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Background and Objective: Computed tomography (CT) imaging plays a crucial role in the early 
detection and diagnosis of life-threatening diseases, particularly in respiratory illnesses and oncology. The 
rapid advancement of deep learning (DL) has revolutionized CT image analysis, enhancing diagnostic accuracy 
and efficiency. This review explores the impact of advanced DL methodologies in CT imaging, with a particular 
focus on their applications in coronavirus disease 2019 (COVID-19) detection and lung nodule classification.
Methods: A comprehensive literature search was conducted, examining the evolution of DL architectures 
in medical imaging from conventional convolutional neural networks (CNNs) to sophisticated foundational 
models (FMs). We reviewed publications from major databases, focusing on developments in CT image 
analysis using DL from 2013 to 2023. Our search criteria included all types of articles, with a focus on peer-
reviewed research papers and review articles in English.
Key Content and Findings: The review reveals that DL, particularly advanced architectures like FMs, 
has transformed CT image analysis by streamlining interpretation processes and enhancing diagnostic 
capabilities. We found significant advancements in addressing global health challenges, especially during the 
COVID-19 pandemic, and in ongoing efforts for lung cancer screening. The review also addresses technical 
challenges in CT image analysis, including data variability, the need for large high-quality datasets, and 
computational demands. Innovative strategies such as transfer learning, data augmentation, and distributed 
computing are explored as solutions to these challenges.
Conclusions: This review underscores the pivotal role of DL in advancing CT image analysis, particularly for 
COVID-19 and lung nodule detection. The integration of DL models into clinical workflows shows promising 
potential to enhance diagnostic accuracy and efficiency. However, challenges remain in areas of interpretability, 
validation, and regulatory compliance. The review advocates for continued research, interdisciplinary 
collaboration, and ethical considerations as DL technologies become integral to clinical practice. While 
traditional imaging techniques remain vital, the integration of DL represents a significant advancement in medical 
diagnostics, with far-reaching implications for future research, clinical practice, and healthcare policy.
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Introduction

Computed tomography (CT) imaging has transformed 
the landscape of medical diagnostics by offering detailed 
and high-resolution cross-sectional images of the human 
body. These images are indispensable for the detection 
and diagnosis of a myriad of medical conditions, including 
tumors, fractures, and internal injuries. However, 
interpreting CT images is inherently challenging and time-
consuming, demanding significant expertise and experience 
from radiologists. With the proliferation of CT scanners 
and the increasing volume of medical imaging data, there 
is an urgent need for automated and efficient methods to 
analyze and interpret these images (1,2). CT imaging has 
a rich history dating back to the early 1970s. Developed 
by Sir Godfrey Hounsfield and Allan Cormack, who were 
awarded the Nobel Prize in Physiology or Medicine in 
1979 for their work (3), CT revolutionized medical imaging 
by providing cross-sectional views of the body. The first 
clinical CT scan was performed in 1971, and since then, 
the technology has undergone significant advancements (4), 
evolving from single-slice to multi-slice scanners capable of 
producing high-resolution 3D images in seconds.

Lung cancer is a serious condition characterized by 
the abnormal growth of cells in the lungs. It is not related 
to coronavirus disease 2019 (COVID-19), which is a 
respiratory illness caused by a virus. The global healthcare 
landscape has been significantly impacted by the COVID-19 
pandemic and the ongoing challenge of early lung cancer 
detection. The World Health Organization (WHO) has 
emphasized the critical role of rapid and accurate diagnosis 
in managing the spread of COVID-19, stating that “early 
identification, isolation, and care of COVID-19 cases are 
essential to limiting the spread of the virus” (5). Similarly, 
for lung nodules, which can be indicative of early-stage lung 
cancer, the WHO notes that “early detection of lung cancer 
is crucial for improving survival rates” (WHO, 2021). 
CT imaging has emerged as a powerful tool in addressing 
both these challenges. For COVID-19, CT scans can 
reveal characteristic patterns of ground-glass opacities and 
consolidations in the lungs, often before the onset of severe 
symptoms or in cases where real-time reverse transcription 
polymerase chain reaction (RT-PCR) tests may yield false 
negatives. In the context of lung nodule detection, CT 
imaging allows for the identification of small, potentially 
cancerous lesions that might be missed on conventional 
chest X-rays (CXRs). The application of advanced deep 
learning (DL) techniques to CT image analysis has shown 

promising results in enhancing the speed and accuracy of 
both COVID-19 diagnosis and lung nodule detection (6). 
These AI-driven approaches not only aid in rapid triage and 
diagnosis but also have the potential to alleviate the burden 
on healthcare systems by automating initial screening 
processes. As such, the development and refinement of DL 
models for CT image classification represent a critical area 
of research with significant implications for global public 
health (7).

CT imaging has revolutionized medical diagnostics since 
its introduction, offering unparalleled insights into the human 
body’s internal structures. This technology works by combining 
a series of X-ray images taken from different angles around 
the body and using computer processing to create cross-
sectional images (slices) of the bones, blood vessels, and soft 
tissues. The significance of CT imaging in modern medicine 
is multifaceted: high spatial resolution, three-dimensional 
views, quick and non-invasive, versatile applications, cost-
effective diagnostics, and emergency and trauma assessment. 
Radiological CT image acquisition involves taking multiple 
X-ray images from different angles around the body, which 
are then processed to create detailed cross-sectional images. 
The axial chest CT image specifically provides valuable 
information about the lungs and surrounding structures, 
aiding in the diagnosis of various conditions. This technique 
allows for precise visualization of abnormalities, such as 
tumors or infections, enhancing clinical decision-making. The 
significance of CT imaging in modern healthcare cannot be 
overstated. Its ability to provide detailed, non-invasive insights 
into the human body has transformed diagnostic capabilities, 
improved treatment outcomes, and advanced medical research. 
As technology continues to evolve, CT imaging is likely to 
become even more powerful and indispensable in the medical 
field (7). Despite the substantial progress in DL for CT image 
classification, several challenges remain. One major challenge 
is data scarcity, quality and annotating large datasets, model 
interpretability, complexity and volume, subtle abnormalities 
and variability, multimodal integration, radiation exposure and 
generalization and robustness. Despite the efficiency, comfort, 
and overall safety of CT scans, patients should be aware that 
there is a slight possibility of experiencing an allergic reaction 
to the contrast medium utilized during the examination.

DL, a subset of machine learning (ML) that utilizes 
artificial neural networks to model complex patterns in 
data, has demonstrated tremendous potential in medical 
image analysis (8). These algorithms can automatically 
learn and extract features from large datasets, making them 
particularly suitable for tasks such as image classification, 
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segmentation, and detection. DL models can be trained 
to recognize specific anatomical structures, detect 
abnormalities, and classify various pathologies with high 
accuracy and efficiency (9). One of the most significant 
advancements in DL for CT image classification is the 
development of convolutional neural networks (CNNs). 
CNNs are specially designed to process visual data and 
consist of multiple layers of convolutional and pooling 
operations, followed by fully connected layers for 
classification (6). These networks have been successfully 
applied to a range of medical imaging tasks, including tumor 
detection, organ segmentation, and disease classification. 
By leveraging the hierarchical features learned by CNNs, 
researchers have achieved state-of-the-art performance 
in CT image analysis. In addition to CNNs, recurrent 
neural networks (RNNs) have been explored for CT image 
classification, especially in tasks involving sequential data 
or time-series analysis. RNNs are well-suited for tracking 
changes in image features over time, predicting future states 
based on past observations, and handling variable-length 
input sequences. By combining the strengths of CNNs and 
RNNs, researchers have developed hybrid architectures 
that effectively analyze dynamic and complex patterns in 
CT images (10).

Comparison of imaging techniques

Medical imaging techniques are indispensable tools in the 
diagnosis and treatment of various medical conditions. 
Each technique offers unique advantages and is suited to 
different types of clinical applications. A brief comparison 
of commonly used imaging modalities, including CT, 
positron emission tomography-CT (PET-CT), X-ray, 
ultrasound, magnetic resonance imaging (MRI), positron 
emission tomography (PET), single photon emission CT 
(SPECT), and optical coherence tomography (OCT) (11) 
are discussed in Table 1. 

Understanding these modalit ies’  strengths and 
weaknesses helps clinicians choose the appropriate imaging 
technique for accurate diagnosis and effective patient care.

Paper contribution

This review paper makes several significant contributions 
to the field of CT image classification using DL and 
foundational model (FM):
 Comprehensive synthesis: we provide a thorough 

and up-to-date synthesis of state-of-the-art 

DL techniques and FMs applied to CT image 
classification. This consolidation of knowledge 
bridges gaps between computer science, medical 
imaging, and clinical practice.

 Critical analysis of methodologies: our paper offers 
a critical analysis of various DL architectures, 
including CNNs, RNNs, GANs, and hybrid 
models, evaluating their efficacy and limitations 
in CT image analysis. We also provide an in-
depth examination of emerging FMs like BERT, 
GPT, CLIP, and ViT, elucidating their potential to 
enhance classification accuracy.

 Benchmark dataset evaluation: we present a 
comprehensive assessment of benchmark datasets 
used in CT image classification, highlighting 
their strengths, limitations, and potential biases. 
This evaluation is crucial for understanding the 
generalizability and robustness of current models.

 Novel taxonomy of challenges:  our review 
introduces a novel taxonomy of challenges in CT 
image classification, encompassing issues such 
as data scarcity, model generalization, clinical 
integration, and the complexity of CT imaging 
protocols. This structured approach provides a 
clear roadmap for future research directions.

 Interdisciplinary perspective: by integrating insights 
from radiology, computer science, and data science, 
we offer a unique interdisciplinary perspective on 
the current state and future potential of AI in CT 
image analysis.

 Future research directions: we identify and discuss 
key areas for future research, including innovations 
in model design, multi-modal learning approaches, 
and strategies for real-world clinical implementation. 
These insights are valuable for guiding future 
studies and funding priorities in the field.

 Clinical relevance: our paper bridges the gap 
between technical advancements and clinical 
applications, providing clinicians and healthcare 
professionals with a clear understanding of the 
potential impact of these technologies on diagnostic 
accuracy and efficiency.

 Ethical and regulatory considerations: we address 
important ethical and regulatory challenges 
associated with the implementation of AI in medical 
imaging, contributing to the ongoing dialogue 
about responsible AI development in healthcare.

The paper is structured to offer a thorough exploration 
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Table 1 Comparison of imaging techniques

Imaging method Applications Pros Cons

CT Screening for lung cancer, diagnosing 
lung diseases, assessing the extent of 
lung cancer, and detecting pulmonary 
embolisms

Identifies small or early-stage lung 
tumors with exceptional resolution 
and sensitivity, aiding in the 
examination of lung nodules

Elevated radiation exposure, possible 
requirement for contrast material, and 
significant expenses

PET-CT Evaluating lung cancer, determining the 
stage of lung cancer, monitoring treatment 
outcomes, and detecting cancer relapses

Excellent sensitivity in cancer 
detection, early identification 
of cancer, and provision of 
both anatomical and functional 
information

False alarms due to inflammation or 
infection, elevated radiation exposure, 
cost implications, and potential need 
for fasting before the scan

X-ray Identifying rib fractures, detecting 
pneumonia, and screening for lung cancer

Fast, cost-effective, and widely 
available

Restricted sensitivity and specificity, 
potentially leading to the oversight of 
early-stage lung cancer

Ultrasound Detecting pleural effusions, guiding 
thoracentesis procedures, and evaluating 
diaphragm function

Non-invasive, free of radiation, and 
applicable at the patient’s bedside

Depending on the operator, restricted 
ability to scan lung tissue; potential 
obstacles from gas or bone

MRI Assessment of lung cancer invasion, 
pulmonary embolism diagnosis, and lung 
function evaluation

Clear soft tissue contrast, minimal 
radiation exposure, and capability 
to evaluate lung function

Extended scanning durations, limited 
accessibility, elevated expenses, and 
possible requirements for contrast 
agents

PET Cancer detection, brain disorders, cardiac 
imaging

Functional imaging detects 
metabolic activity

Exposure to radioactive tracers, 
expensive, limited availability

SPECT Cardiac imaging, bone scans, detecting 
infections

Functional imaging, less expensive 
than PET

Lower resolution than PET, exposure 
to radiation

OCT High-resolution imaging of the retina and 
other tissues

High-resolution, non-invasive, real-
time imaging

Limited to optically accessible 
tissues, requires specialized 
equipment

CT, computed tomography; PET-CT, positron emission tomography-computed tomography; MRI, magnetic resonance imaging; PET, 
positron emission tomography; SPECT, single photon emission computed tomography; OCT, optical coherence tomography.

of this rapidly evolving field. We begin with an introduction 
that sets the context for our study. We provide an overview 
of DL methods, followed by an examination of FMs. 
We then discuss benchmark datasets crucial for model 
development and evaluation. Figure 1 show an overview of 
the review paper. A detailed literature review synthesizes 
current research findings, methodologies, and applications 
of DL in CT image analysis. To ensure a rigorous and 
comprehensive review, we conducted a systematic literature 
search, the details of which are summarized in Table 2. 
This table outlines our search methodology, including 
the databases searched, search terms used, timeframe 
considered, and our inclusion and exclusion criteria. We 
also cover evaluation metrics, which are essential for 
assessing model performance, and address challenges and 
future directions, offering insights into potential research 
avenues. Finally, we present our conclusions. We present 

this article in accordance with the Narrative Review 
reporting checklist (available at https://qims.amegroups.
com/article/view/10.21037/qims-24-1400/rc).

Methods

A comprehensive literature search was conducted using 
major databases, including Web of Science, PubMed, 
IEEE Xplore, and Scopus, to identify relevant studies 
on DL methodologies in CT image analysis.  The 
search encompassed publications from January 1, 2013, 
to December 31, 2023, focusing on English-language 
articles to ensure accessibility and relevance. Keywords 
such as “deep learning”, “neural networks”, “computed 
tomography”, “image classification”, “COVID-19”, and 
“lung nodules” were employed to refine the search results. 
These terms were combined using Boolean operators 

https://qims.amegroups.com/article/view/10.21037/qims-24-1400/rc
https://qims.amegroups.com/article/view/10.21037/qims-24-1400/rc
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to create comprehensive search strings tailored to each 
database’s specific syntax. Inclusion criteria comprised peer-
reviewed articles, systematic reviews, clinical studies, and 
conference proceedings that addressed DL applications in 
CT imaging, while opinion pieces, non-English articles, 
and studies focusing solely on other imaging modalities 
were excluded.

Two independent reviewers screened the titles and 
abstracts of the initial search results, followed by full-text 
assessment of potentially relevant studies. Data extraction 
was performed using a standardized form, capturing 
information such as study design, DL architecture, CT 
imaging context, performance metrics, and key findings. 
The quality of included studies was assessed using 
appropriate tools for diagnostic accuracy studies. Due to the 
heterogeneous nature of the studies, a narrative synthesis 
approach was adopted, organizing the findings thematically. 
The search strategy aimed to capture a wide range of 
methodologies and outcomes to provide a thorough overview 
of the current landscape in this rapidly evolving field. The 
complete search strategy, including specific search strings 

used for each database, is summarized in Table 2.

DL methods overview

Acquiring and interpreting medical images accurately 
is essential for the correct identification and diagnosis 
of malignant diseases. Various high-resolution imaging 
devices, such as CT, MRI, and X-ray scans, are available for 
this purpose. Following pre-processing, the medical image 
analysis system extracts relevant information from these 
images to train its models, which can then be utilized to 
identify diseases in unknown medical images. Traditional 
ML methods often struggle to provide reliable results 
due to the significant variations in medical images among 
individuals. In contrast, DL techniques have emerged as 
effective tools for analyzing medical images, particularly 
in the context of disease detection, such as cancer (11). 
DL methods, a subset of ML techniques, leverage neural 
networks with multiple layers (input, hidden, and output 
layers) to achieve more precise model training. These DL 
models can be categorized into four groups based on their 
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Figure 1 An overview of the review paper. DL, deep learning; CT, computed tomography; CNNs, convolutional neural networks; DSC, 
Dice similarity coefficient; AUC-ROC, area under the receiver operating characteristic curve; AUC-PR, area under the precision-recall 
curve; MCC, Matthews correlation coefficient; CAD, computer-aided diagnosis; COVID-19, coronavirus disease 2019.
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learning approaches; reinforced learning, unsupervised 
learning, semi-supervised learning, and supervised learning 
models (9).

Before the advent of DL, CT image classification heavily 
relied on traditional methods, each with its own set of 
limitations. Manual segmentation was a common approach 
where experts would delineate regions of interest (ROIs) 
within CT images. Although this method could be accurate, 
it was extremely time-consuming and subjective, making 
it impractical for large datasets, especially in scenarios 
requiring rapid analysis, such as COVID-19 diagnosis or 
nodule detection. Feature extraction was another critical 
step in traditional CT image classification. This process 
involved identifying and quantifying relevant image 
features, such as texture, shape, and intensity. However, 
this method depended heavily on domain knowledge 
and the manual selection of features, which could lead to 
inconsistencies and limited scalability. For example, in 
COVID-19 CT classification, where rapid and consistent 
identification of patterns in lung tissues is crucial, 
manual feature extraction could introduce delays and 
variability in diagnosis. Traditional ML algorithms, such 
as SVM, decision trees, and k-NN, were widely used for 
classification tasks. These algorithms relied on handcrafted 
features extracted from CT images and predefined rules for 
classification. While these methods provided a foundation 
for early image processing, they struggled with complex 
tasks like distinguishing between subtle variations in 
COVID-19 infections or accurately identifying small lung 
nodules, where the boundary between normal and abnormal 

tissue is often indistinct.
The introduction of DL revolutionized CT image 

classif ication, especially in challenging areas l ike 
COVID-19 diagnosis and nodule detection. DL models, 
particularly CNNs, automatically learn hierarchical 
feature representations from raw image data, eliminating 
the need for manual feature extraction. This ability to 
learn directly from the data has significantly improved 
the accuracy and efficiency of CT classification tasks. For 
instance, in COVID-19 CT classification, DL models 
have demonstrated remarkable performance in identifying 
infection patterns, even in early stages, by leveraging large 
datasets and learning from subtle differences in the images. 
Similarly, in lung nodule detection, DL models have shown 
superior capability in distinguishing between benign and 
malignant nodules by analyzing complex patterns that 
traditional methods might miss. These models can process 
vast amounts of data quickly, making them ideal for large-
scale screening and early diagnosis, which is crucial in 
reducing mortality rates for diseases like lung cancer. 
Furthermore, the evolution of image processing algorithms, 
as illustrated in Figure 2, reflects this shift from traditional 
ML to more advanced DL techniques. The integration 
of DL into CT classification has not only enhanced 
diagnostic accuracy but also opened new avenues for real-
time, automated, and scalable solutions in medical imaging. 
While traditional methods laid the groundwork for CT 
image classification, the advent of DL has significantly 
advanced the field (12). These technologies have overcome 
the limitations of manual segmentation, feature extraction, 

Table 2 The search strategy summary

Items Specifications 

Date of search June 15, 2023

Databases and other sources 
searched 

Web of Science, PubMed, arXiv, IEEE Xplore, Scopus

Search terms used “DL”, “FM” AND (“CT imaging” OR “computed tomography”) AND (“COVID-19” OR “lung nodule” OR 
“respiratory illness”) AND “Foundation model”

Timeframe 2013–2023

Inclusion criteria Original research articles, review papers, English language publications, studies focusing on deep 
learning applications in CT imaging, studies related to COVID-19 detection or lung nodule classification

Exclusion criteria Non-English publications, studies not related to CT imaging or DL

Selection process The selection process was conducted by two independent reviewers who screened the titles and 
abstracts of identified studies. They used predefined inclusion and exclusion criteria to ensure 
consistency. Any discrepancies between the reviewers were discussed and resolved through consensus, 
involving a third reviewer when necessary to achieve agreement

DL, deep learning; FM, foundation model; CT, computed tomography.
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and traditional ML algorithms, making them indispensable 
tools in modern medical imaging, particularly in the context 
of COVID-19 and lung nodule detection. As DL models 
continue to evolve, their impact on healthcare will likely 
expand, offering even greater accuracy and efficiency in 
diagnostic imaging. Accurate acquisition and interpretation 
of medical images are crucial for the correct identification 
and diagnosis of diseases, particularly malignancies. High-
resolution imaging modalities such as CT, MRI, and 
X-ray scans provide the raw data for analysis. The medical 
image analysis system processes these images, extracts 
relevant information, and uses it to train models capable of 
identifying diseases in unknown medical images (9-11).

Rule-based systems: these encoded domain-specific 

knowledge and rules to make diagnostic decisions, often 
used for simple classification tasks or decision support 
systems in medical imaging. Figure 3 contrasts the workflow 
of traditional methods (A) with that of typical CNNs (B) 
the traditional workflow vs. typical CNNs work flow. The 
transition to DL methods has addressed many limitations 
of traditional approaches, offering improved accuracy, 
scalability, and the ability to capture complex patterns in 
medical imaging data without extensive manual feature 
engineering. This shift has significantly enhanced the 
field’s capability to analyze and interpret medical images, 
particularly in the context of disease detection and 
classification. Figure 4 illustrates the general overview of 
lung cancer detection-based CT.
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Figure 2 The evolutional structure of machine learning-based image processing algorithms. GAN, generative adversarial network; CRF, 
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Supervised DL models 

Supervised DL models have dramatically improved CT 
image classification, particularly in detecting COVID-19 
and lung nodules, which are essential for early diagnosis 
and treatment. These models, especially CNNs, are trained 
on annotated datasets where input images are paired with 
labels, enabling them to learn intricate patterns in medical 
images (13). In the context of COVID-19, CNNs have 
demonstrated high sensitivity and specificity, outperforming 
traditional diagnostic methods by effectively identifying 
subtle lung changes like ground-glass opacities. Their 
ability to generalize across different datasets is crucial for 
widespread deployment in diverse healthcare settings, 
though the need for large annotated datasets and variations 
in imaging protocols present challenges. For lung nodule 
detection, CNNs have shown significant promise in 
accurately identifying and classifying nodules, which is vital 
for early lung cancer detection. Advanced models like Faster 
R-CNN and U-Net have improved nodule localization 
and reduced false positives, though variability in nodule 
appearance and the risk of false positives remain challenges. 
Techniques such as data augmentation and transfer 
learning have been employed to enhance model robustness 
and generalization. Despite their success, DL models 
face several challenges, including the need for extensive 
annotated datasets, variability in CT imaging protocols, 

and the “black box” nature of CNNs, which can limit their 
clinical adoption. Future directions include integrating DL 
with radiomics for more comprehensive analysis, developing 
federated learning frameworks to utilize decentralized data, 
and leveraging image improvement solutions like GE True 
Fidelity to standardize imaging protocols and enhance 
model performance (14).

Unsupervised DL models 

Unsupervised DL models represent a powerful approach 
in CT image classification, particularly in scenarios like 
COVID-19 detection and lung nodule analysis where 
labeled data may be limited or costly to obtain. Unlike 
supervised models, unsupervised learning does not rely 
on annotated datasets. Instead, it identifies patterns and 
structures within the data itself, making it highly valuable 
for exploratory data analysis and feature extraction. In 
the context of COVID-19, unsupervised models such 
as autoencoders and GANs have been employed to 
detect anomalies in CT scans by learning the underlying 
distribution of normal lung images. These models can 
flag deviations from the norm, which may correspond 
to COVID-19-related abnormalities. This capability is 
particularly useful in early screening and in situations 
where labeled COVID-19 datasets are scarce. By focusing 
on anomaly detection, these models provide a flexible and 
scalable approach to identifying COVID-19 in diverse 
populations and imaging conditions. For lung nodule 
detection, unsupervised models can cluster CT images 
based on learned features, potentially distinguishing 
between benign and malignant nodules without prior 
labeling. Techniques like self-organizing maps (SOMs) and 
clustering algorithms can help in identifying patterns in 
nodule characteristics that are not immediately apparent 
through manual analysis. These models can also be used to 
pre-process data, reducing noise and enhancing important 
features, which can then be further analyzed using 
supervised methods. Despite their promise, unsupervised 
models face significant challenges. The interpretability of 
the learned features remains a key issue, as these models 
often produce results that are difficult to translate into 
clinical practice. Moreover, the lack of labels can lead to 
the identification of features that are not clinically relevant. 
However, by combining unsupervised learning with semi-
supervised or supervised approaches, it is possible to refine 
the feature space and improve the clinical utility of these 
models. Future directions for unsupervised learning in CT 
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image classification include the development of hybrid 
models that integrate both supervised and unsupervised 
techniques, improving the balance between accuracy and 
data efficiency. Additionally, the use of unsupervised models 
for data augmentation, anomaly detection, and feature 
extraction can provide valuable insights that enhance 
the performance of supervised models, particularly in 
complex tasks like COVID-19 detection and lung nodule 
classification.

Semi-supervised DL models 

A semi-supervised DL model leverages a combination of 
labeled and unlabeled data for training purposes. In the 
context of CT imaging, this approach allows the model 
to learn from a mix of data with and without predefined 
classifications, enhancing its ability to generalize and make 
accurate predictions. Commonly utilized DL models in this 
category for analyzing CT images include RNN, LSTM, 
gated recurrent unit (GRU), and GAN. These models 
are specifically tailored to handle the complexities of 
medical image analysis, enabling them to effectively extract 
meaningful features and patterns from both labeled and 
unlabeled CT data (13). Their versatility and adaptability 
make them valuable tools in advancing the accuracy and 
efficiency of disease diagnosis and treatment planning in 
CT imaging. Semi-supervised DL models offer a middle 
ground between supervised and unsupervised approaches, 
utilizing both labeled and unlabeled data to enhance the 
training process. This method is particularly valuable in 
medical imaging fields like COVID-19 detection and lung 
nodule analysis, where obtaining large amounts of labeled 
data is often challenging and expensive. Semi-supervised 
models can significantly improve the performance of 
CT image classification by leveraging the vast amount of 
available unlabeled data alongside a smaller set of labeled 
examples. This approach is especially useful during the 
early stages of a pandemic when labeled data might be 
limited due to the novelty of the disease. Techniques 
such as consistency regularization and pseudo-labeling 
allow the model to make use of unlabeled CT scans by 
predicting labels for these scans and incorporating them 
into the training process. This method not only enhances 
the model’s ability to generalize from limited labeled data 
but also accelerates the development of robust diagnostic 
tools for COVID-19. For lung nodule detection, semi-
supervised learning enables the model to learn from a mix 
of labeled CT scans and a large corpus of unlabeled scans, 

which are common in clinical settings. This approach is 
beneficial in improving the detection and classification of 
nodules, particularly in distinguishing between benign and 
malignant cases. Semi-supervised techniques such as graph-
based methods and ladder networks can propagate labels 
from a few labeled examples to a broader set of unlabeled 
data, thereby improving the model’s accuracy in identifying 
clinically significant nodules. This is crucial for early 
diagnosis and treatment planning in lung cancer, where the 
differentiation between benign and malignant nodules can 
significantly impact patient outcomes.

The success of semi-supervised learning in medical 
imaging hinges on effectively balancing the contribution of 
labeled and unlabeled data. One challenge is ensuring that 
the model does not become overconfident in its predictions 
of unlabeled data, which could lead to the propagation of 
errors. However, with carefully designed training protocols, 
such as enforcing consistency across different augmentations 
of the same image or using uncertainty-aware models, these 
risks can be mitigated. The integration of semi-supervised 
models with other DL techniques, such as transfer learning, 
could further enhance their effectiveness. For example, pre-
trained models on large, labeled datasets from other medical 
imaging tasks could be fine-tuned using semi-supervised 
learning on CT scans specific to COVID-19 or lung nodule 
detection the general overview of lung cancer detection-
based CT is shown in Figure 4. Additionally, developing 
models that can efficiently handle the inherent variability 
in CT scan protocols and patient populations will be key to 
making semi-supervised learning a standard tool in clinical 
practice.

Reinforced DL models 

Reinforced DL models, which combine the principles 
of RL with DL, offer a novel approach to medical image 
analysis, particularly in the classification of CT images 
for COVID-19 detection and lung nodule identification. 
These models are designed to optimize decision-making 
processes by learning policies that maximize cumulative 
rewards through interactions with an environment, making 
them well-suited for tasks that involve sequential decision-
making, such as detecting abnormalities in medical images. 
Reinforced DL models can be applied to dynamically 
adjust the analysis of CT images, focusing on ROIs that 
are more likely to contain relevant pathological features. 
For example, a reinforced model can learn to prioritize the 
examination of lung areas most susceptible to COVID-
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19-related changes, such as ground-glass opacities or 
consolidations, by receiving feedback (rewards) based on 
the accuracy of its predictions. This dynamic and adaptive 
approach enables the model to concentrate computational 
resources on critical areas, improving both the efficiency 
and accuracy of COVID-19 diagnosis from CT scans. In 
lung nodule detection, reinforced DL models can similarly 
enhance the detection process by learning to navigate 
through 3D CT scans more effectively. These models can 
be trained to identify and focus on potential nodule regions 
by simulating a radiologist’s decision-making process. 
For instance, the model can be rewarded for correctly 
identifying and classifying nodules as benign or malignant, 
with penalties for false positives and negatives. Over time, 
the reinforced model refines its policy, improving its 
ability to distinguish between various types of nodules and 
reducing the likelihood of misdiagnosis (12).

The application of reinforced learning in these models 
also allows for more nuanced control over the trade-offs 
between sensitivity and specificity, which are crucial in 
medical diagnostics. For example, in COVID-19 detection, 
a reinforced DL model could be fine-tuned to minimize 
the risk of false negatives, ensuring that cases are not 
missed, while in nodule detection, it could be adjusted to 
reduce false positives, thereby minimizing unnecessary 
biopsies or interventions. One of the significant advantages 
of reinforced DL models is their ability to learn from 
both successes and mistakes, continually improving their 
performance as they process more data. However, the 
challenge lies in defining appropriate reward structures 
that align with clinical goals and ensuring that the model’s 
learning process is stable and converges to optimal policies. 
Additionally, these models require substantial computational 
resources and time for training, as they need to simulate 
many interactions with the environment to learn effective 
policies, integrating reinforced DL models with other AI 
techniques, such as supervised and semi-supervised learning, 
could lead to even more powerful diagnostic tools. For 
instance, a hybrid approach could involve using reinforced 
learning to guide the model’s attention to specific regions 
of a CT scan, followed by supervised classification of those 
regions. Additionally, combining reinforced DL models 
with domain knowledge from radiologists could enhance the 
interpretability of the model’s decisions, making them more 
reliable and trustworthy in clinical settings. Reinforced 
DL models hold significant potential for advancing CT 
image classification in COVID-19 detection and lung 
nodule analysis. By learning to optimize decision-making 

processes through interaction with the data, these models 
can improve diagnostic accuracy and efficiency. However, 
their successful application requires careful consideration of 
reward structures, computational resources, and integration 
with other AI methods to maximize their clinical utility.

Early DL models for CT image classification

In the early days of DL for medical imaging, researchers 
explored various neural network architectures and training 
strategies to leverage the power of DL for CT image 
classification (15). These early models laid the foundation 
for the development of more advanced and specialized DL 
models tailored to medical imaging tasks. In this section, 
we will discuss some of the key early DL models that have 
had a high impact on CT image classification and have 
been influential in shaping the field of medical imaging. 
As illustrated in Figure 4 the general overview of lung 
cancer detection based CT. However, CNNs have been a 
cornerstone in DL for image analysis, including CT image 
classification. CNNs are specifically designed to process 
visual data such as images by leveraging convolutional 
layers to extract hierarchical features from raw pixel data (9). 
CNNs have been used for tasks such as tumor detection, 
organ segmentation, and disease classification. Early CNN 
models proposed by Krizhevsky et al. (16), demonstrated 
the power of DL in image classification tasks and laid the 
groundwork for more advanced architectures.

The success of CNNs in CT image classification can be 
attributed to their ability to automatically learn and extract 
hierarchical features from raw pixel data. CNNs consist 
of multiple layers, including convolutional layers, pooling 
layers, and fully connected layers, that work together 
to capture spatial relationships and patterns in images. 
Convolutional layers apply filters to the input image to 
extract local features while pooling layers downsample the 
feature maps to reduce computational complexity. Fully 
connected layers combine the extracted features to make 
classification decisions based on learned representations. 
One of the key strengths of CNNs is their capability to 
learn complex and abstract features directly from the data, 
eliminating the need for manual feature engineering. This 
end-to-end learning approach enables CNNs to capture 
intricate patterns and relationships in CT images, leading 
to improved accuracy and generalization performance. By 
leveraging large-scale annotated datasets, CNNs can be 
trained to recognize subtle differences in image features and 
make accurate predictions, aiding radiologists in diagnosing 
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and interpreting medical images (17). CNNs have been 
applied to a wide range of clinical tasks, including but not 
limited to:
 Tumor detection: CNNs have been used to 

automatically detect and classify tumors in CT scans, 
enabling early diagnosis and treatment planning for 
cancer patients. By learning from labeled examples of 
tumor and non-tumor regions, CNNs can accurately 
localize and segment tumors in CT images, assisting 
radiologists in identifying suspicious lesions.

 Organ segmentation: CNNs have been employed 
for segmenting and delineating anatomical 
structures in CT images, such as the brain, lungs, 
liver, and heart. By training on annotated datasets 
of organ boundaries, CNNs can generate precise 
segmentation masks that facilitate quantitative 
analysis and volumetric measurements of organs for 
clinical assessment.

 Disease classification: CNNs have demonstrated 
high performance in classifying different types of 
diseases and abnormalities in CT images, such as 
pneumonia, fractures, and pulmonary embolism. 
By learning from diverse examples of diseased and 
healthy tissues, CNNs can differentiate between 
different pathologies and provide diagnostic 
support to healthcare providers.

 The landscape of DL architectures for CT image 
classification has expanded to include various 
specialized models: advanced CNNs: VGG, 
ResNet, and DenseNet have further improved 
feature extraction and classification capabilities. 
U-Net: particularly effective for medical image 
segmentation tasks. 3D CNNs: developed to 
capture spatial and temporal information in 
volumetric CT data. Recurrent neural networks 
(RNNs) and long short-term memory (LSTM) 
networks: these architectures excel in analyzing 

sequential CT scans, enabling disease progression 
tracking and treatment response monitoring. 
Generative adversarial networks (GANs): employed 
for data augmentation and synthetic CT image 
generation, addressing data scarcity issues and 
improving model generalization.

The integration of CNNs into CT image classification 
workflows has significantly advanced the field of medical 
imaging, enabling automated and efficient analysis of 
complex and large-scale imaging data. By leveraging the 
capabilities of CNNs to learn from vast amounts of labeled 
CT images, researchers and clinicians can improve the 
accuracy, speed, and consistency of image interpretation, 
ultimately enhancing patient care and outcomes. In this 
review paper, we will delve into the recent advancements 
and applications of CNNs in CT image classification, 
highlighting their impact on the field of medical imaging 
and discussing future directions for research and clinical 
implementation (18). These early DL models, including 
CNNs, AlexNet, VGGNet, GoogLeNet, and ResNet, 
have had a significant impact on the field of CT image 
classification and have paved the way for more advanced and 
specialized DL architectures tailored to medical imaging 
tasks (19). Figure 5 shown an AlexNet model for detecting 
COVID-19 based on CT images proposed by Cortés and 
Sánchez (20). Figure 6 shows the ML-based diagnosis models 
and their evolutional structure Figure 7 shows the VGG19 
architecture for COVID-19 detection proposed by Zouch  
et al. (21) and Figure 8 shows a GAN model proposed by 
Hage Chehade et al. (22). These models have demonstrated 
the power of DL in capturing intricate patterns and features 
in CT images, leading to improved accuracy and efficiency 
in automated image analysis (9).

Hybrid models in CT image classification combine 
CNNs with RNNs or Transformers, offering enhanced 
performance in analyzing medical imaging data. These 
models leverage CNNs’ strength in spatial feature extraction 
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and RNNs’ or Transformers’ ability to capture temporal 
patterns or long-range dependencies. The integration of 
these architectures enables more comprehensive analysis 
of CT scans, improving accuracy in tasks such as tumor 
detection, organ segmentation, and disease classification. 
Hybrid models can effectively capture both spatial and 
temporal information in sequential CT scans, leading to 
more robust and reliable predictions.

Transformers, originally developed for natural language 
processing, have recently made significant strides in CT 
image classification Figure 9 shows a standard transformer 
block. Vision transformers (ViTs) adapt the transformer 
architecture to image analysis by treating images as 
sequences of patches. Figure 10 shows an overview of 
ViTs (left) and an illustration of the Transformer encoder 
(middle), and CNN block (right). The method for 
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processing an image involves splitting it into multiple 
fixed-size patches, which are then handled as sequences 
using an effective Transformer approach derived from 
NLP (23). Key advantages of transformers in CT image 
classification include their ability to capture long-range 
dependencies, scalability to large datasets, and reduced 
inductive bias compared to CNNs. Recent advancements 
include the development of hybrid models combining 
CNNs and transformers, the use of pre-trained models 
for transfer learning, and the creation of more efficient 
transformer architectures. These innovations have led to 
improved performance and generalization in CT image 
classification tasks, pushing the boundaries of medical 
imaging technology and enhancing patient care through 
more accurate and efficient diagnosis.

Comparing transformers and CNNs for image analysis

Table 3 compares the transformer with CNN, the CNN 
model has traditionally shown strong performance in image 
analysis, but ViTs have demonstrated comparable or even 
superior results, particularly when pre-trained or when 
scaled datasets are available (Dosovitskiy et al., 2020) (24). 
This raises the question of how Transformers and CNNs 
differ in their approach to understanding images.
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Table 3 Comparing transformers and CNNs for image analysis

Feature CNNs ViTs

Architecture Convolutional layers, pooling layers, fully 
connected layers

Self-attention mechanism, feed-forward layers

Receptive field Gradually expands with depth Global receptive field from the lowest layer

Feature extraction Layer-by-layer hierarchical extraction Global feature extraction using self-attention

Locality Excellent at capturing local structures Can capture global and local structures 
simultaneously

Weight sharing Convolutional layers share weights No weight sharing; each position computes 
attention independently

Handling long-range dependencies Limited due to local receptive fields Excellent due to global self-attention

Pooling operations Uses pooling to reduce spatial dimensions No explicit pooling; positional encoding is used 
instead

Scalability Scales well with moderate datasets Requires large-scale datasets for optimal 
performance

Training data requirements Performs well with smaller datasets Performs best with large pre-trained models and 
datasets

Computational efficiency More efficient for smaller and moderate-sized 
data

Computationally intensive, especially for large 
models

Parameter efficiency Efficient use of parameters due to weight  
sharing

Requires more parameters due to lack of weight 
sharing

Interpretability Easier to interpret layer outputs Harder to interpret due to complex attention 
mechanisms

Strengths Effective at local pattern recognition, robust  
with limited data

Excels at capturing global context, superior for 
long-range dependencies

Limitations Struggles with capturing global context and  
long-range dependencies

Requires large datasets and computational 
resources, harder to interpret

CNNs, convolutional neural networks; ViTs, vision transformers.

CNNs and Transformers both have unique strengths and 
weaknesses, making them suitable for different aspects of 
image analysis. CNNs excel at local pattern recognition with 
efficient use of parameters and computational resources, 
making them robust for tasks with limited data. On the 
other hand, Transformers, with their global receptive 
field and self-attention mechanisms, excel in capturing 
long-range dependencies and complex global patterns, 
although they require larger datasets and computational 
power. Hybrid models that combine the strengths of 
both architectures are also emerging, providing enhanced 
performance for various image analysis tasks, including CT 
image classification. These hybrid approaches demonstrate 
the potential to harness the benefits of both CNNs and 
Transformers, leading to improved performance in various 
image analysis tasks, including CT image classification, the 
Figure 11 illustrates the taxonomy of typical approaches in 
combining CNNs and Transformers.

FMs

FM in CT image classification leverages pre-trained DL 
models and large-scale datasets to enhance performance 
in medical imaging tasks. These models, which include 
transfer learning approaches and pre-training on extensive 
datasets, serve as a basis for developing more specialized 
and task-specific models. The concept draws inspiration 
from the evolution of language models like the generative 
pre-trained transformer (GPT) series, which have shown 
remarkable advancements in natural language processing. 
From GPT-1’s introduction in June 2018 to the release 
of GPT-4-turbo in November 2023 the history of FM 
is shown in Figure 12. The FMs in these models have 
demonstrated the power of pre-training on large datasets 
followed by fine-tuning for specific tasks. FMs aim to apply 
similar principles, utilizing the knowledge gained from 
vast amounts of medical imaging data to improve accuracy, 
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efficiency, and generalization in various diagnostic tasks. 
This approach has the potential to significantly advance the 
field of medical image analysis, enabling more sophisticated 
and versatile AI applications in healthcare.

FM originally developed for natural language processing 
and computer vision, such as BERT, GPT, CLIP, and ViT, 
have been successfully adapted for medical imaging tasks, 
including CT image classification. These models leverage 
their pre-trained capabilities in language understanding, 
generative tasks, multimodal fusion, and attention 
mechanisms to enhance the performance of DL algorithms 
in medical image analysis. By fine-tuning these models 
on medical imaging datasets, researchers have improved 
various aspects of CT image classification, including 
feature extraction, image-text fusion, report generation, 
and anomaly detection. The adaptation of these FMs 
has significantly advanced the field of medical imaging, 
offering improved accuracy, efficiency, and interpretability 
in diagnostic tasks and clinical decision-making Figure 13 
shows GPT from training to output of CT images.

The spectrum of FMs

Vision FMs
FMs trained on natural images can be adapted for medical 
tasks using specialized algorithms (25). However, the 
lack of high-quality annotations in medical imaging has 
hindered the development of large-scale DL models for 
clinical use (26). While medical professionals can provide 
a few sample cases, extensive hand-labeling is challenging. 
Vision FM, trained on diverse visual data, offer a starting 
point for medical applications. Yet, medical images have 
unique characteristics that differ from natural images, 
requiring tailored approaches to adapt these models 
effectively. Strategies like fine-tuning, adapters, prompting, 
and architectural modifications are crucial for optimal 
performance in medical contexts (26).

The Segmentation Anything Model (SAM) (27), 
despite its success with natural images, shows limitations 
in complex medical tasks. To improve its performance, 
researchers can employ fine-tuning (28), specialized 
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Figure 12 History of foundation models. GPT, generative pre-trained transformer.
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adapters, or effective prompting strategies (27). Combining 
SAM with other algorithms or integrating it into medical 
imaging software could enhance its utility in medical 
applications (29). A single, universal FM approach may not 
achieve top performance across all medical image analysis 
tasks due to the wide variety in anatomical structures, 
textures, and imaging modalities. Researchers are exploring 
efficient methods to adapt vision foundation models to the 
challenges posed by diverse medical data (25-30).

Modality-specific FMs
Medical professionals utilize a variety of imaging techniques 
for diagnosis and treatment, each suited to different 
medical conditions. These include X-rays, CT (29), 
MRI, Ultrasound, and PET. FMs can be developed to 
specialize in specific imaging modalities or groups of related 
modalities. For instance, a radiology-focused FM might 
encompass X-ray, CT, MRI, and ultrasound, while a 3D 
imaging FM could handle volumetric data from CT and 
MRI scans. Alternatively, FMs can be designed for a single 
modality, such as CT imaging. CT-specific models are 
engineered to extract and interpret features unique to CT 
scans. These models excel at analyzing: density variations, 
contrast enhancement, bone and calcification detection, 
lung and airway assessment, vascular imaging, multi-planar 
reconstruction (31).

However, general vision FMs trained on natural 
images provide a broad foundation for medical image 
analysis, modality-specific FMs like those focused on 
CT can leverage the unique attributes of CT imaging. 
This specialization often results in superior accuracy and 

efficiency for CT-specific tasks, such as automated lesion 
detection, organ segmentation, or quantitative analysis of 
tissue characteristics (31).

Organ/task-specific FMs
FMs can be customized for specific medical organs or 
diagnostic tasks, like segmentation (31,32), to address 
the challenges posed by varying organ appearances 
across different medical imaging modalities and the wide 
array of clinical image analysis tasks. While gathering 
sufficient labeled data to train these specialized FMs is 
demanding, the resulting models offer improved accuracy 
and interpretability. A key advantage of these organ/task-
specific FMs is their ability to reduce the amount of labeled 
data needed for new, related tasks. This is because they have 
already learned relevant features during their initial training. 
By focusing on particular organs or tasks, these models are 
optimized for their specific applications, leading to enhanced 
effectiveness and reliability in clinical settings (31). Figure 14 
that demonstrates the significant visual differences between 
various imaging modalities. These differences present a 
substantial challenge in developing a single, comprehensive 
FM that can effectively handle all types of medical images.

General vs. specialized FMs 
In the field of expertise, specialists have deep knowledge in a 
specific area, while generalists have a broader understanding 
across one or multiple fields. In medical image analysis, a 
general AI system is a versatile platform that can perform 
various tasks like classification, detection, segmentation, 
and registration on different types of medical images across 

Figure 13 GPT from training to output of CT images. GPT, generative pre-trained transformer; CT, computed tomography.
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organs and diseases, using a single set of model parameters. 
On the other hand, specialized AI systems are designed for 
particular clinical tasks, such as detecting lung nodules or 
diagnosing liver cancer. These systems usually focus on a 
specific organ and imaging modality, placing them towards 
the more specialized end of the FM spectrum (33).

The computer science community is showing increased 
interest in developing general AI frameworks, driven by 
advancements in large, multimodal generative models 
capable of processing diverse medical data. However, most 
research in academia, medical institutions, and industry still 
concentrates on developing specialized AI systems. This 
focus is due to several reasons: Most current state-of-the-
art medical image analysis systems use a single imaging 
modality and are trained for a specific task. AI primarily 
serves as an assistant to medical professionals who need 
targeted support aligned with their expertise. Specialized 
systems often perform better and more accurately on specific 
tasks. General AI systems typically require significantly 
more computational resources and may lack the necessary 
accuracy for specific medical tasks (34). Both specialized 

and general AI systems have their own advantages and are 
suitable for different applications. Therefore, a thorough 
exploration of the entire FM spectrum is recommended to 
find the optimal balance between development efforts and 
practical effectiveness in medical image analysis.

Application of FMs 

FMs in CT image analysis offer numerous applications 
and benefits, addressing key challenges in medical 
imaging. They excel in handling imbalanced datasets and 
improving rare disease detection through few-shot learning 
and data augmentation techniques. FMs enhance model 
interpretability and transferability, crucial for clinical trust 
and generalization across diverse medical settings, Figure 15  
shows various applications of FMs. They also support 
privacy-preserving methods, enabling knowledge sharing 
without compromising patient data security. The integration 
of FMs with large language models opens up possibilities 
for advanced vision-language applications in healthcare, 
such as automated report generation and improved decision 
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Figure 14 It illustrates that various image modalities exhibit substantial image-level differences, posing challenges during the training of a 
cohesive foundational model. Each modality, influenced by unique imaging characteristics, yields images with notable variations in organ 
appearance and associated structures, thereby influencing the choice of modality based on the target organ pathology. By leveraging fine-
grained models to understand organ appearance and pathology across modalities, essential clinical techniques and tools, including reliable 
CADs and surgical planning, can be enhanced. MRI, magnetic resonance imaging; PET, positron emission tomography; CT, computed 
tomography; CADs, computer-aided diagnosis.
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support systems. Specific applications include nodule 
detection and classification, organ and tissue segmentation, 
lesion characterization, disease progression tracking, and 
radiomics feature extraction. These capabilities lead to 
more accurate diagnoses, personalized treatment plans, and 
improved patient outcomes. Additionally, FMs facilitate 
multimodal data integration, combining CT images with 
other clinical data for comprehensive patient assessments. 
Overall, FMs significantly advance medical imaging 
analysis, offering the potential for more efficient, accurate, 
and personalized healthcare solutions.

Challenges and future directions FMs

FM-based CT image classification faces several challenges 
despite its significant potential. The primary issues include 
the need for substantial computational resources, which 
can limit accessibility and raise environmental concerns. 
Data scarcity and quality remain critical, as high-quality 
annotated medical imaging datasets are essential for 
effective training. Bias and fairness are ongoing concerns, 
as these models may inadvertently perpetuate biases present 
in their training data. Interpretability is another major 
challenge, as the complexity of these models often makes 
it difficult to understand their decision-making processes, 
which is crucial in medical applications. Additionally, the 

field grapples with issues related to privacy preservation, 
especially when dealing with sensitive medical data. Future 
directions should focus on developing more efficient 
training methods, improving data collection and annotation 
processes, implementing robust bias detection and 
mitigation strategies, enhancing model interpretability, and 
strengthening privacy-preserving techniques. Addressing 
these challenges will be crucial for the widespread adoption 
and ethical use of FM in CT image classification and 
broader medical imaging applications.

Benchmark datasets and their impact in CT 
image analysis

The automation of lung abnormality detection and 
classification, including both cancer nodules and COVID-
19-related findings, heavily relies on the availability of 
comprehensive datasets. These datasets are fundamental to 
achieving reliable performance results using computational 
techniques, serving as the foundation for developing and 
validating algorithms. Publicly accessible datasets for 
the detection, identification, and classification of lung 
abnormalities have become invaluable resources in the 
field. It is important to distinguish between the tasks 
involved: lung cancer detection focuses on differentiating 
between nodules and non-nodules within the lungs, while 
classification involves distinguishing between benign 
and malignant nodules. Similarly, COVID-19 detection 
aims to identify characteristic patterns associated with 
the viral infection. To provide a clear overview of the 
available resources, Table 3 presents a comprehensive 
summary of lung imaging datasets, including both cancer 
and COVID-19-related collections. This table includes 
crucial information such as the dataset name, release date, 
number of samples, dataset size in gigabytes, total image 
count, imaging modality, image dimensions, file format, and 
the availability of ground truth annotations. The datasets 
are arranged chronologically based on their release dates, 
offering insights into the evolution of data resources in this 
field.

The emergence of the COVID-19 pandemic has led 
to the rapid development and release of specific datasets 
focused on CT and X-ray images of COVID-19 patients (5). 
These datasets have become crucial for the development 
of AI-driven diagnostic tools and for understanding 
the radiological manifestations of the disease. Notable 
COVID-19 datasets include the COVID-CT Dataset, 
which contains CT scans from COVID-19 patients and 
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Figure 15 FMs trained on multimodality datasets will lead to 
comprehensive clinical solutions. AI, artificial intelligence; FMs, 
foundational models.
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normal controls, and the COVIDx CT Dataset, which 
offers a large-scale dataset of CT images for COVID-19 
detection. The COVID-19 Image Data Collection, while 
primarily focused on X-rays, also includes some CT images 
and has been widely used in research. These datasets have 
unique characteristics compared to lung cancer datasets, 
such as the rapidity of their collection and release, the 
evolving nature of the disease understanding reflected in 
the annotations, and the global collaborative efforts in their 
creation. The integration of COVID-19 datasets into lung 
imaging research has not only advanced our ability to detect 
and manage the disease but has also pushed the boundaries 
of rapid dataset creation and AI model development in 
response to global health crises. Understanding these trends 
across both cancer and COVID-19 datasets is crucial for 
researchers aiming to benchmark their algorithms against 
established standards or to identify gaps in current datasets 
that might inspire the creation of new, more comprehensive 
resources. The rapid development and utilization of 
COVID-19 datasets alongside established cancer imaging 
datasets demonstrate the adaptability and responsiveness 
of the medical imaging research community to emerging 
health challenges.

Importance of benchmark datasets

Benchmark datasets serve as critical reference points for 
evaluating the performance of various algorithms and 
models in CT image analysis. These curated collections 
of images, accompanied by expert-validated ground truth 
annotations, provide a standardized foundation for assessing 
the efficacy of computational methods across a range of 
tasks. In the realm of CT imaging, these tasks encompass 
critical areas such as tumor detection, organ segmentation, 
disease classification, and more recently, COVID-19 
identification. By offering a common set of images and 
annotations, benchmark datasets enable researchers and 
developers to conduct fair and meaningful comparisons of 
their methods against existing state-of-the-art techniques. 
This standardization is particularly crucial in the medical 
imaging field, where the stakes of accuracy and reliability 
are exceptionally high. Furthermore, benchmark datasets 
play a vital role in driving innovation by highlighting areas 
where current methods fall short, thereby guiding future 
research directions and fostering healthy competition 
within the scientific community.

The significance of benchmark datasets extends 
beyond mere performance comparison. They facilitate 

the development and adoption of standardized evaluation 
metrics and protocols, ensuring objective and consistent 
assessments of algorithm performance across different 
studies and institutions. This standardization is essential 
for building trust in AI-driven medical imaging solutions 
and for translating research findings into clinical 
practice. Moreover, benchmark datasets contribute to 
the reproducibility of research results, a cornerstone of 
scientific progress. They allow other researchers to verify 
claims, build upon existing work, and adapt methods to new 
contexts. In the rapidly evolving field of CT image analysis, 
where new techniques and models are constantly emerging, 
benchmark datasets provide a stable reference point for 
measuring progress over time. They also play a crucial role 
in addressing challenges such as data scarcity and bias in 
medical imaging, offering researchers access to diverse, 
high-quality data that might otherwise be difficult to obtain 
due to privacy concerns or resource limitations. As the field 
continues to advance, the development and maintenance 
of comprehensive, up-to-date benchmark datasets remain 
paramount in pushing the boundaries of what is possible 
in CT image analysis and, ultimately, in improving patient 
care through more accurate and efficient diagnostic tools.

Impact of benchmark datasets

Benchmark datasets have profoundly influenced the field 
of CT image analysis, serving as catalysts for innovation, 
collaboration, and scientific progress. These standardized 
data collections have significantly advanced algorithm 
development by providing researchers with high-quality, 
annotated data for training and testing, enabling the 
creation of more accurate and robust models. They 
facilitate comparative studies, allowing researchers to 
evaluate different techniques on a level playing field, 
leading to valuable insights into best practices and areas for 
improvement. Benchmark datasets foster collaboration and 
reproducibility in the scientific community by offering a 
common reference point for evaluating and sharing results, 
promoting transparency, and enabling researchers to 
build upon existing work. Perhaps most importantly, these 
datasets drive innovation and breakthroughs by challenging 
researchers to push the boundaries of what is possible in 
CT image analysis. By setting high-performance standards 
on benchmark tasks, they have inspired the development 
of novel algorithms, architectures, and techniques that 
have significantly advanced the state-of-the-art in medical 
imaging. This continuous cycle of improvement, facilitated 
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by benchmark datasets, has led to tangible advancements 
in diagnostic accuracy, efficiency, and ultimately, patient 
care in the field of radiology and medical imaging. Table 4 
displays a variety of public datasets containing a substantial 
volume of lung CT scans. 

Examples of benchmark datasets in CT image analysis

Several benchmark datasets have been established for CT 
image analysis, each focusing on specific clinical tasks and 
challenges. Some notable examples include:

(I) The Cancer Imaging Archive (TCIA)-Lung 
CT Segmentation Challenge dataset. Link: 
https://wiki.cancerimagingarchive.net/display/
Public/Lung+CT+Segmentation+Challenge; 
description: provides CT images of the lungs with 
manual segmentations for lung segmentation 
tasks.

(II) Medical Decathlon Dataset-Brain Tumor 
Segmentation. Link: http://medicaldecathlon.com/; 
description: contains CT images of brain tumors 
for tumor segmentation research.

(III) Radiological Society of North America (RSNA) 
Pneumonia Detection Challenge Dataset. Link: 
https://www.kaggle.com/c/rsna-pneumonia-
detection-challenge/data; description: includes 
chest CT images for pneumonia detection tasks.

(IV) The Cancer Genome Atlas (TCGA) - Pancreatic 
Cancer Dataset. Link: https://www.cancer.gov/
about-nci/organization/ccg/research/structural-
genomics/tcga; description: provides CT images 
of pancreatic cancer for research and analysis.

(V) The National Institutes of Health (NIH) Chest 
X-ray Dataset. Link: https://nihcc.app.box.
com/v/ChestXray-NIHCC; description: large 
collection of chest radiographs, including CT 
images, for chest pathology analysis.

(VI) The Medical  Segmentation Decathlon - 
Liver Tumor Segmentation. Link: http://
medicaldecathlon.com/; description: dataset for 
liver tumor segmentation tasks in CT images.

(VII) The Multimodal Brain Tumor Segmentation 
Challenge (BRATS) Dataset. Link: https://
www.med.upenn.edu/sbia/brats2019.html; 

Table 4 A variety of public datasets containing a substantial volume of lung CT scans

Database Year 
Sample 
number

Patients 
number 

Modality 
Data  

access
Collection 

status 
Annotation 

VIA/IELCAP (35) 2003 N/A 50 CT Available Complete Nodule position and type 

NELSON (36) 2003 15,822 N/A CT N/A Complete N/A

QIN LUNG CT (37) 2015 47 47 CT Available Complete N/A

LungCT-Diagnosis (38) 2015 61 61 CT Available complete Image position 

ACRIN-NSCLC-FDG-PET (39) 2013 242 3,377 PT, CT, MR, CR, 
DX, SC, NM

Available Complete Clinical data

LIDC-IDRI (40) 2011 N/A 1,018 CT, CR, DX Available Complete Nodule characteristics, type, 
and position

NSCLC-Radiomics (41) 2014 422 1,265 CT, RTSTRUCT, 
SEG

Available Complete Participant characteristic 
and diagnostics information

Mosmed COVID-19 CT Scans 
(42)

2020 1,000 – CT Available Complete N/A

COVID-19 CT Lung and 
Infection Segmentation Dataset 
COVID-19-CT-CXR (43)

2020 1,327 263 CT Available Complete N/A

COVID-19 CT segmentation 
Dataset (44)

2020 100 40 CT – – –

CT, computed tomography; N/A, not available; PT, pre-training; MR, medical records; CR, computed radiography; DX, digital radiography; 
SC, secondary capture; NM, nuclear medicine; RTSTRUCT, radiotherapy structure set; SEG, segmentation; COVID-19, coronavirus 
disease 2019.

https://wiki.cancerimagingarchive.net/display/Public/Lung+CT+Segmentation+Challenge
https://wiki.cancerimagingarchive.net/display/Public/Lung+CT+Segmentation+Challenge
http://medicaldecathlon.com/
https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data
https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://nihcc.app.box.com/v/ChestXray-NIHCC
https://nihcc.app.box.com/v/ChestXray-NIHCC
http://medicaldecathlon.com/
http://medicaldecathlon.com/
https://www.med.upenn.edu/sbia/brats2019.html
https://www.med.upenn.edu/sbia/brats2019.html
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description: contains CT images of brain tumors 
for segmentation and classification tasks.

(VIII) The RSNA Intracranial Hemorrhage Detection 
Dataset. Link: https://www.kaggle.com/c/
rsna-intracranial-hemorrhage-detection/data; 
description: provides CT images for detecting 
intracranial hemorrhage in the brain.

(IX) The NIH DeepLesion Dataset. Link: https://
nihcc.app.box.com/v/DeepLesion; description: 
large-scale dataset of CT images with annotations 
for lesion detection and classification.

(X) The Ischemic Stroke Lesion Segmentation 
(ISLES) Challenge Dataset. Link: http://www.
isles-challenge.org/; description: dataset for 
ischemic stroke lesion segmentation in CT 
images.

(XI) The CQ500 Dataset. Link: https://headctstudy.
qure.ai/; description: contains head CT images 
for brain pathology detection and classification.

(XII) T h e  J a p a n e s e  S o c i e t y  o f  R a d i o l o g i c a l 
Technology (JSRT) Database. Link: https://
www.jsrt.or.jp/jsrt-db/eng.php; description: 
dataset of chest CT images for lung nodule 
detection and classification.

(XIII) The Liver Tumor Segmentation (LiTS) 
Challenge Dataset. Link: https://competitions.
codalab.org/competitions/17094; description: 
provides CT images of  l iver tumors for 
segmentation and analysis.

(XIV) The Musculoskeletal Radiographs (MURA) 
Dataset. Link: https://stanfordmlgroup.github.
io/competitions/mura/; description: includes CT 
images for musculoskeletal pathology detection 
and analysis.

(XV) The International Skin Imaging Collaboration 
(ISIC) Melanoma Dataset. Link: https://www.
isic-archive.com/; description: contains CT 
images for melanoma detection and classification 
tasks.

(XVI) The ChestX-ray8 Dataset. Link: https://
stanfordmlgroup.github.io/competitions/
chexpert/; description: large-scale dataset of 
chest radiographs, including CT images, for 
chest pathology analysis.

(XVII) The  CheXper t  Data se t .  L ink :  h t tp s : / /
stanfordmlgroup.github.io/competitions/
chexpert/ ;  descr ipt ion:  dataset  of  chest 
radiographs, including CT images, for disease 

classification and detection.
(XVIII) The MIMIC-CXR Dataset. Link: https://

physionet.org/content/mimic-cxr-jpg/2.0.0/; 
description: contains chest radiographs, 
including CT images, for disease detection and 
analysis.

(XIX) The NIH DeepCT Dataset. Link: https://
deepct.nih.gov/; description: large-scale dataset 
of CT images for various clinical tasks in 
medical imaging.

(XX) The SIIM-ACR Pneumothorax Segmentation 
Dataset. Link: https://www.kaggle.com/c/siim-acr-
pneumothorax-segmentation/data; description: 
provides  CT images  for  pneumothorax 
segmentation tasks in medical imaging.

The benchmark datasets play a critical role in advancing 
research and innovation in CT image analysis by providing 
standardized data for algorithm development, evaluation, 
and comparison. Researchers can accelerate progress in CT 
image analysis and contribute to the development of more 
effective and reliable algorithms for clinical practice.

Literature review 

The use of imaging modalities in COVID-19 diagnosis

Medical imaging, particularly CT scans, plays a crucial 
role in diagnosing COVID-19, complementing RT-PCR 
testing. COVID-19 (19) patients exhibit typical imaging 
characteristics, including ground-glass opacities (GGO), 
consolidation (45), bilateral patchy shadowing, and crazy-
paving patterns (46). The American College of Radiology 
(ACR) and the Radiological Society of North America 
(RSNA) (47) have approved a classification system for 
identifying COVID-19 and pneumonia on CT scans. CT 
imaging is valuable for screening asymptomatic or atypical 
patients, as it can detect typical radiographic findings 
even in cases with negative RT-PCR results. COVID-19 
pneumonia exhibits  dist inct radiological  features 
compared to other types of pneumonia, including bilateral 
involvement, peripheral distribution, and fine reticular 
opacity. The progression of COVID-19 pneumonia is 
characterized by rapid infiltration in lung lobes, with 
late-stage patients showing spider webs and crazy-paving 
patterns on CT scans. Table 5 shows the classification system 
for identifying COVID-19 and pneumonia. These imaging 
modalities provide valuable insights into the disease’s 
characteristic features and aid in differentiating COVID-19 

https://www.kaggle.com/c/rsna-intracranial-hemorrhage-detection/data
https://www.kaggle.com/c/rsna-intracranial-hemorrhage-detection/data
https://nihcc.app.box.com/v/DeepLesion
https://nihcc.app.box.com/v/DeepLesion
http://www.isles-challenge.org/
http://www.isles-challenge.org/
https://headctstudy.qure.ai/
https://headctstudy.qure.ai/
https://www.jsrt.or.jp/jsrt-db/eng.php
https://www.jsrt.or.jp/jsrt-db/eng.php
https://competitions.codalab.org/competitions/17094
https://competitions.codalab.org/competitions/17094
https://stanfordmlgroup.github.io/competitions/mura/
https://stanfordmlgroup.github.io/competitions/mura/
https://www.isic-archive.com/
https://www.isic-archive.com/
https://stanfordmlgroup.github.io/competitions/chexpert/
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https://stanfordmlgroup.github.io/competitions/chexpert/
https://stanfordmlgroup.github.io/competitions/chexpert/
https://stanfordmlgroup.github.io/competitions/chexpert/
https://physionet.org/content/mimic-cxr-jpg/2.0.0/
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https://deepct.nih.gov/
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https://www.kaggle.com/c/siim-acr-pneumothorax-segmentation/data
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from other respiratory conditions shown in Figure 16.

AI-based image analysis for COVID-19

Due to the rapid spread of the COVID-19 pandemic, 
there was a strain on medical resources in various regions. 
The utilization of AI for supporting the management 
of COVID-19 has become increasingly crucial. Manual 
diagnosis through CT scanning involves significant manual 
labor and time consumption (11). To alleviate the workload 
on radiologists, CAD tools have been developed based on 
DL or ML technologies Figure 17 shows the main tasks of 
DL applied to CT images for COVID-19 detection. These 
tools have demonstrated the potential to enhance diagnostic 
efficiency and alleviate the pressure on radiologists (19).

Recent studies have highlighted that COVID-19 
typically manifests as GGO or lesions in CT images. 
Therefore, the identification of abnormal areas like GGO 
or lesions in CT images plays a vital role in the diagnosis 
of COVID-19 by radiologists. The automated detection 
of GGO or nodules in CT images can assist in reducing 
human effort. For instance, Chen et al. (48) utilized U-Net++ 
to delineate abnormal lung areas in CT images. The model 
effectively segments areas with lesions in CT image slices 
and generates the bounding box of the segmented lesion. 
In their study, 2D CT image slices from 106 patients were 
utilized for training and internal validation. The model 
exhibited high accuracy in diagnosing patients, with a per-
patient sensitivity of 100%, specificity of 93.55%, and 
accuracy of 95.24%. Additionally, a per-image sensitivity 

of 94.34%, specificity of 99.16%, and accuracy of 98.85% 
were achieved. Notably, the prospective validation set 
further confirmed the model’s performance, demonstrating 
comparable results to those of expert radiologists and 
significantly reducing radiologists’ reading time by 65%.

Furthermore, in addition to detecting infectious areas, 
there is a growing interest in developing AI models 
capable of directly diagnosing COVID-19. Fang et al. (49) 
employed a radiomics analysis method for COVID-19 
diagnosis, where radiomic features were extracted from 
manually delineated ROI. An unsupervised consensus 
clustering approach was used to select significant features 
associated with COVID-19, followed by the application of 
an SVM classifier for COVID-19 classification. The study 
achieved an AUC of 0.826 in the testing set. Wang et al. (50)  
designed a DL model to differentiate COVID-19 from 
typical viral pneumonia. The model, trained on annotated 
infectious areas as ROIs, leveraged a modified ResNet34 
for feature extraction and a combination of decision tree 
and AdaBoost for classification. The model demonstrated 
an accuracy of 73.1% at the ROI-level in 99 patients. 
Additionally, Xu et al. (51) proposed a DL model for 
automatic infectious area detection in CT images, followed 
by the use of 3DResNet to identify COVID-19 presence. 
The model achieved an accuracy of 86.7% in the testing set.

Moreover, Jin et al. (52) developed an AI system for 
COVID-19 lesion segmentation and classification, involving 
lung region extraction, lesion segmentation, and lesion 
classification using a CNN-based classifier. The system, 
trained on a large dataset from multiple hospitals, exhibited 

Table 5 Classification system for identifying COVID-19 and pneumonia

COVID-19 pneumonia  
imaging classification

CT findings Suggested reporting language

Typical appearance Reveals peripheral, bilateral, multilobar ground-glass 
opacities, possibly with consolidation or “crazy-
paving” pattern

CT findings are suggestive of COVID-19 pneumonia, 
but differential diagnoses include other viral 
pneumonia, organizing pneumonia, toxicity, and 
connective tissue diseases

Indeterminate appearance Absence of typical COVID-19 features, with possible 
reverse halo sign or other organizing pneumonia 
characteristics

COVID-19 pneumonia may exhibit these features, 
but they are non-specific and can occur in various 
infectious and non-infectious conditions

Atypical appearance Atypical CT findings for COVID-19 include 
unilateral, non-rounded, or non-peripheral ground-
glass opacities, few ground-glass opacities, lobar 
consolidations, centrilobular nodules, and cavitation

Atypical features suggest alternative diagnoses to 
COVID-19 pneumonia

Negative findings No CT features indicative of pneumonia are present No CT features indicative of pneumonia are present

COVID-19, coronavirus disease 2019; CT, computed tomography.
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high sensitivity and specificity in the testing set, meeting 
clinical application requirements. Additionally, Song  
et al. (53) focused on classifying the entire lung area, 
utilizing a details relation extraction neural network (DRE-
Net) for feature extraction and patient-level diagnoses. The 
model achieved an AUC of 0.95 and a sensitivity of 0.96 in 
the testing set.

Various researchers have explored different approaches 
to detect COVID-19 using CT-scan images as presented 
in Table 5. Kaur et al. (54) combined classifiers with a pre-
trained ResNet50 model, achieving 98.35% accuracy and 

98.02% precision. Mishra et al. (55) used decision fusion 
to combine predictions from multiple DL models, with 
DenseNet121 performing best at 88.34% accuracy and an 
F1-score of 0.86. Li et al. (56) introduced COVNet, a novel 
convolutional model, attaining 90% sensitivity and 96% 
specificity. Wang et al. (57) modified InceptionNet using 
transfer learning, reporting 89.5% accuracy and 87.0% 
sensitivity. Gaur et al. (58) employed Extreme Learning 
Trees with DenseNet121 and transfer learning, achieving 
85.5% accuracy and an F1-score of 0.85. Soares et al. (59) 
developed a DL model with 88.6% accuracy and 89.7% 

Figure 16 CT images sourced illustrating CT characteristics associated with COVID-19, including ground glass opacities (bottom) and 
ground glass halo (top). CT, computed tomography; COVID-19, coronavirus disease 2019.

Figure 17 The main tasks of DL applied to CT images for COVID-19 detection. COVID-19, coronavirus disease 2019; DL, deep learning; 
CT, computed tomography.
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precision. Goel et al. (60) proposed an optimized GAN, 
attaining 97.78% specificity and an F1-score of 0.98. Lu 
et al. (61) introduced CGENet, a graph theory-based 
approach, with 97.78% accuracy. Basu et al. (62) applied 
feature selection techniques, reporting 97.78% accuracy and 
92.88% precision. These studies demonstrate the variety of 
approaches and DL architectures being explored to improve 
COVID-19 screening using CT-scan data, with different 
models excelling in various performance metrics.

Wu et al. (63) developed a DL-based coronavirus 
screening system that uses multi-view fusion. The system 
employs ResNet50, a variant of CNN, and was trained 
on 495 images from two Chinese hospitals, including 
368 COVID-19 cases and 127 other pneumonia cases. 
The dataset was split into 80% training, 10% testing, 
and 10% validation sets, with images resized to 256×256. 
During testing, the system achieved 76% accuracy, 81.1% 
sensitivity, 61.5% specificity, and an AUC of 81.9%. The 
multi-view fusion model outperformed single-view models. 
In a separate study, Li et al. (56) introduced COVNet, an 
automated system for diagnosing coronavirus from CT 
images using ResNet50. Their dataset consisted of 4,536 
chest CT samples, including 1,296 COVID-19, 1,735 
community-acquired pneumonia, and 1,325 non-pneumonia 
cases. The dataset was split 90% for training and 10% 
for testing. COVNet demonstrated 90% sensitivity, 96% 
specificity, and a 96% AUC for identifying COVID-19 cases.

Yousefzadeh et al. (64) developed ai-corona, a DL 
framework for COVID-19 diagnosis using CT images. The 
system employs multiple CNN variants like DenseNet, 
ResNet, Xception, and EfficientNetB0. Using a dataset 
of 2,124 CT slices (1,418 non-COVID-19 and 706 
COVID-19), split 80-20 for training and validation, the 
system achieved 96.4% accuracy, 92.4% sensitivity, 98.3% 
specificity, 95.3% F1-score, and 98.9% AUC. Jin et al. (52) 
created an AI-based coronavirus diagnostic system using 
ResNet152, a CNN variant with 152 layers. Their dataset 
included 1,881 cases (496 COVID-19 positive, 1,385 
negative) from Chinese hospitals and public databases. The 
system demonstrated 94.98% accuracy, 94.06% sensitivity, 
95.47% specificity, 91.53% precision, 92.78% F1-score, 
and 97.91% AUC. Xu et al. (51) designed a system to 
differentiate between healthy individuals, COVID-19 
pneumonia, and influenza-A viral pneumonia cases using 
Resnet18. Their dataset comprised 618 CT images from 
Chinese hospitals (219 COVID-19, 224 influenza-A, 175 
healthy). Using 85.4% for training and the rest for testing, 
the system achieved 86.7% accuracy, 81.5% sensitivity, 

80.8% precision, and 81.1% F1-score.
Wang et al. (65) developed a COVID-19 medical 

screening system using DL techniques. The system utilized 
various pre-trained CNN models, including DPN-92, 
Inception-v3, ResNet-50, and Attention ResNet-50 with 
3D U-Net++. Their dataset, sourced from five Chinese 
hospitals, contained 1,391 samples (850 COVID-19 
cases, 541 negative cases). The dataset was randomly split 
for training and testing. The 3D U-Net++-ResNet-50 
model performed best, achieving 97.4% sensitivity, 92.2% 
specificity, and 99.1% AUC. Javaheri et al. (66) introduced 
CovidCTNet, a DL approach for detecting coronavirus 
infection in CT images. The system used BCDU-Net 
architecture, a U-Net derivative, to distinguish COVID-19 
from community-acquired pneumonia (CAP) and other 
lung conditions. Their extensive dataset comprised 89,145 
CT images (32,230 COVID-19, 25,699 CAP, and 31,216 
healthy or other disorders). Using a 90-10 split for training 
and testing, the system achieved 91.66% accuracy, 87.5% 
sensitivity, 94% specificity, and 95% AUC, demonstrating 
its effectiveness in COVID-19 detection.

Ardakani et al. (67) conducted a study on COVID-19 
detection using various CNN techniques in CT images. 
They evaluated ten popular CNN variants, including 
AlexNet, VGG-16, VGG-19, SqueezeNet, GoogleNet, 
MobileNet-V2, ResNet-18, ResNet-50, ResNet-101, and 
Xception. Their dataset consisted of 1,020 CT samples 
from both COVID-19 and non-COVID-19 cases, with 
an 80-20 split for training and validation. ResNet-101 
and Xception emerged as top performers. ResNet-101 
achieved 99.51% accuracy, 100% sensitivity, 99.4% AUC, 
and 99.02% specificity. Xception demonstrated 99.02% 
accuracy, 98.04% sensitivity, 87.3% AUC, and 100% 
specificity. Chen et al. (48) introduced a DL approach using 
the pre-trained U-Net++ model for COVID-19 detection 
in high-resolution CT images. U-Net++ was initially used 
to extract valid regions within the CT images. Their dataset 
included 46,096 images from a hospital (51 COVID-19 
cases, 55 other diseases). After filtering, 35,355 images were 
selected and split into training and testing sets. The system 
achieved 94.34% sensitivity, 99.16% specificity, 98.85% 
accuracy, 88.37% precision, and 99.61% negative predictive 
value (NPV).

Cifci et al. (68) developed an early coronavirus detection 
method using deep transfer learning with AlexNet and 
Inception-V4 models. Using a dataset of 5,800 CT images 
(80% training, 20% testing), AlexNet outperformed 
Inception-V4 with 94.74% accuracy, 87.37% sensitivity, 
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and 87.45% specificity. Elghamrawy and Hassanien (69) 
combined CNN with the Whale Optimization Algorithm 
(WOA) for COVID-19 diagnosis, achieving 96.40% 
accuracy, sensitivity, and precision. He et al. (70) introduced 
CRNet for COVID-19 detection in CT images, attaining 
86% accuracy and 94% AUC. Wang et al. (50) presented 
modified-Inception for COVID-19 diagnosis, achieving 
79.3% accuracy and 83% sensitivity. Liu et al. (71) designed 
an automated system using modified DenseNet-264, 
reaching 94.3% accuracy and 98.6% AUC. Song et al. (53) 
introduced DeepPneumonia for COVID-19 diagnosis, 
achieving 94% accuracy and 99% AUC. Zheng et al. (72)  
proposed DeCoVNet,  a  3D DCNN using U-Net 
architecture, achieving 90.1% accuracy with 630 CT 
samples. Hasan et al. (73) developed a hybrid system using 
Q-deformed entropy and DL features, achieving 99.68% 
accuracy in differentiating COVID-19 from pneumonia 
and healthy cases. Amyar et al. (74) used a DL method 
for COVID-19 diagnosis, achieving 86% accuracy with a 
dataset of 1,044 cases.

Table 6 provides a comprehensive overview of the DL-
based COVID-19 diagnosis systems utilizing CT samples 
with pre-trained models and deep transfer learning. The 
table outlines key factors including data sources, image 
quantities and classes, data partitioning methods, diagnostic 
techniques employed, and the performance metrics 
achieved by these systems. In the analysis of the results, 
it is evident that various DL models and techniques have 
been explored for COVID-19 screening using CT imaging. 
The high accuracies and specificities achieved by these 
models indicate their potential for accurate and reliable 
diagnosis of COVID-19 (11). The utilization of transfer 
learning, decision fusion, and feature selection techniques 
has contributed to the performance improvements of 
the models. However, further studies and validations are 
necessary to assess the generalizability and scalability of 
these models across diverse patient populations and imaging 
conditions. Additionally, the integration of these models 
into clinical practice and their performance in real-world 
scenarios warrant further investigation to ensure their 
efficacy and impact on patient care.

In conclusion, the application of AI in CT image analysis 
has shown promising results in the rapid and accurate 
diagnosis of COVID-19. By leveraging AI technologies, 
clinicians can efficiently diagnose COVID-19, predict 
disease severity, and tailor treatment strategies (11), 
ultimately improving patient outcomes. Additionally, the 
integration of AI with CT imaging offers a cost-effective 

and efficient approach to diagnosing COVID-19 while 
ensuring the safety of healthcare professionals and patients. 
To perform COVID-19 detection various methods have 
been proposed recently. However, not all the methods 
are reliable and efficient enough to deploy in real-time 
applications. Some of the deep methods have resulted 
in promising performances in terms of accuracy, MCC, 
ROC, sensitivity, and so on. The performances that are 
high amongst the DL methods are ensemble CNN and 
DL-based segmentation algorithms. The most popular 
CNN methods resulting in higher performance include a 
combination of two or more conventional CNN models. 
We can conclude that ensemble methods provide better 
results as they combine the advantages of two or more 
networks to learn input features in a better way.

Structure of a CAD system

Over the past decades, numerous studies have been 
conducted to enhance the efficiency of lung cancer 
diagnosis using CAD systems. As shown in Figure 18, the 
complete workflow of a CAD system utilizes thin cross-
section images to supplement radiologists in identifying 
pulmonary nodules (110). These systems generally include 
three main components: preprocessing, nodule detection 
(encompassing candidate nodule detection and false positive 
reduction), and nodule classification. Preprocessing is a 
crucial initial step that aims to improve image quality by 
reducing unwanted distortions or enhancing necessary 
features for further processing, which is vital for achieving 
higher accuracy in models. For instance, applying contrast 
limited adaptive histogram equalization (CLAHE) to 
CT images enhances visual characteristics, facilitating 
better model interpretation, as shown in Figure 19 below. 
Removing distracting elements like chest tissues and 
artifacts, and enhancing relevant information, particularly 
within the lung volume (ROI), can prevent 5–17% of 
nodule detection misses. The performance of CAD systems 
varies significantly due to differences in CT inputs, nodule 
characteristics, and particularly the diversity of algorithms 
used. Most studies focus on improving both sensitivity and 
specificity by reducing false positives and enhancing nodule 
classification using the same datasets (17), as illustrated 
in Figure 20. Common segmentation methods based on 
Hounsfield unit (HU) contrast between the lung and 
surrounding tissue are categorized into rule-based and data-
based approaches, combining techniques like thresholding, 
component analysis, region growing, morphological 



Quantitative Imaging in Medicine and Surgery, Vol 15, No 1 January 2025 987

© AME Publishing Company.   Quant Imaging Med Surg 2025;15(1):962-1011 | https://dx.doi.org/10.21037/qims-24-1400

Table 6 Analysis of COVID-19 using CT images

Author Year Method Performance 

Chen et al. (48) 2020 U-Net++ ACC =0.95

Fang et al. (49) 2020 Randiomic feature, consensus clustering AUC =0.826

Wang et al. (50) 2020 ResNet34, decision tree AUC =0.78

Xu et al. (51) 2020 3D-CNN, 3DResNet ACC =0.86

Alaiad et al. (75) 2023 DL ACC =0.995

Song et al. (53) 2021 OpenCV, DRE-Net AUC =0.95

Ullah et al. (76) 2023 CNN ACC =99.8%

Zheng et al. (72) 2020 U-Net, 3DResNet AUC =0.98

Silva et al. (77) 2020 DL ACC =0.8768

Shi et al. (78) 2020 VBNet, Hand-crafted feature, random forest ACC =0.88

Wang et al. (57) 2020 FPN, DenseNet AUC =0.87, AUC =0.88

Shi et al. (79) 2020 V-Net, LASSO, logistic regression AUC =0.89

Kaur et al. (54) 2022 Classifier fusion with ResNet50 ACC =98.35%; PRC =98.02%

Mishra et al. (55) 2020 Decision fusion with DenseNet121 ACC =88.34%; F1-Score =0.86

Li et al. (56) 2020 COVNet SEN =90.0%; SPE =96.0%

Afif et al. (80) 2023 DL ACC =96.23%

Gaur et al. (58) 2022 EWT with DenseNet121 ACC =85.5%; F1-Score =0.85

Soares et al. (59) 2020 DLM ACC =88.6%; PRC =89.7%

Goel et al. (60) 2021 Optimized GAN SPE =97.78%; F1-Score =0.98

Lu et al. (61) 2022 CGENet ACC =97.78%

Basu et al. (62) 2023 Feature selection technique ACC =97.78%; PRC =92.88%

Gupta et al. (11) 2023 DarkNet19 with repeated holdout 10FCV ACC =98.91%; SEN =98.96%; SPE =98.86%; 
PRC =98.88%; F1-Score =0.99

Khan et al. (81) 2023 CNN-based STM ACC =98.01%

Sharma et al. (82) 2020 ML ACC =91.0%

Kathamuthu et al. (83) 2022 CNN ACC =98.0%

Motwani et al. (84) 2023 CNN ACC =93.78%

Gozes et al. (85) 2020 2D DCNN-based ResNet-50 AUC =99.6%; SEN =92.2%

Shan et al. (86) 2020 VB-Net DICE =91.6%

Jin et al. (52) 2020 2D CNN ACC =94.98% 
AUC =97.91%

Sahoo et al. (87) 2022 ViT ACC =98.39%; F1-Score =98.49%

Panwar et al. (88) 2020 VGG19 95%

Dosovitskiy et al. (89) 2020 DenseNet201 ACC =96.25%

Devlin et al. (90) 2018 DenseNet101 ACC =97.4%

Tekade et al. (91) 2018 CNN ACC =95.66%

Table 6 (continued)
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Table 6 (continued)

Author Year Method Performance 

Wang et al. (92) 2020 CNN PRE =87.87%

Chen et al. (93) 2021 CNN PRE =80.10%

Humayun et al. (94) 2022 CNN ACC =89.68%

Al-Yasriy et al. (95) 2020 CNN FM =96.40%

Al-Huseiny et al. (96) 2021 CNN ACC =94.38%

Raza et al. (97) 2023 CNN ACC =99.1%

Mohammed et al. (98) 2023 CNN ACC =73.8%

Gulsoy et al. (99) 2023 SwinT ACC =99.69%

Sahin et al. (100) 2023 R-CNN ACC =93.86%

Gunraj et al. (101) 2020 COVIDNer-CT ACC =94.9%

Shi et al. (102) 2021 Teacher-student attention 96.4%

Yu et al. (103) 2021 ResGNet 93.9%

Mondal et al. (104) 2021 XViTCOS-CT ACC =98.1%

Harmon et al. (105) 2020 DenseNet-121 and AH-Net segmentation ACC =90.8%

Ouyang et al. (106) 2020 Dual sampling, attention network with ResNet-34 ACC =87.5%

Wu et al. (63) 2020 Multiview fusion model using ResNet-50 ACC =81.1%

Ardakani et al. (67) 2020 ResNet-101 ACC =99.51%

Sun et al. (107) 2020 Adaptive feature selection-guided deep forest—SVM ACC =91.79%

Wang et al. (108) 2020 Prior-attention residual model 3D ResNets ACC =93.3%

Hasan et al. (73) 2020 LSTM using Qdeformed entropy and deep features ACC =99.8%

Butt et al. (109) 2020 3D ResNets with location attention mechanism ACC =86.7%

COVID-19, coronavirus disease 2019; CNN, convolutional neural network; LSTM, long short-term memory; SVM, support vector 
machine; GAN, generative adversarial network; DLM, deep learning model; 3D-CNN, three-dimensional convolutional neural network; 
ResNet50, residual network with 50 layers; U-Net, U-shaped network; VBNet, V-Net with Bottleneck; FPN, feature pyramid network; 
DenseNet, Densely Connected Convolutional Network; CGENet, Conditional Graph Ensemble Network; 2D DCNN, two-dimensional deep 
convolutional neural network; ViT, vision transformer; VGG19, Visual Geometry Group Network with 19 layers; SwinT, Swin Transformer; 
XViTCOS-CT, Crossover Vision Transformer with Conditional Optimization Strategy for Computed Tomography; DRENet, Dense Residual 
Ensemble Network.

operations, and filtering for effective preprocessing. The 
selection of preprocessing methods, such as noise reduction 
filters or histogram equalization, depends on specific 
research objectives and CT image characteristics. The list 
of preprocessing methods used for analyzing CT images is 
shown in Table 7. Nodule detection typically involves two 
stages: candidate detection and false positive reduction. 
While the former aims for high sensitivity by identifying 
potential nodules, the latter focuses on distinguishing true 
nodules from false positives using advanced algorithms like 
CNNs and SVMs. The final stage, nodule classification, 
determines the probability of malignancy by extracting 

features such as shape, texture, and intensity from nodule 
images and applying classifiers like CNNs, SVMs, and 
random forests. Advanced DL techniques have shown 
promising results in improving nodule classification 
accuracy and robustness, leading to better clinical decision-
making and treatment planning (131).

Candidate nodule detection, false positive reduction, and 
classification

Before delving into the specific studies and methodologies, 
it’s important to note that in the field of lung nodule 
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detection and classification, the methodologies of both ML 
and DL is shown in Figure 20 below have seen significant 
advancements in recent years, driven largely by the rapid 
progress in DL and computer vision techniques. This 
section provides an overview of key research efforts that 
have shaped our current understanding and capabilities 
in this critical area of medical image analysis (124). 
The studies presented here represent a diverse range of 
approaches, from traditional ML methods to state-of-the-
art DL architectures, each contributing unique insights 
and innovations to the field as shown in Table 8 the related 
worked for nodule classification. While not exhaustive, 
this selection of related work highlights the evolution of 
techniques, the challenges addressed, and the progressive 
improvements in accuracy and efficiency in nodule 
detection and classification. As we review these studies, we’ll 
see a clear trend towards more sophisticated, multi-stage 
approaches that aim to mimic and augment the diagnostic 
process of expert radiologists.

Tajbakhsh  et al.  [2019] (180) used novel vessel-
oriented image representation (VOIR) that can improve 
the machine perception of pulmonary embolism (PE) 
through a consistent, compact, and discriminative image 
in pulmonary nodules. Helm et al. [2009] (181) found that 
radiologists achieved an 80% sensitivity rate for detecting 
lung nodules measuring 4 mm or larger, averaging 0.9 
false positives per study. However, detection performance 
significantly declined for nodules smaller than 4 mm. 
In a related study by Armato et al. [2007] (182), four 
radiologists independently reviewed 30 CT images in 
a two-phase annotation trial, revealing agreement on 
nodules larger than 3 mm but substantial variability in 
annotations. Smaller nodules exhibited similar challenges, 
making precise detection of these nodules arduous for 
radiologists. This difficulty underscores the importance of 
CAD systems to improve the identification of small lung 
nodules and streamline the annotation process for creating 
reliable ground truth data for training. To enhance manual 
annotation accuracy, multiple experienced radiologists can 
review images collectively, particularly for contentious cases. 
However, discrepancies between annotating groups persist, 
suggesting that variability may limit the effectiveness 
of computer-assisted detection. For classification tasks, 
integrating additional diagnostic information, such 
as pathological results, can help CAD systems extract 
features that are challenging for human eyes to identify, 
thereby improving classification performance. Enhanced 
visualization techniques can also aid in distinguishing 
nodules from small vessels. Martini et al. [2020] (183) 
demonstrated that vessel suppression notably improved 
nodule detection rates and inter-reader agreement while 
reducing reading time. Agam et al. [2005] (184) applied 
correlation-based enhancement filters and fuzzy shape 
representation to reduce false positives by accurately 
depicting vessel trees. Variability in manual delineation 
can affect nodule detection and size estimation. Meyer  
et al. [2006] (185) highlighted this issue, showing significant 
variability in measurements of 23 lung nodules among six 
radiologists, which was more pronounced than discrepancies 
associated with drawing tools. To address these challenges, 
the Lung Imaging Database Consortium (LIDC) was 
established to provide multiple annotations for validation. 
Ross et al. [2007] (186) created three-dimensional models of 
nodule segmentations from various radiologists, noting that 
while discrepancies in bounding boxes could be tolerated, 
nodule measurements were often derived from the separately 
detectable long and short axes. Interestingly, variability 

CT image

Raw CT scans and annotations

Morphological processing 
Lung ROI segmentation

Preprocessing

Candidate nodule 
detections

False positive 
reduction

Candidate nodules

Positive nodules

Malignancy prediction

Nodule classification

Cancerous Non-cancerous

Figure 18 Complete workflow of a CAD system. CT, computed 
tomography; ROI, region of interest; CAD, computer-aided 
diagnosis.
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CLAHEOriginal image

Figure 19 Original CT image compared to CT image processed with CLAHE (111). CT, computed tomography; CLAHE, contrast limited 
adaptive histogram equalization.

Medial image 
data Preprocessing Segmentation

Nodule 
candidate 
generation

Feature 
extraction

Feature 
selectionClassificationOutput classes

Medical image 
data

Nodule 
candidate 
generation

Deep learning 
algorithms Output classes

Conventional machine learning based CAD system for lung cancer 

Deep learning based CAD system for lung cancer

Figure 20 DL-based CAD system for lung cancer. CAD, computer-aided diagnosis; DL, deep learning.

in diagnoses and patient management recommendations 
based on CT images appears lower than that for detection 
and measurement tasks. Nair et al. [2018] (187) assessed 
evaluations of 69 nodules by 107 radiologists across 25 
countries and found satisfactory overall agreement for 

nodule composition (Fleiss’ kappa =0.65) and management 
strategies (kappa =0.63–0.73). However, the agreement 
on morphological variables and diameter measurements 
was relatively low, indicating that while guideline-based 
management and nodule composition analysis showed good 
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Table 7 List of preprocessing methods

Reference Methods Uses 

Veldhuizen and Jernigan (112) Wiener filter Produces an estimate of a desired or target random process

Tian et al. (113) Binarization Transforms data features of any entity into vectors of binary numbers

Yadav et al. (111) CLAHE Works on small regions called tiles

Prabha and Kumar (114) Smoothing filter Utilized in blurring regions

Kociołek et al. (115) Normalization Scaling pixel values to a standard range for consistency

Lehmann et al. (116) Interpolation Best estimation of a pixel’s color and intensity in context to the values 
at neighboring pixels

Pizer et al. (117) Adaptive histogram equalization Improving image contrast for better analysis

Gungor (118) Wavelet transform Decomposes special patterns hidden in the mass of data

Zhu et al. (119) Image rescaling Adjusting image size for consistency

Luo et al. (120) Noise reduction filters Enhancing image quality by reducing noise

Jung et al. (121) ROI selection Focusing analysis on specific areas of interest

Zhang et al. (122) Image registration Aligning images for comparison and analysis

He et al. (123) Segmentation techniques Identifying and separating different structures in the image

Ahmad et al. (5) Data augmentation Increasing dataset size for training DL models

Li et al. (124) Artifact removal Eliminating unwanted artifacts in the images

John and Mini (125) Median filter The median filter is a non-linear digital filtering technique, often used 
to remove noise from an image or signal

Ayshath Thabsheera et al. (126) Guided filtering The guided filtering technique is a method that performs image 
smoothing by using the content of a second image and also preserves 
edges in the image

Javaid et al. (127) Histogram equalization The histogram equalization is an image processing that enhances the 
contrast of the image

Elavarasu et al. (128) Mean filter Mean filtering is a technique where the intensity deviation of one pixel 
and its successor pixel is decreased using arithmetic mean

Vignesh et al. (129) Gaussian filter Gaussian filter is a type of linear smoothing filter, in which the weights 
of the filter are chosen based on the Gaussian function

Fortin et al. (130) Laplacian of Gaussian Laplacian of Gaussian filter is used for detecting edges in the image 
and also removing noise by smoothening the image using the 
Gaussian filter

ROI, region of interest; CLAHE, contrast limited adaptive histogram equalization.

consensus, detailed measurements lacked the same level of 
agreement.

The integration of advanced ML and DP techniques, 
particularly CNNs, has significantly improved the 
performance and accuracy of these systems. Methods 
such as multi-stream frameworks, transfer learning, and 
hybrid models have shown promising results, addressing 
challenges in sensitivity, specificity, and robustness. The 

challenges of building DL models from CT images, it is 
crucial to acknowledge the significant impact of image 
complexity and the scarcity of standardized datasets. 
One of the primary obstacles is the diversity of CT 
scan protocols, which vary widely depending on the 
equipment, settings, and clinical purpose. This variability 
can introduce inconsistencies in the images, making it 
challenging to create a robust DL model. Re-evaluating 
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Table 8 Related worked for nodule classification

Author Year Feature/method Performance 

Ozdemir et al. (132) 2020 3D segmentation network based on V-net architecture ACC =0.921

Li et al. (133) 2019 3D CNN ACC =0.912

Masood et al. (134) 2020 VGG-16, 3D-CNN ACC =0.946 LUNA16

SEN =0.976 LIDC-IDRI

SEN =0.988 ANODE09

El-Regaily et al. (135) 2019 2D CNN SEN =0.853

Wang et al. (136) 2019 CNN ACC =0.903

Zheng et al. (137) 2020 2D U-net, 3D-CNN ACC =0.955

Ali et al. (138) 2020 CNN ACC =0.9669

Zuo et al. (139) 2020 3D-CNN ACC =0.83

Zuo et al. (140) 2019 2D CNN ACC =0.762

Zheng et al. (141) 2020 2D U-Net, VGG-net SEN =0.942

Liu et al. (142) 2019 ResNET-18 ACC =0.957 LUNA16

Wang et al. (143) 2020 SSL ACC =0.907

Zhai et al. (144) 2020 SF2T ACC =0.9730

Liu et al. (145) 2020 3D ResU-Net, 3D Dense U-Nets ACC =0.879

Shi et al. (146) 2019 VGG-16, SVM SEN =0.872

Zhou et al. (147) 2019 Encoder-decoder ACC =0.971
AUC =0.982

Riquelme et al. (148) 2020 CAD ACC =0.996

Ren et al. (149) 2020 MRC-DNN SEN =0.90

Al-Shabi et al. (150) 2019 Gated-Dilated network AUC =0.9514

Liu et al. (151) 2020 CNN AUC =0.9797

Xie et al. (152) 2019 3D DNN with ResNet-50 AUC =0.957

Apostolopoulos et al. (153) 2020 Dual deep solitary pulmonary nodules network ACC =0.93

Nasrullah et al. (154) 2019 CMixNet and gradient boosting machine SEN =0.94

Harsono et al. (155) 2020 3D ConvNet with DPN AUC =0.818

Liao et al. (156) 2019 3D-DNN ACC =0.859, 0.814

Yang et al. (157) 2020 3D DensNet AUC =0.932

Balagurunathan et al. (158) 2019 Optimal linear classifier AUC =0.85

Hussein et al. (159) 2019 3D CNN ACC =0.786

Al-Shabi et al. (160) 2019 Deep local-global network ACC =0.885

Ardila et al. (161) 2019 3D Inception blocks ACC =0.944

Gao et al. (162) 2019 DLSTM using TEM AUC =0.8905

Chen et al. (163) 2019 ResNets, ACC =0.919

Table 8 (continued)
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Table 8 (continued)

Author Year Feature/method Performance 

Zhang et al. (164) 2024 S-Ne ACC =0.914

Yang et al. (165) 2019 RCNN, U-Net ACC =88.5%

Wu et al. (166) 2017 Random forest ACC =82.1%

Li et al. (167) 2018 AE CNN ACC =80.3%

Shen et al. (168) 2017 CNN ACC =88.5%

Guo et al. (169) 2016 Threshold SEN =100%

Huang et al. (170) 2018 Threshold SEN =100%

Cui et al. (171) 2019 Morphology ACC =89.89%

Song et al. (172) 2015 DL SES =70%

Shin et al. (173) 2016 DL SEN =70%

Onishi et al. (174) 2020 DCNN and GAN SPEC =0.778; SEN =0.939

Gomes Ataide et al. (175) 2020 ML ACC =0.993

Ma et al. (176) 2020 ML ACC =80%

Kanjanasurat et al. (177) 2023 DenseNet, VGG19, ResNet52, ACC =93.37%

Celik et al. (178) 2023 COVIDDWNet + GB ACC =99.84%

de Jesus Silva et al. (179) 2023 EnsenbleDVX ACC =97.7%

3D-CNN, three-dimensional convolutional neural network; ACC, accuracy; VGG-16, Visual Geometry Group Network with 16 layers; SEN, 
sensitivity; SSL, self-supervised learning; SVM, support vector machine; CNN, convolutional neural network; 2D DCNN, two-dimensional 
convolutional neural network; R-CNN, region-based convolutional neural network; ResNet-50, residual network with 50 layers; DL, 
deep learning; SES, socioeconomic status; ML, machine learning; DLSTM, deep long short-term memory; COVIDDWNet, COVID Data 
Warehouse Network; GB, gradient boosting; EnsenbleDVX, ensemble deep learning for vision; QuCNet, Quantum-Inspired Convolutional 
Neural Networks for Optimized Thyroid Nodule Classification; SF2T, leveraging swin transformer and two-stream networks for lung nodule 
detection; Nodule-CLIP, lung nodule classification based on multi-modal contrastive learning; AttentNet, Fully Convolutional 3D Attention 
for Lung Nodule Detection; AUC, area under the curve.

and standardizing these protocols is essential to ensure 
the development of high-quality datasets that can lead to 
more accurate and generalizable models. Another critical 
aspect is the verification of ground truth. While expert 
verification, particularly by radiologists, is indispensable, it 
should be complemented by more objective methods, such 
as pathological or surgical findings. This dual approach 
ensures that the ground truths used in model training 
are both accurate and reliable, enhancing the model’s 
performance in real-world applications. Additionally, 
recent advancements in image improvement solutions, 
such as GE True Fidelity, offer promising avenues to 
mitigate some of these challenges. These technologies 
can enhance the quality of CT images, potentially making 
it easier to establish consistent datasets and build more 
effective DL models. Incorporating such solutions into 

the dataset creation process could significantly improve 
the robustness and reliability of the models, ultimately 
leading to better clinical outcomes. Future research should 
continue to focus on enhancing the interpretability of 
these models and improving their continuous learning 
capabilities to adapt to real-time clinical environments.

The detection of pulmonary nodules is a fundamental 
and crucial task in medical imaging analysis. Its significance 
lies in its role as a precursor to more advanced procedures 
such as nodule classification (131). The accuracy and 
efficiency of these subsequent tasks are heavily dependent 
on the quality of the initial detection. Consequently, 
it is imperative to investigate the various factors that 
impact the generalization capabilities and robustness of 
pulmonary nodule detection systems. One key factor 
known to influence CT image characteristics is the choice 
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of reconstruction kernel. However, it is important to 
acknowledge certain limitations in the current research. 
Primarily, the study is constrained by the size and diversity 
of the available dataset (6). Additionally, an intriguing 
finding emerges from the application of image conversion 
techniques: the nodule detection system demonstrates 
enhanced performance on sharp kernel images compared 
to the baseline performance on smooth kernel images. This 
observation not only highlights the potential for improving 
detection accuracy through image processing methods but 
also underscores the complex relationship between image 
reconstruction parameters and detection performance. 
It suggests that further exploration of image conversion 
techniques and their impact on various reconstruction 
kernels could yield valuable insights for optimizing 
pulmonary nodule detection systems (188).

Evaluation metrics

There are several evaluation metrics commonly used in the 
classification of CT images to assess the performance of 
DL models.

Accuracy

Accuracy is a fundamental evaluation metric used in the 
context of CT image analysis to assess the performance of 
ML models in correctly classifying instances. Accuracy plays 
a crucial role in determining the reliability and effectiveness 
of diagnostic systems, which is calculated as the ratio 
of correctly classified instances (true positives and true 
negatives) to the total number of instances (true positives, 
true negatives, false positives, and false negatives) (189). 
The formula for accuracy is:

TP TNAccuarcy
TP TN FP FN

+
=

+ + +  [1]

Where: TP is a true positive, FN is a false negative, TN is 
a true negative, FR is a false positive.

The accuracy reflects the overall correctness of the model’s 
predictions in identifying specific features, abnormalities, 
or diseases within the CT images. A high accuracy score 
indicates that the model is effectively distinguishing between 
different classes or categories within the CT images, leading 
to more reliable and accurate diagnostic outcomes (190).  
However, it is essential to consider the limitations of 
accuracy as an evaluation metric in CT image analysis. 
Accuracy alone may not provide a complete picture of the 

model’s performance, especially in cases where the dataset 
is imbalanced or when certain classes are more prevalent 
than others. In such situations, accuracy may not accurately 
represent the model’s ability to correctly identify rare or 
critical instances within the CT images.

Therefore, while accuracy is a valuable metric in 
evaluating the overall performance of ML models in CT 
image analysis, it is often recommended to complement 
it with other evaluation metrics such as precision, recall, 
F1-score, and area under the ROC curve to gain a more 
comprehensive understanding of the model’s performance 
and effectiveness in diagnosing and analyzing CT images 
accurately.

Precision

Precision is a critical evaluation metric used in the analysis 
of CT images to assess the performance of ML models in 
correctly identifying positive instances, precision plays a crucial 
role in determining the accuracy and reliability of diagnostic 
systems (189). Precision is calculated as the ratio of true 
positive instances to the total number of instances predicted as 
positive by the model. The formula for precision is:

TPPrecision
TP FP

=
+  [2]

The precision reflects the model’s ability to accurately 
identify and classify positive instances, such as detecting 
specific abnormalities, lesions, or diseases within the CT 
images. A high precision score indicates that the model 
has a low rate of falsely classifying negative instances as 
positive, leading to more reliable and accurate diagnostic 
results. However, it is important to consider the limitations 
of precision as an evaluation metric in CT image analysis. 
Precision focuses solely on the positive predictions made 
by the model and does not take into account the instances 
that were incorrectly classified as negative (false negatives). 
In scenarios where false negatives are equally important, 
precision alone may not provide a complete assessment of 
the model’s performance.

Therefore, while precision is a valuable metric in 
evaluating the model’s ability to make accurate positive 
predictions in CT image analysis, it is recommended to 
consider it in conjunction with other evaluation metrics 
such as recall, F1-score, and specificity to obtain a 
comprehensive understanding of the model’s performance 
and effectiveness in correctly identifying and classifying 
positive instances within CT images.
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Recall (sensitivity)

Recall, also known as sensitivity, is a crucial evaluation 
metric utilized in the analysis of CT images to evaluate the 
performance of ML models in correctly identifying positive 
instances. In the domain of medical imaging, recall plays 
a significant role in assessing the model’s ability to detect 
relevant features, abnormalities, or diseases within the CT 
images accurately (189).

Recall is calculated as the ratio of true positive instances 
to the total number of actual positive instances in the 
dataset. The formula for the recall is:

TPRecall
TP FN

=
+

 [3]

The recall reflects the model’s capability to correctly 
identify all actual positive instances within the CT images. 
A high recall score indicates that the model has a low rate of 
missing positive instances, leading to more comprehensive and 
accurate diagnostic results. However, it is essential to consider 
the limitations of recall as an evaluation metric in CT image 
analysis. Recall focuses solely on the model’s ability to identify 
positive instances and does not account for instances that were 
incorrectly classified as positive (false positives). In scenarios 
where false positives are equally critical, recall alone may not 
provide a complete assessment of the model’s performance. 
Therefore, while recall is a valuable metric in evaluating the 
model’s ability to capture all positive instances within CT 
images, it is recommended to complement it with other 
evaluation metrics such as precision, F1-score, and specificity 
to obtain a holistic understanding of the model’s performance 
and effectiveness in correctly identifying and capturing positive 
instances within CT images.

Specificity

Specificity is a vital evaluation metric used in the analysis 
of CT images to assess the performance of ML models in 
correctly identifying negative instances. Specificity plays 
a significant role in determining the model’s ability to 
accurately classify negative instances and minimize false 
alarms.

Specificity is calculated as the ratio of true negative 
instances to the total number of actual negative instances in 
the dataset. The formula for specificity is:

TNSpecificity
TN FP

=
+  [4]

Specificity reflects the model’s capability to correctly 
identify all actual negative instances within the CT 
images. A high specificity score indicates that the model 
has a low rate of falsely classifying positive instances as 
negative, leading to more reliable and accurate diagnostic 
outcomes. However, it is important to consider the 
limitations of specificity as an evaluation metric in CT 
image analysis. Specificity focuses solely on the model’s 
ability to identify negative instances and does not consider 
instances that were incorrectly classified as negative (false 
negatives). In scenarios where false negatives are equally 
critical, specificity alone may not provide a comprehensive 
assessment of the model’s performance.

Therefore, while specificity is a valuable metric in 
evaluating the model’s ability to correctly identify negative 
instances within CT images, it is recommended to consider 
it in conjunction with other evaluation metrics such as 
sensitivity, precision, F1-score, and accuracy to obtain a 
comprehensive understanding of the model’s performance 
and effectiveness in accurately classifying both positive and 
negative instances within CT images.

F1-score

The F1-score is a critical evaluation metric used in the 
analysis of CT images to provide a balanced measure of a 
ML model’s performance in terms of both precision and 
recall particularly in CT imaging, the F1-score is a valuable 
metric for assessing the overall effectiveness and accuracy of 
the model in correctly identifying positive instances while 
minimizing false positives and false negatives (189).

The F1-score is calculated as the harmonic mean of 
precision and recall, providing a balanced measure that 
considers both metrics. The formula for the F1-score is:

21- 100%Precision RecallF Score
Precision Recall
× ×

= ×
+  [5]

Where: precision is the ratio of true positive instances to 
the total number of instances predicted as positive by the 
model.

Area under the receiver operating characteristic curve 
(AUC-ROC)

AUC-ROC is a key evaluation metric used in the analysis 
of CT images to assess the performance of ML models 
in binary classification tasks. The AUC-ROC metric 
provides a comprehensive measure of the model’s ability to 
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distinguish between positive and negative instances across 
various classification thresholds. The AUC-ROC quantifies 
the performance of a classification model by plotting 
the true positive rate (TPR) (sensitivity) against the false 
positive rate (FPR) (1 − specificity) at different classification 
thresholds. The AUC-ROC score represents the area under 
this curve, ranging from 0 to 1, where a score closer to 1 
indicates a better-performing model.

The formula for calculating the AUC-ROC score 
involves integrating the ROC curve, which is a plot of 
sensitivity against 1 − specificity at different threshold 
values. The AUC-ROC score provides a single value that 
summarizes the model’s performance across all possible 
classification thresholds, offering insights into the model’s 
ability to correctly classify positive and negative instances 
within the CT images.

( )-AUC ROC TPR FPR dFPR= ∫  [6]

A high AUC-ROC score indicates that the model 
effectively distinguishes between positive and negative 
instances, leading to accurate and reliable diagnostic 
outcomes. The AUC-ROC metric is particularly useful 
for evaluating the overall performance of a classification 
model in CT image analysis, especially in scenarios where 
the dataset is imbalanced or when different classification 
thresholds need to be considered. Therefore, the AUC-ROC 
is a valuable evaluation metric in CT image analysis, providing 
a comprehensive measure of the model’s ability to discriminate 
between positive and negative instances. It is recommended to 
use the AUC-ROC score in conjunction with other evaluation 
metrics to gain a complete understanding of the model’s 
performance and effectiveness in binary classification tasks 
within the context of CT imaging.

Area under the precision-recall curve (AUC-PR)

AUC-PR is a crucial evaluation metric utilized in the 
analysis of CT images to assess the performance of ML 
models in binary classification tasks. The AUC-PR metric 
provides a comprehensive measure of the model’s precision-
recall trade-off and its ability to correctly identify positive 
instances while minimizing false positives. The AUC-PR 
quantifies the model’s performance by plotting precision 
against recall at different classification thresholds. The 
AUC-PR score represents the area under this curve, 
ranging from 0 to 1, where a score closer to 1 indicates a 
better-performing model.

The formula for calculating the AUC-PR score involves 

integrating the precision-recall curve, which is a plot of 
precision against recall at different threshold values. The 
AUC-PR score offers a single value that summarizes the 
model’s precision-recall trade-off, providing insights into 
the model’s ability to make accurate positive predictions 
while capturing all actual positive instances within the CT 
images.

( )-AUC PR P R dR= ∫  [7]

Where P is the precision, and R is the recall.
A high AUC-PR score indicates that the model 

strikes a balance between precision and recall, leading to 
accurate and reliable diagnostic outcomes. The AUC-
PR metric is particularly useful for evaluating the model’s 
performance in scenarios where precision and recall are 
both critical factors in the classification task. Therefore, 
the AUC-PR is a valuable evaluation metric in CT 
image analysis, offering a comprehensive measure of the 
model’s precision-recall trade-off and its effectiveness in 
correctly identifying positive instances within the CT 
images. It is recommended to use the AUC-PR score 
in conjunction with other evaluation metrics to gain a 
complete understanding of the model’s performance 
and effectiveness in binary classification tasks within the 
context of CT imaging.

Balanced accuracy

Balanced accuracy is an important evaluation metric 
used in the analysis of CT images to provide a balanced 
measure of an ML model’s performance in binary 
classification tasks, especially in scenarios where the 
dataset is imbalanced. Balanced accuracy plays a crucial 
role in assessing the model’s ability to correctly classify 
both positive and negative instances while accounting for 
class imbalances.

Balanced accuracy is calculated as the average of 
sensitivity (TPR) and specificity (true negative rate). The 
formula for balanced accuracy is:

2
Sensitivity SpecificityBalanced Accuracy +

=  [8]

Balanced accuracy provides a holistic measure of the 
model’s performance by considering both the model’s 
ability to correctly identify positive instances (sensitivity) 
and negative instances (specificity). A high balanced 
accuracy score indicates that the model effectively balances 
its performance in classifying both positive and negative 
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instances, leading to robust and reliable diagnostic 
outcomes. It is particularly useful in scenarios where the 
dataset contains class imbalances, ensuring that the model’s 
performance is not skewed towards the majority class. 
By incorporating both sensitivity and specificity into a 
single metric, balanced accuracy offers a comprehensive 
assessment of the model’s ability to accurately classify both 
positive and negative instances within the CT images.

Therefore, balanced accuracy is a valuable evaluation 
metric in CT image analysis, providing a balanced 
measure of the model’s performance in binary classification 
tasks, especially in the presence of class imbalances. It is 
recommended to use balanced accuracy in conjunction with 
other evaluation metrics to gain a complete understanding 
of the model’s performance and effectiveness in diagnosing 
and analyzing CT images accurately.

Matthews correlation coefficient (MCC)

MCC is a significant evaluation metric used in the analysis 
of CT images to provide a balanced measure of a ML 
model’s performance in binary classification tasks. The 
MCC metric plays a crucial role in assessing the model’s 
ability to correctly classify both positive and negative 
instances while accounting for class imbalances.

MCC takes into account all four confusion matrix 
values, providing a balanced measure even when classes are 
imbalanced.

( )( )( )( )
100%TN TP FN FPMCC

TP FP TP FN TN FP TN FN
× − ×

= ×
+ + + +  [9]

The MCC provides a balanced measure of the model’s 
performance by taking into account all four values in the 
confusion matrix. A high MCC score indicates a strong 
correlation between the model’s predictions and the actual 
class labels, considering both false positives and false 
negatives.

MCC is particularly useful in scenarios where the dataset 
is imbalanced or when the classes have different prevalences. 
By incorporating all four values of the confusion matrix into 
its calculation, MCC offers a comprehensive assessment 
of the model’s performance in correctly classifying both 
positive and negative instances within the CT images. 
Therefore, the MCC is a valuable evaluation metric in CT 
image analysis, providing a balanced measure of the model’s 
performance in binary classification tasks, especially in the 
presence of class imbalances. It is recommended to use MCC 

in conjunction with other evaluation metrics to gain a complete 
understanding of the model’s performance and effectiveness in 
diagnosing and analyzing CT images accurately.

Cohen’s Kappa

Cohen’s Kappa is a valuable evaluation metric used in the 
analysis of CT images to assess the agreement between the 
model’s predictions and the actual class labels, accounting 
for the possibility of agreement by chance. Cohen’s Kappa 
plays a crucial role in evaluating the model’s performance 
beyond what would be expected by random chance.

Cohen’s Kappa is calculated using the formula:

1
Observed Accuracy Expected AccuracyCohen s Kappa

Expected Accuracy−
′ −

= [10]

Observed accuracy is the proportion of instances that the 
model correctly classified.

Expected accuracy is the accuracy that would be achieved 
by random chance.

Cohen’s Kappa provides a measure of the model’s 
performance that considers the agreement between the 
model’s predictions and the actual class labels while 
accounting for the possibility of agreement by chance. A 
high Kappa score indicates a strong agreement between the 
model’s predictions and the ground truth labels, beyond 
what would be expected by random chance. Cohen’s 
Kappa is particularly useful when evaluating the model’s 
performance in scenarios where the dataset has imbalanced 
class distributions or when the classes have different 
prevalences. By considering the expected agreement by 
chance, Cohen’s Kappa offers a robust assessment of the 
model’s performance in correctly classifying both positive 
and negative instances within the CT images.

Therefore, Cohen’s Kappa is a valuable evaluation 
metric in CT image analysis, providing insights into the 
agreement between the model’s predictions and the actual 
class labels, while considering the possibility of agreement 
by chance. It is recommended to use Cohen’s Kappa 
in conjunction with other evaluation metrics to gain a 
comprehensive understanding of the model’s performance 
and effectiveness in diagnosing and analyzing CT images 
accurately.

TPR (sensitivity)

Sensitivity, also known as the TPR, measures the proportion 
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of actual positives that are correctly identified by the model.

100%TPTrue Positive rate
TP FN

= ×
+  [11]

FPR

The FPR calculates the proportion of actual negatives that 
are incorrectly identified as positives by the model.

100%FPFalse Positive rate
PF TN

= ×
+  [12]

True negative rate (specificity)

Specificity, also known as the true negative rate, measures 
the proportion of actual negatives that are correctly 
identified by the model.

100%TNTrue Negative rate
TN FP

= ×
+

 [13]

False negative rate

The false negative rate calculates the proportion of actual 
positives that are incorrectly identified as negatives by the 
model.

100%FNFalse Negative rate
FN FP

= ×
+  [14]

Precision-recall curve

The precision-recall curve is created by plotting precision 
against recall at various threshold settings. 

Precision = TP/(TP + FP) which is values on the y-axis 
while Recall = TP/(TP + FN) values on the x-axis.

For each threshold value usually from 0 to 1:

- PrecisionPrecision Recall Curve
Recall

=  
[15]

Confusion matrix

A confusion matrix is a table that summarizes the model’s 
performance by comparing actual class labels with predicted 
class labels, showing true positives, true negatives, false 
positives, and false negatives.

Classification error

Classification error calculates the proportion of misclassified 

instances out of the total instances.

FP FNAccuracy
TP TN FP FN

+
=

+ + +  [16]

ROC curve

The ROC curve is a fundamental evaluation tool used 
in the analysis of CT images to assess the performance 
of ML models in binary classification tasks, the ROC 
curve provides valuable insights into the model’s ability 
to distinguish between positive and negative instances at 
various classification thresholds.

The ROC curve is a graphical representation of the TPR 
(sensitivity) against the FPR (1 − specificity) at different 
classification thresholds. Each point on the ROC curve 
represents the trade-off between sensitivity and specificity at 
a particular threshold setting. A model with high sensitivity 
and a low FPR will have a curve that approaches the upper 
left corner of the plot, indicating better performance. 
AUC-ROC is a common metric derived from the ROC 
curve, providing a single value that summarizes the model’s 
performance across all possible classification thresholds. 
The AUC-ROC score ranges from 0 to 1, where a score 
closer to 1 indicates a better-performing model.

The ROC curve offers a visual representation of the 
model’s performance in distinguishing between positive 
and negative instances within the CT images. It helps in 
evaluating the model’s sensitivity and specificity trade-off 
and provides insights into the model’s overall classification 
performance. The ROC curve is particularly useful for 
assessing the model’s performance in scenarios where 
different classification thresholds need to be considered, 
or when the dataset is imbalanced. By analyzing the ROC 
curve and calculating the AUC-ROC score, researchers and 
clinicians can gain a comprehensive understanding of the 
model’s ability to classify positive and negative instances 
accurately within the CT images.

Therefore, the ROC curve is a valuable evaluation tool 
in CT image analysis, providing a visual representation of 
the model’s performance in binary classification tasks. It is 
recommended to use the ROC curve in conjunction with 
other evaluation metrics to gain a complete understanding 
of the model’s performance and effectiveness in diagnosing 
and analyzing CT images accurately.

The ROC curve is plotted using the TPR = TP/(TP 
+ FN) and the FPR = FP/(FP + TN). The ROC curve is 
calculated using TPR and FPR at various threshold levels 
and plotted TPR against FPR.



Quantitative Imaging in Medicine and Surgery, Vol 15, No 1 January 2025 999

© AME Publishing Company.   Quant Imaging Med Surg 2025;15(1):962-1011 | https://dx.doi.org/10.21037/qims-24-1400

TPRROC Curve
FPR

=  
[17]

Precision at k (P@k)

P@k is an important evaluation metric used in the analysis 
of CT images to measure the proportion of relevant 
instances among the top k predictions made by the model. 
P@k plays a crucial role in evaluating the model’s ability 
to accurately identify and prioritize relevant features or 
abnormalities within the CT images.

Precision at k is calculated as the number of relevant 
instances in the top k predictions divided by k. The formula 
for P@k is:

Precision at k measures the proportion of relevant 
instances among the top k predictions made by the model.

( )  @ Number of relevant documents in top kPrecisionat K P K
k

=  [18]

The P@k provides insights into the model’s precision 
in identifying relevant features or abnormalities within 
the CT images. A high P@k score indicates that the 
model is effective in prioritizing and accurately identifying 
relevant instances within the top k predictions, leading to 
more efficient and targeted diagnostic outcomes. P@k is 
particularly useful when evaluating the model’s performance 
in scenarios where prioritizing relevant instances is critical, 
such as identifying specific abnormalities or diseases within 
the CT images. By focusing on the precision of the model’s 
top predictions, P@k offers valuable insights into the 
model’s ability to provide accurate and relevant diagnostic 
information.

Therefore, precision at k is a valuable evaluation metric 
in CT image analysis, offering a measure of the model’s 
precision in identifying relevant instances within the CT 
images. It is recommended to use P@k in conjunction 
with other evaluation metrics, such as recall, F1-score, and 
specificity, to gain a comprehensive understanding of the 
model’s performance and effectiveness in diagnosing and 
analyzing CT images accurately.

Recall at k (R@k)

R@k is a significant evaluation metric used in the analysis of 
CT images to measure the proportion of relevant instances 
identified among the top k predictions made by the model. 
In the context of medical imaging, particularly CT imaging, 
R@k plays a crucial role in evaluating the model’s ability to 

capture and recall relevant features or abnormalities within 
the CT images.

Recall at k is calculated as the number of relevant 
documents in the top k predictions divided by the total 
number of relevant documents in the dataset. The formula 
for R@k is:

( )  @ Number of relevant documents in top kRecall at K R K
Total number of relevant documents

=  [19]

R@k provides insights into the model’s ability to recall 
and identify relevant instances within the top k predictions. 
A high R@k score indicates that the model is effective in 
capturing and recalling relevant features or abnormalities 
within the CT images, leading to more comprehensive and 
accurate diagnostic outcomes. R@k is particularly useful 
when evaluating the model’s performance in scenarios 
where capturing all relevant instances is critical, such as 
detecting specific abnormalities or diseases within the CT 
images. By focusing on the recall of relevant instances 
within the top predictions, R@k offers valuable insights into 
the model’s ability to provide comprehensive and accurate 
diagnostic information.

Therefore, recall at k is a valuable evaluation metric 
in CT image analysis, offering a measure of the model’s 
recall in identifying relevant instances within the CT 
images. It is recommended to use R@k in conjunction with 
other evaluation metrics, such as precision, F1-score, and 
specificity, to gain a comprehensive understanding of the 
model’s performance and effectiveness in diagnosing and 
analyzing CT images accurately.

Dice similarity coefficient (DSC)

DSC is a common evaluation metric used in medical image 
analysis, including CT imaging, to assess the agreement 
between the predicted segmentation masks and the ground 
truth annotations. The DSC is particularly useful for 
evaluating the accuracy and overlap of segmented regions, 
such as identifying lesions, tumors, or abnormalities within 
the CT images.

The DSC is calculated using the formula:

( ) ( )2* /DSC A B A B= ∩ +  [20]

Where: |A∩B| represents the intersection between the 
predicted segmentation mask (A) and the ground truth 
annotation (B).

|A| and |B| denotes the total number of voxels in 
the predicted mask and the ground truth annotation, 
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respectively.
The DSC provides a quantitative measure of the spatial 

overlap between the predicted segmentation and the ground 
truth, ranging from 0 (no overlap) to 1 (perfect overlap). A 
higher DSC score indicates a better agreement between the 
predicted and ground truth segmentation masks, reflecting 
the accuracy of the classification model in delineating 
specific ROIs within the CT images. By using the DSC as 
an evaluation metric in CT classification tasks, researchers 
and clinicians can assess the model’s performance in 
accurately identifying and segmenting abnormalities or 
structures of interest within the CT images. The DSC 
offers insights into the model’s ability to capture and 
delineate specific regions, providing a quantitative measure 
of segmentation accuracy and overlap.

Overall, the DSC-based CT classification offers 
a robust and quantitative assessment of the model’s 
performance in segmenting and classifying ROIs within 
the CT images. By utilizing the DSC metric, researchers 
can evaluate the accuracy and spatial agreement of the 
model’s predictions with the ground truth annotations, 
enhancing the reliability and effectiveness of CT image 
analysis and classification tasks.

Jaccard index (JI) is defined

The JI, also known as the Jaccard similarity coefficient or 
Jaccard coefficient, is a statistical measure used to evaluate the 
similarity between two sets. The JI is commonly employed 
to assess the agreement or overlap between predicted 
segmentation masks and ground truth annotations.

The JI is defined by the following equation:

2* A B
JI

A B
∩

=
∪  [21]

In the equation,  the numerator represents  the 
intersection of Sets A and B, which corresponds to the 
number of elements that are common to both sets. The 
denominator represents the union of Sets A and B, which 
includes all elements present in either set. The JI ranges 
from 0 to 1, where a score of 0 indicates no overlap between 
the sets, and a score of 1 signifies complete overlap or 
perfect agreement. A higher JI value indicates a greater 
similarity or agreement between the sets being compared.

 The JI provides a quantitative measure of the spatial 
overlap or similarity between the predicted segmentation 
mask (Set A) and the ground truth annotation (Set B). By 
calculating the JI, researchers can assess the accuracy and 

agreement of the model’s segmentation results with the 
reference annotations, offering insights into the model’s 
performance in delineating specific ROIs within the CT 
images. Overall, the JI serves as a valuable metric in CT 
image analysis for quantifying the overlap and agreement 
between predicted and ground truth segmentation masks. 
By utilizing the JI, researchers can evaluate the accuracy 
and spatial correspondence of the model’s predictions with 
the annotated regions, facilitating a more comprehensive 
assessment of the model’s performance in CT image 
classification tasks.

These evaluation metrics are essential for assessing the 
performance of DL models in CT image classification 
tasks and can help researchers and clinicians evaluate the 
effectiveness of their models accurately.

Challenge and future directions

CT image classif ication using DL and FMs faces 
multifaceted challenges. Data scarcity and imbalance, 
particularly for rare conditions, hinder model development. 
Annotation quality and inter-observer variability affect 
training data reliability. Image quality issues, such as noise 
and artifacts, impact classification accuracy. Variability 
in anatomy and pathology presentation complicates 
model generalization. Computational challenges include 
resource intensity and model interpretability. Regulatory 
and ethical concerns involve data privacy and compliance. 
Generalization across diverse populations and robustness 
to variations in imaging protocols remain significant 
hurdles. Clinical adoption faces integration and validation 
challenges (11). Explainability and interpretability of model 
decisions are crucial for clinical trust. Additionally, the need 
for substantial computational resources, potential biases in 
training data, and the complexity of FMs further complicate 
their implementation. Addressing these challenges requires 
interdisciplinary collaboration, improved data collection and 
annotation processes, advanced model architectures, and 
strategies to enhance interpretability and generalizability 
while maintaining ethical standards and clinical relevance.

In addition to the challenges mentioned, CT image 
classification using DL and FMs faces significant hurdles 
related to image complexity and dataset limitations. CT 
images present intricate structural details and subtle 
variations that pose unique challenges for DL models. 
The three-dimensional nature of CT scans, with multiple 
slices representing different anatomical planes, increases 
the complexity of feature extraction and interpretation. 
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Moreover, the presence of diverse anatomical structures, 
varying tissue densities, and potential pathologies within a 
single image necessitates sophisticated modeling approaches 
to capture relevant features accurately. The high dynamic 
range of CT images, typically represented in Hounsfield 
units, requires careful preprocessing and normalization 
techniques to ensure optimal model performance. 
Additionally, the presence of imaging artifacts, such as 
beam hardening, motion artifacts, and metal artifacts, can 
significantly impact image quality and pose challenges for 
accurate classification.

The scarcity of large-scale, high-quality CT image 
datasets remains a significant bottleneck in the development 
of robust DL and FM models. Several factors contribute to 
this limitation: data collection challenges, acquiring diverse 
and representative CT datasets is hindered by patient privacy 
concerns, regulatory restrictions, and the high cost associated 
with CT imaging. This limitation is particularly acute for 
rare diseases or specific patient subpopulations (10).

Annotation burden: the process of annotating CT images 
is time-consuming, labor-intensive, and requires expert 
knowledge. This results in a limited availability of accurately 
labeled datasets, especially for complex classification tasks (11).  
Class imbalance, medical imaging datasets often suffer 
from severe class imbalance, with normal cases significantly 
outnumbering pathological cases. This imbalance can lead 
to biased model performance and reduced sensitivity to 
rare conditions (12). Lack of standardization, variations 
in imaging protocols, scanner types, and reconstruction 
algorithms across different healthcare institutions introduce 
heterogeneity in CT datasets, complicating the development 
of generalizable models (14). Limited multi-modal data, the 
integration of CT images with other clinically relevant data, 
such as electronic health records or genomic information, is 
often limited, hindering the development of comprehensive 
multi-modal classification models (1).

These challenges related to image complexity and 
dataset limitations compound the difficulties in developing 
accurate and reliable CT image classification models. 
Addressing these issues requires innovative approaches in 
data augmentation, synthetic data generation, and transfer 
learning techniques (178). Furthermore, collaborative 
efforts to establish large-scale, multi-institutional CT 
image repositories with standardized annotation protocols 
are essential to advance the field. Future research 
directions should focus on developing DL architectures 
specifically tailored to handle the complexities of CT 
images, incorporating domain knowledge into model 

design, and exploring novel semi-supervised and self-
supervised learning approaches to leverage unlabeled 
data effectively. Additionally, the development of robust 
evaluation metrics and benchmarking datasets that account 
for the unique challenges in CT image classification is 
crucial for assessing model performance and facilitating 
meaningful comparisons across different approaches. By 
addressing these challenges comprehensively, the field 
can move towards more accurate, reliable, and clinically 
applicable CT image classification models, ultimately 
enhancing diagnostic capabilities and improving patient 
care (12).

A crucial challenge in developing robust DL models for 
CT image classification is the significant diversity in CT 
scan protocols. This diversity presents a substantial obstacle 
that needs to be addressed. Protocol Variability, CT scan 
protocols vary widely across institutions, regions, and 
even individual radiologists. These variations can include 
differences in slice thickness, reconstruction algorithms, 
contrast use, patient positioning, and scanner settings. 
Such diversity in protocols can lead to inconsistencies in 
image features and quality, potentially confounding DL  
models (97). Need for Protocol Re-evaluation: The diverse 
range of CT protocols needs to be critically re-evaluated 
as potential obstacles to building effective DL models. 
Variations in protocols can introduce unintended biases and 
reduce the generalizability of models across different clinical  
settings (178). Standardization efforts, there is a pressing 
need to evaluate and standardize CT protocols specifically 
to build high-quality datasets for DL. Standardization 
would involve establishing consensus guidelines on 
key parameters such as slice thickness, reconstruction 
kernels, and dose levels that optimize image quality for 
both human interpretation and AI analysis. The lack of 
protocol standardization directly affects the quality and 
consistency of datasets used for training and validating 
DL models. Inconsistent protocols can lead to variability 
in image features, potentially reducing the effectiveness 
of learned representations (179). Challenges in Multi-
center Studies, The diversity in protocols poses significant 
challenges for multi-center studies and the development of 
broadly applicable AI models. It complicates the process of 
aggregating data from multiple sources and can introduce 
site-specific biases (191). 

Addressing these protocol-related challenges requires 
collaborative efforts between radiologists, medical 
physicists, and AI researchers. Initiatives to develop 
and implement standardized CT protocols for AI 
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applications, while maintaining flexibility for clinical 
needs are crucial. Such efforts would not only improve the 
quality and consistency of datasets but also enhance the 
generalizability and clinical applicability of DL models 
in CT image classification. Furthermore, developing 
methods to harmonize or normalize images from diverse 
protocols, either through pre-processing techniques or by 
incorporating protocol information directly into the model 
architecture, could help mitigate the impact of protocol 
variability on model performance (192). By focusing on 
these protocol-related challenges and working towards 
standardization, the field can move towards creating more 
reliable, consistent, and high-quality datasets. This, in 
turn, will support the development of more robust and 
generalizable DL models for CT image classification, 
ultimately improving their clinical utility and impact on 
patient care. Recent advancements in image processing 
technologies, such as GE True Fidelity, offer promising 
opportunities to improve the quality of CT images. These 
solutions can enhance image clarity and reduce noise, 
potentially leading to more accurate nodule detection 
and classification. Incorporating images processed 
with these advanced technologies into training datasets 
may help overcome some of the current challenges in 
building effective DL models. The discussion should 
consider whether leveraging such technologies could be 
a viable strategy for improving dataset quality and model 
performance, particularly in situations where high-quality 
images are essential for accurate diagnosis (179).

Limitations of the study 

This paper aims to review and discuss various DL-based 
systems for diagnosing COVID-19, and nodules using CT 
images. While the paper covers many important aspects 
found in the literature, it also identifies several limitations 
that should be addressed in future research. Firstly, the 
focus is on describing diagnosis systems based on DL and 
FM techniques without providing detailed explanations of 
the underlying mathematical concepts, assuming a certain 
level of domain-specific knowledge. Secondly, specific 
details of the neural networks, such as layer specifications, 
learning rates, and optimization techniques, are not 
thoroughly discussed, with readers directed to related 
references for more information. Thirdly, while the review 
discusses the diagnosis of nodules and COVID-19 from a 
computer vision perspective, it does not present qualitative 
results of the diagnosis in CT images. Fourthly, while 

many of the reviewed systems show high accuracy rates, 
the real-world reliability of these systems is not adequately 
evaluated. Lastly, the paper does not include computer 
code or practical examples to demonstrate the significant 
results of the reviewed, nodule and COVID-19 diagnosis 
systems.

Conclusions

In conclusion, this review highlights the significant 
advancements in CT image classification for detecting 
COVID-19 and lung nodules. It traces the evolution from 
traditional methods to early deep DL models, culminating 
in sophisticated architectures tailored for CT analysis. By 
discussing diverse approaches, including CNNs, RNNs, 
GANs, and FMs like BERT, GPT, CLIP, and ViT. We 
emphasize their crucial role in enhancing classification accuracy. 
The review identifies key challenges such as data scarcity, 
model generalization, and clinical integration, stressing the 
necessity for improved network architectures and larger pre-
training datasets. The methodologies discussed can serve as 
valuable tools for medical teams in densely populated areas, 
where rapid diagnosis is essential. However, obstacles remain, 
including insufficient labeled data, reproducibility across multi-
center datasets, and the difficulty in differentiating COVID-19 
from other pneumonia cases due to similar CT imaging 
characteristics. To address these challenges, there is an urgent 
need for intelligent and precise CAD systems that leverage 
adaptive DL models, incorporating active and incremental 
learning approaches. Future research directions should focus 
on innovations in model design, multi-modal learning, and 
real-world applications, ultimately driving advancements 
in personalized medicine and precision diagnostics. This 
comprehensive review underscores the transformative 
potential of DL in revolutionizing CT image classification, 
paving the way for improved disease detection and enhanced 
clinical decision-making.
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