 9776 82.64 0.89 1 300
non-HbL y i 8628 9608 7649 0.83 25 450
Hybrid 8521 9580 74.62 0.81 01 375

AC 9496 100 9456 097 15 9

DC 8323 100 8215 091 02 250

sHb PSSM 9505 100 94.66 097 5 7
MM 9487 100 9446 097 1 150

Hybrid 9151 100 90.83 095 0.1 350

AC 9646 100 89.67 095 10 300

DC 8750 100 6358 080 1 350

FlavoHb  pSSM 9505 100 8559 093 1 350
MM 9646 100 89.67 095 10 300

Hybrid 9029 100 7173 084 1 150

AC 8526 9889 80.62 089 5 350

DC 7817 9889 7LI3 083 1 275

trHb PSSM 8797 100 83.88 0.92 1 400
MM 8507 99.26 8025 089 4 500

Hybrid 80.03 100 7325 085 1 150

calculated in each case (all approaches (AC, DC, PSSM, and
MM), HbL classification, and all individual domains) shown
in Supplementary Table-1 and Supplementary Table-2.

2.3. Classification of Bacterial HbL Proteins into Subfamilies.
For each prediction method, three additional SVM modules
were developed to classify HbL protein sequences in each of
the three subfamilies (single domain, chimeric flavodomains,
and truncated Hbs). In the classification studies, one class was
used as a positive set and the remaining set was considered as
negative; this has been repeated for all classes. The accuracy
of the SVM prediction modules was estimated by 5-fold
cross-validation and the results are listed in Table 1. In this
case, single amino acid composition (AC) models resulted
in accuracies of 94.96%, 96.46%, and 85.26% with MCC of
0.97, 0.95, and 0.89 for single (sHb), flavoHb, and trHbs,
respectively. Dipeptide composition (DC) models achieved
a maximum accuracy of 83.23%, 87.50%, and 78.17% with
the MCC of 0.91, 0.80, and 0.83, respectively. With PSSM
the maximum accuracies were 95.05%, 95.05%, and 87.97%
with MCC of 0.97, 0.93, and 0.92, while the maximum
accuracies of MM profile based predictions were 94.87%,
96.46%, and 85.07% in 0.97, 0.95, and 0.89 MCC (Table 1).
In the classification PSSM modules also show the maximum
accuracy, when compared to other approaches. A perfect
classification method should have the sensitivity scores close

to 100%. Referring to our HbL classification (Table 1), the
sensitivity rate of all modules shows 100% or nearly 100%. In
case of specificity, the average scores are 91.46%, 82.12%, and
78.97% for sHb, flavoHb, and trHb, respectively.

2.4. Classification of HbL Proteins Subfamilies into Sub-
groups (Domains). To evaluate further the performance of
HDL classification by SVM, modules were trained on sub-
sets of sequences representing the different HbL protein
domain subgroups. The overall detection of HbL protein
with the combination of modules resulted in maximum
accuracies of 91.88%, 89.65%, 83.68%, 94.96%, and 85.26%
in AC, 78.09%, 87.78%, 77.05%, 83.23%, and 78.17% in
DC, 84.05%, 91.04%, 82.74%, 95.05%, and 87.97% with
PSSM, and 93.28%, 89.17%, 89.74%, 94.87%, and 85.07%
with MM for flavoglobin (NAD-insignificant), flavoglobin-
cyto-FAD/NAD, flavoglobin-FAD, single and trHb domain,
respectively, as shown in Table 2. It can be observed that
the SN values indicated in Table 2 are much lower than in
Table 1, but the specificity value is not worse. In the average
classification the SN value is 71.86% in all fHb in domain
classification, the individual class shows that the average
SN was 72.50%, 98.72%, and 49.23% for flavoglobin (FAD-
insignificant), flavoglobin-cyto-FAD/NAD, and flavoglobin-
FAD, respectively. Due to the close functional relationship of
flavoglobin-FAD with the other two subclasses, the average
SN rate is low.

2.5. Hybrid System (Combination of AC and DC Profiles).
We also tried the hybrid system, which is the combination
of amino acid composition (AC) and dipeptide composition
(DC) profiles. With this prediction strategy the highest
accuracy was achieved: 85.21%, MCC 0.81 in HbL versus
non-HbL proteins. In classification, the accuracy was 91.51%,
90.29%, and 80.03% and MCC was 0.95, 0.84, and 0.85 for
sHb, flavoHb, and trHb proteins, respectively (Table1). In
the HbL proteins domain prediction, the highest accuracy
was also achieved with 91.51%, 82.00%, 76.77%, 89.00%, and
80.03% and MCC was 0.95, 0.62, 0.37, 0.85, and 0.85 of
sHb-globin, flavoglobin, flavoglobin-FAD-binding domain,
flavoglobin-FAD/NAD-cytochrome reductase domain, and
truncated hemoglobin (globin-like globin-FAM-2 domain)
(Table 2).

2.6. Confusion Matrix and Prediction Graph Analysis. SVM
predictions were further analyzed by examination of con-
fusion matrix (CM-model Figure1) and prediction graphs
(Supplementary Figure-2 (a, b, ¢, d, e), Supplementary
Figure-3 (a, b, ¢, d, e)) [23-25]. According to the prediction
score graphs, the negative set (non-HbL) was well separated
from the positive sequences. No positive sequence was pre-
dicted as negative, and no negative sequence was predicted
as positive. For 5-fold cross-validation, 5 modules were
constructed for each class. Each module was tested with all
bacterial HbL proteins as input to the SVM-classify program.
The output of each module was then analyzed, and the best
model was selected for confusion matrix and prediction
scores graph analysis. A total of 1539 HbL sequences, includ-
ing 29 sHb, 1402 chimeric (flavoHbs), and 108 truncated
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TABLE 2: Performance of various SVM modules of HbL proteins domains classifications (flavoglobin, flavoglobin-cyto-FAD, flavoglobin-FAD,
and single and trHb domain) developed using amino acid (AC), dipeptide composition (DC), PSSM, and MM profile, respectively.

HbL protein domain Methods ~ ACC (%) SN (%) SP (%) MCC ParametersC
y
AC 91.88 65.62 92.69 0.74 50 200
DC 78.09 56.25 78.75 0.52 250
Flavoglobin (FAD-insignificant) PSSM 84.05 78.13 84.23 0.77 400
MM 93.28 100.00 93.08 0.96 25 450
Hybrid 82.00 62.50 82.59 0.62 1 450
AC 89.65 99,51 75.89 0.86 10 200
DC 8778 98.55 72.77 0.83 200
Flavoglobin-cyto-FAD/NAD PSSM 91.04 100 78.57 0.89 500
MM 89.17 96.96 78.34 0.84 25 400
Hybrid 89.00 98.56 75.67 0.85 3 350
AC 83.68 50.00 84.71 0.53 10 275
DC 7705 59.37 77,60 0.54 1 275
Flavoglobin-FAD PSSM 82.74 18.75 84.71 0.09 1 500
MM 89.74 50.00 90.96 0.60 15 500
Hybrid 76.77 43.75 7778 0.37 1 200
AC 94.96 100 94.56 0.97 15 9
DC 83.23 100 82.15 0.91 0.2 250
Single bac domain (globin-like) PSSM 95.05 100 94.66 0.97 5 7
MM 94.87 100 94.46 0.97 1 150
Hybrid 91.51 100 90.83 0.95 0.1 350
AC 85.26 98.89 80.62 0.89 5 350
DC 78.17 98.89 7113 0.83 1 275
Truncated BacHb domain (globin_trunc_bac-like) PSSM 8797 100 83.88 0.92 1 400
MM 85.07 99.26 80.25 0.89 4 500
Hybrid 80.03 100 73.25 0.85 1 150

N

| SVM models |
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—)
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FIGURE 1: Confusion matrix system of bacterial Hbs (single domain, two domains (flavoHbs) and trHb (truncated Hbs)).

Hbs (trHb), were used as input, which was selected in Swis-
sProt/UniProt database. The confusion matrix shows that
the SVMs successfully classified all sHb sequences (29/29),
but one sequence in both flavoHb and trHb sequences was
misclassified with the flavoHb sequence predicted as trHb
and the trHb sequence as flavoHb. All other sequences were
correctly subclassified (1401/1402 flavoHb, 107/108 trHb) with
any method (AC, DC, PSSM, and MM) (Supplementary
Table-3). This indicates that the SVM modules developed

here are able to recognize and classify HbL sequences with
a high prediction rate of almost 100%.

The prediction score graphs for single amino acid compo-
sition (AC), dipeptide composition (DC), PSSM, and MM’s
SVM outputs are presented in Supplementary Figure-2 and
Figure-3. In these graphs, the prediction results are repre-
sented with positive (HbL prediction) or negative (non-HbL)
values. It can be seen in Supplementary Figure-3 (a, b, c,
d) that irrespective of the method used almost all non-HbL
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sequences are correctly predicted as negative by all methods.
In hybrid methods recognize the HbL sequences as positive
and the non-HDbL as negative without any confusion (Supple-
mentary Figure-2e). In subfamily classification, the simplest
amino acid composition (AC) and MM methods correctly
predicted all sequences, except one flavoHb predicted as trHb
and one trHb sequence predicted as flavoHb (Supplementary
Figures-3a and d). DC, PSSM, and hybrid methods also
correctly predicted both positive and negative sequences,
except one sequence present in both classes flavoHb and
trHb incorrectly predicted as being negative, (Supplementary
Figures-3b, ¢, and e). This sequence, presented in both
datasets (D2UCQ4_XANAP) of flavoHb and trHb, shows
in UniProt that hypothetical hemoglobin-like protein HbN
(truncated hemoglobin) (Trhbn) (flavohemoglobin). Overall,
a large number of sequences were accurately classified with
all methods, so the SVM models described here are able to
predict a large majority of HbL proteins and classify them
properly in their independent classes. In classification also,
the SVM models distinguish nearly 100% of the HbL into
their subfamily.

2.7.ROC Curve Analysis. In order to analyze the SVM models
developed further, receiver operating characteristic (ROC)
plots were produced (Figure 2). The area under curve (AUC)
was measured as 0.943, 0.969, 0.992, and 0.943 for HbL mod-
els based on AC, DC, PSSM, and MM profile, respectively
(Figure 2 C-1). The classification results are shown in Figure 2
C-2 for flavoHbs (AUCs 0.968, 0.994, 0.991, and 0.968), C-3
for single domain (AUCs 1.00, 0.99, 1.00, and 1.00) and C-
4 for trHb (truncated Hbs) (AUCs 0.950, 0.994, 0.993, and
0.949). The overall average AUCs were 0.980, 0.997, and 0.972
for flavo, sHb, and trHb and 0.973, 0.975, 0.995, and 0.972
for AC, DC, PSSM, and MM profiles, respectively. Referring
to AUC, the DC and PSSM methods are performing slightly
better than AC and MM methods. The overall AUC scores
show that all methods are predicting BacHbL proteins and
their subclasses/families. Thus, the modules developed for
all approaches apparently offer good performance for the
identification of bacterial HbL sequences.

2.8. Comparison with BLAST/PSI-BLAST and Pfam. The
foremost and most reliable method used for the characteri-
zation of known features in protein sequences is homology
based annotation, where a query protein is compared with
proteins of known function and the function is assigned only
if a query protein is similar to a known target protein [26].
However, homology or similarity based methods fail if the
query protein does not possess significant sequence similarity
to proteins of known function.

A comparison was constructed using two different ways:
BLAST-search and HMM sequence profile from Pfam ver-
sion 27.0 downloaded on March 18, 2013. In the BLAST-
search, an E-value cutoff 0.00001 was used against the
UniProt/SwissProt database before September 2014 and
sequences between 90% and 30% similarity were retained.
This filter was only applied for trHb and flavoHb and not
for sHb class, due to fewer sequences retrieved. The final
BLAST-search results contained 499, 749, and 1203 sequences

of sHb, flavoHb, and trHb, respectively. However the sHb
BLAST data were included; many flavoHb proteins and the
trHb datasets contained some flavoHb sequences. These
sequences were tested with our various SVM HbL-models
(HbL versus non-HbL; AC, DC, PSSM, and MM models).
The results show that 1941 sequences were predicted as
positive while 37 sequences were negatively predicted out
of 2451 sequences with all approaches (AC, DC, PSSM, and
MM). The rest of the sequences (473) were only predicted
by either one or two or three approaches. The results
from single or combined SVM predictions are summarized,
demonstrated in Venn diagram Supplementary Figure 4(A,
B, C) of sHb, trHb, and flavoHDb, respectively; the com-
plete data is available in Supplementary File-1. The BLAST-
search sequences were also analyzed by individual HbL
class models (sHb, flavoHb, and trHb) using all approaches
(AC, DC, PSSM, and MM). In this case, 103, 589, and 942
sequences were predicted as positive and 359, 1, and 21
sequences were negatively predicted for sHb, flavoHb, and
trHb in all approaches. The 359 sHb sequences identified
in BLAST-search are mainly flavoHb sequences, so that
the sHb models do not classify them as sHb but flavoHb,
which indicates that the SVM models are better able to
discriminate between sHb and flavoHb related sequences; the
summary results are presented in (Venn diagram) Supple-
mentary Figure 4(D, E, F) and the complete prediction data is
available as Supplementary File-2. The performance of indi-
vidual domain prediction is also presented in Supplementary
Table-4.

HMM profile is an another more sensitive method in
identifying distant homologs; HMM profiles for each of
the three individual HbL classes (sHb, flavoHb, and trHb)
were constructed and searched against all HMMs profiles of
known functional proteins available from the Pfam database
at 0.00001 E-value. A comparison of the performance of
the BLAST-search sequences in Pfam and our SVM models
is presented in Table 3. The developed SVM methods also
perform similar to Pfam, but no flavoHb proteins were
identified as cytochrome reductase domain in Pfam. In our
approach, one domain may not be identified by AC, but
it can be identified by DC or PSSM or MM. So overall,
all HbL proteins can be identified by our methods. In
contrast, BacHbpred SVM models were all able to detect this
domain.

Finally, to test for the performance of the HbL pre-
diction methodology developed above in the context of
full genome prediction, a whole-bacterial genome predic-
tion of the Bacillus subtilis having 4053 sequence was
conducted. The output results show that 76 proteins were
predicted as positive in all approaches. This included protein
sequences annotated as HbL (I sequence) and uncharac-
terized proteins (11 sequences). The detailed results are
shown in Supplementary Figure 4(G) and it was made by
Venn diagram. Therefore a majority of positively identified
sequences are already annotated while the 11 uncharacterized
sequences may present at most 15% of false positive and
possibly include a large number of new candidate HbL
proteins.
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FIGURE 2: The performance of HbL proteins SVM models by ROC plots. C-1: HbL proteins AUC 0.943, 0.969, 0.992, and 0.943 of AC, DC,
PSSM, and MM profile methods, C-2: flavoHbs AUC 0.968, 0.994, 0.991, and 0.968 of AC, DC, PSSM, and MM profile methods, C-3: single-
domain (sHb) AUC 1.00, 0.99, 1.00, and 1.00 of AC, DC, PSSM, and MM profile methods, and C-4: trHb AUC 0.950, 0.994, 0.993, and 0.949

of AC, DC, PSSM, and MM profile methods, respectively.

3. Conclusion

In this study, we developed a highly accurate prediction
system having several methods to identify bacterial HbL
proteins and predict their different classes/families from
amino acid sequence data. Using the SVM based prediction

approach based on single AC, MM, dipeptide composition
(DC), and position specific scoring matrices (PSSM) the
technology developed has been shown to provide reasonably
high prediction accuracy. Comparative performance analysis
of the constructed models indicated that the DC and PSSM
methods generally resulted in better prediction than AC and
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TaBLE 3: HbL domain prediction performance of BLAST-search sequences compared with Pfam along with BacHbpred all models (AC, DC,

PSSM, and MM).

Total Pfam AC DC PSSM MM
SHb 499 162 140 140 103 140
Flavoglobin 749 04 31 27 07 48
Flavoglobin-cyto-FAD/NAD 749 673" 667 605 578 631
Flavoglobin-FAD 749 30 30 20 00 34
trHb 1203 1130 1008 1081 1164 1011

*Pfam predicts flavoglobin with FAD/NAD only, but it does not show any signal for cytochrome reductase domain.

MM on BLAST/Pfam search dataset. Hybrid method, which
is the combination of AC and DC, also performs slightly
better than DC, showing no much difference in MCC. All
of the experimental results, including BLAST/Pfam search
dataset, indicate that the proposed HbL prediction tool may
be a perspective predictor for the determination of HbL
related proteins. Finally, a web server has been developed
which will serve the scientific community to identify new
HbL proteins and their structural classes. We believe that
the developed prediction tool will contribute considerably in
providing new directions for the development of such future
predictors.

4. Material and Methods

4.1. Datasets. 'The original dataset of bacterial HbL proteins
was retrieved from UniProt/SwissProt (http://www.uniprot
.org) [27] using keyword searches (flavohemoglobin, trun-
cated hemoglobin, and single domain hemoglobin bacte-
ria), resulting in 1539 entries from the organism listed in
Supplementary Table-5. This raw dataset included protein
sequences annotated as “fragments”, “isoforms”, “potentials”,
“similarity”, or “probables” which were removed by a PERL
script. A similarity filter (90% similarity cutoff) was also
applied that no two sequences have more than 90% similarity.
However, this similarity filter was not applied to the single
domain hemoglobin (sHb) subset, due to its small size (29
proteins) and relatively high similarity between annotated
sHbs.

Curation of the nonredundant dataset for flavohe-
moglobin (flavoHb) and truncated hemoglobin (trHb)
resulted in 217 and 87 peptides filtered from 1343 and
108 SwissProt entries, respectively. The final dataset con-
sisted of 333 high quality bacterial Hbs (HbL) proteins (217
flavoHb +87 trHb +29 sHb) from over 246 bacterial species
(180 flavoHb, 64 trHb, and 2 sHb). The sequence length
distributions of individual domain of HbL proteins were
studied, as shown in Figure 3(a). The longest FgC-FAD/NAD
(flavoHb) sequences have a length between 300 and 500
amino acids. In addition, calculations revealed the sequence
similarity between all HbL subclasses as shown in Figure 3(b)
(MatGAT?2.01). In trHb, 50% of the sequences had 31-40%
similarity and 30% had a similarity range between 41 and
50%. For the flavoHb subclass, 40% of the sequences had a
similarity range between 61 and 70% and 25% of sequences
had a similarity between 51and 60%. The domain architecture
of HbL proteins was characterized with Pfam and InterPro

tools, and the complete domain organization of HbL is shown
in Figure 3(c).

A negative set of 337 nonredundant proteins (90%
cutoft), with nearly similar length, was randomly picked
from a dataset made by querying SwissProt/UniProt with
different keywords and it does not belong to HbL pro-
teins. The similarities between HbL and non-HbL were
from 9.67% to 24.71% and the average similarity was
13.78% using Percent Identity Matrix—created by Clustal2.1.
The non-HbL sequences are mostly regulatory and pro-
teases; the protein names are, transglycosylase, actin-binding
protein, RNA polymerase, phosphate dikinase, pectate-
lyase, operon regulation, metabolism regulation protein,
5-hydroxytryptamine receptor, osmolarity sensor protein,
multiprotein-bridging, mating-type protein, mediator of
RNA polymerase, proteasome-interacting protein, RsbT
antagonist protein, cyclin-dependent kinase, protein ves-
tigial, synaptobrevin-like protein, mediator of RNA poly-
merase II transcription, cryptochrome-2, zinc finger CCCH
domain, bacterial regulatory proteins, Salmonella enteritidis,
oxysterol-binding protein, small nuclear ribonucleoprotein,
transcriptional activator protein, arginine biosynthesis, bi-
functional protein, ubiquitin-protein ligase, putative two-
component response regulator, alpha-amylase, angiopoietin-
related protein, AMP nucleosidase, glia-derived nexin,
hyaluronan-binding protein, hepatocyte growth factor acti-
vator, plasma serine protease inhibitor, serine/threonine
protein phosphatase, GTPase, Lon protease, pre-mRNA-
processing protein, and sporulation kinase.

4.2. PSSM Profile. PSSM profiles were developed using the
gpsr_1.0 package, which is freely available for Linux/Windows
(http://www.imtech.res.in/raghava/gpsr/), run against the
nonredundant (nr) database downloaded through NCBI
(ftp://ftp.ncbi.nih.gov/blast/db/). The position specific scor-
ing matrix was calculated using the suite (GPSR) pro-
grams. In the development of PSSM profile, seq2pssm_imp,
pssm_comp, and col2svm programs were used to generate the
SVM_light input format (a 400-point vector representing the
substitution rate of each amino acid into any other) [28-31].

seq2pssm_imp: To Calculate PSSM Matrix in Column For-
mat without Any Normalization. seq2pssm_imp was used to
calculate the PSSM matrix in column format without any
normalization, by performing PSI-BLAST-searches against
the nonredundant protein database using different iterations
(e.g., 3) with a cutoft E-value 0.001. For a sequence of length
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FIGURE 3: (a) Sequence length histograms of HbL based on domain organization: single domain (sHb), two domains (flavoHbs, i.e., globin-
FAD, globin-FAD/NAD, and globin-cyto-FAD/NAD) and trHb (truncated Hbs) (x-axis for sequence length range and y-axis for number of
sequences). (b) Sequence similarity histograms of HbL proteins; single domain (sHb), two domains (flavoHbs) and trHb (truncated Hbs).
(c) Domain architecture of HbL protein based on Pfam/InterPro web search tool, (c)(A) flavoHb globin-FAD/NAD, (c)(B) flavoHb globin-
cyto-FAD/NAD, (¢)(C) flavoHb globin-insignificant-FAD domain, (c)(D) sHb globin domain, and (c)(E) trHb globin_FAM_2 domain.

N, an N x 20 position specific substitution matrix (m) was
computed from the PSI-BLAST alignment output where m
[i, j] provided information on the evolutionary conservation
of residue type (j) at sequence position (7). The values of
PSSM matrix vary within a large range, which makes it
difficult to run SVM. Thus, every PSSM element X(i) at
position (i) is normalized using the program pssm_n2 based
on the following formula:

_ () -1()
(m (@) -10)’

where X, n, [, and m are, respectively, defined as the normal-
ization value, the residue actual position score, the minimum
score, and the maximum score of the PSSM outputs for a
single residue position. Here (i) is defined as the residue’s
position. For example, if the PSSM output for a single position
is {279, —326, 515, —410, —186, —484, —373, 101, —346, 99,
918, —430, —450, —256, —349, —351, —250, 114, —352, —293},
then —515 and 918 are the minimum and maximum scores.
After normalization by the above formula, the first score
will be normalized to ((-279) — (-515))/(918 — (-515)) =
236/1433 = 0.1646, and the position scores vector will be
converted to {0.1646, 0.1318, 0, 0.0732, 0.2295, 0.0216, 0.0990,
0.4298, 0.1179, 0.4284, 1, 0.0593, 0.0453, 0.1807, 0.1158, 0.1144,
0.1849, 0.4389, 0.1137, 0.1549}. The values are now normalized
between 0 and 1, so that the minimum scores receive “0” and
the maximum scores are set to “1.”

X () @

pssm_comp: To Compute PSSM Composition (400 Points).
The pssm_comp program is used to calculate the PSSM
composition in a vector of 400 dimensions, by computing
the composition of occurrences of each type of amino acids
corresponding to each type of amino acids present in protein
sequence. According to this statement, each column has 20
values instead of one. Every element of this input vector
was subsequently divided by the length of the sequence. The
resultant matrix with 400 elements was used as an input
feature for running SVM.

col2svm: To Generate SVM_light Input Format. The col2svm
program is used to convert the PSSM normalization output
file to composition format file, which is used for running
SVM training. Mainly this program is used to assign the
(+ve) label for positive sequences and (—ve) label for negative
sequences.

4.3. Amino Acid Composition (AC). Amino acid composition
is the fraction of each amino acid in a protein. The fraction of
all 20 natural amino acids was calculated using

Fraction of amino acid (i)

Total number of amino acid (i) )

Total number of amino acids in protein’

where (i) can be any amino acid.
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4.4. Dipeptide Composition (DC). Dipeptide composition
is used to encapsulate the global information about each
protein sequence, which gives a fixed pattern length of 400
(20 x 20). The fraction of each dipeptide was calculated
using

Fraction of dep (i + 1)

_ Total number of dep (i + 1) (3)
~ Total number of all possible dipeptides’

where dep(i + 1) is one out of 400 dipeptides.

4.5. Amino Acid Composition Feature Vectors. The average
amino acid composition (AC) was calculated using an
alphabetical ordering of the amino acids ACDEFGHIKLM-
NPQRSTVWY.” The MM (maximum to minimum) com-
position vector was obtained by sorting the average HbL
sequences AC composition from the most abundant to the
less abundant amino acids. The residues order for MM is
“ALEKIVGDPNFQRTMYSHWC” and it was used as a fixed
vector to calculate the MM profile.

4.6. SVM. Support vector machine (SVM) is a commonly
used tool to solve two-class classification problems. It has
been shown to be an effective method in computational
biology. In this study, we used a free downloadable package:
SVMlight, available at http://svmlight.joachims.org [32-34].
The SVM training was carried out by optimization of various
kernel function parameters and the value of the regulariza-
tion parameter C.

4.7 Confusion Matrix. A confusion matrix (also known as
the contingency matrix) contains information about actual
and predicted classifications done by a classification system
as illustrated in Supplementary Figure-2. The performance
of such systems is commonly evaluated using the data in the
matrix. In the confusion matrix it is easy to see if the system
is confusing two classes. When a dataset is unbalanced (when
the number of samples in different classes varies greatly) the
error rate of the classifier is not representative of the true
performance, and the confusion matrix needs a more detailed
analysis.

4.8. Evaluation of Performance. The performance was eval-
uated by 5-fold cross-validation. The whole dataset was ran-
domly divided into five sets of approximately equal size. Four
sets were used for training and one set was used for testing.
Different sets were chosen for 5-fold assessment one by one.
The results from the classification were estimated by different
measures: accuracy (ACC), sensitivity (SN), specificity (SP),
and Matthews correlation coefficient (MCC). Accuracy is
the percentage of correctly predicted positive and negative
examples. Sensitivity is the percentage of positive examples
(HbL proteins), which are correctly predicted as positive.
Specificity is the percentage of negative examples (non-HbL
proteins), which are correctly predicted to be negative. MCC

is a measure of the quality of a binary classification system.
The following equations were used:

TP + TN

A ACC) = >

ceuracy (ACC) = T TN T FP 1 BN
Sensitivity (SN) = L,

TP + FN
TN

Specificity (SP) = —,

pecificity (SP) TN + EP

(4)

MCC

B TP x TN — FP x FEN
/(TP + FP) (TP + FN) (IN + FP) (IN + EN)

_ (FP)
" (FP+TN)’

FPR

where TP, TN, FP, and FN are the numbers of true positive,
true negative, false positive, and false negative residues of the
prediction, respectively. Sensitivity and specificity are used
to plot receiver operating characteristic (ROC) curves to
calculate the AUC.

The aim of this work is to propose a new predictor
for HbL protein and its subclasses determination based on
features such as amino acid composition (AC), dipeptide
composition (DC), hybrid approach (combination of AC and
DC), and evolutionary information (i.e., PSSM profile). The
SVM method was extended to develop a new approach for
protein prediction based on max to min residues profiling. To
achieve the aim, firstly, we constructed HbL protein dataset
that consist of three main classes, that is, single domain
hemoglobin (sHb), truncated hemoglobin (trHb), and flavo-
hemoglobin (flavoHb). Further, HbL proteins can also be
classified according to their domain architecture such as
globin-sHb, flavoglobin, flavoglobin-FAD-binding domain,
flavoglobin-FAD/NAD-binding with cytochrome reductase
domain, and truncated hemoglobin (trHb). A negative non-
HbL protein dataset was also constructed and used as an extra
class for background controls. The performance of the predic-
tion modules developed for bacterial HbL proteins was ana-
lyzed by both cross-validation and confusion matrix analysis.
Furthermore, the SVM based approached was compared to
homology detection methods such as BLAST/Pfam domain
search. Initially, we did blast locally to all sequences (sHb,
flavoHDb, and trHb), then collected the IDs, and retrieved
the sequences in UniProt/SwissProt database; for reducing
the dataset size, we have chosen 90% cutoff. In the collected
datasets, we found that the sequence similarity was between
30 and 90% for flavoHb and trHb proteins, but all sHb
proteins available were used to run BLAST-search, due to the
small number of known sHb proteins.

4.9. Web Server. In this study, we have developed an online
server BacHbpred implemented on the World Wide Web
(WWW), which is freely accessible at http://mamsap.it.dea-
kin.edu.au/bac_hbpred/home.html. All the scripts of the
methods are written in CGI-PERL program and the interface
is designed in HTML (Hypertext Manipulation Language).



10

The server provides a user-friendly interface and allows users
to submit their query sequences and the results are displayed
in a simple tabular format.
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