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Abstract

We examine the seasonality of asthma-related hospital admissions in Melbourne, Australia,

in particular the contribution and predictability of episodic thunderstorm asthma. Using a

time-series ecological approach based on asthma admissions to Melbourne metropolitan

hospitals, we identified seasonal peaks in asthma admissions that were centred in late Feb-

ruary, June and mid-November. These peaks were most likely due to the return to school,

winter viral infections and seasonal allergies, respectively. We performed non-linear statisti-

cal regression to predict daily admission rates as functions of the seasonal cycle, weather

conditions, reported thunderstorms, pollen counts and air quality. Important predictor vari-

ables were the seasonal cycle and mean relative humidity in the preceding two weeks, with

higher humidity associated with higher asthma admissions. Although various attempts were

made to model asthma admissions, none of the models explained substantially more varia-

tion above that associated with the annual cycle. We also identified a list of high asthma

admissions days (HAADs). Most HAADs fell in the late-February return-to-school peak and

the November allergy peak, with the latter containing the greatest number of daily admis-

sions. Many HAADs in the spring allergy peak may represent episodes of thunderstorm

asthma, as they were associated with rainfall, thunderstorms, high ambient grass pollen

levels and high humidity, a finding that suggests thunderstorm asthma is a recurrent phe-

nomenon in Melbourne that occurs roughly once per five years. The rarity of thunderstorm

asthma events makes prediction challenging, underscoring the importance of maintaining

high standards of asthma management, both for patients and health professionals, espe-

cially during late spring and early summer.
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Introduction

Seasonal variation in admissions to hospital for the treatment of asthma is a phenomenon that

has been documented in many different regions of the world [1, 2]. Previous studies have

found associations between asthma exacerbations and both higher and lower air temperatures

or humidity [3], the change in air temperature within a day [4], the prevalence of respiratory

viral infections [5], and outdoor concentrations of air pollutants and allergens [6]. A well-rec-

ognised pattern is the autumn peak of asthma exacerbations in school children associated with

returning to school in February in the Southern hemisphere, and September in the northern

hemisphere [7, 8]. Individual clinical characteristics (e.g. impaired pulmonary function) also

explain a large proportion of the variation in seasonal and geographic patterns in asthma [9,

10].

Thunderstorm asthma is a less well-recognised seasonal syndrome that is characterised by

a sudden increase in the number of people with symptoms of acute allergic asthma following

a thunderstorm [11]. Apart from a thunderstorm, high levels of airborne allergens such as

pollen grains and fungal spores are thought necessary. Severe episodes of thunderstorm

asthma, when there is a large spike in hospital admissions, can rapidly overwhelm local

health services and place hospital and intensive care units under strain. In Australia, docu-

mented episodes of thunderstorm asthma have all occurred in late spring or early summer,

when the grass pollen season and increased thunderstorm activity coincide [12, 13]. How-

ever, the mechanisms by which thunderstorms and aeroallergens interact with individual

risk factors to cause severe allergic asthma are only partly understood. A commonly cited

explanation is that changes in pressure, temperature or humidly associated with thunder-

storms cause the rupture of whole pollen grains, releasing small allergenic fragments that are

able to travel beyond the pharynx to the small airways, with cold down-drafts or outflows

from the thunderstorm helping to concentrate these allergenic fragments at ground-level

[12, 14]. However, not all thunderstorms are associated with the phenomenon, severe epi-

sodes are relatively uncommon [11], and a range of allergenic particles including fungi and

pollen have all been implicated [15].

Thunderstorm warnings have been issued by meteorological agencies for decades [16] and

operational pollen forecasts exist for certain taxa in some parts of Europe, North America and

Australia [17, 18]. Even though in regions where thunderstorm asthma occurs, it is acknowl-

edged that a better understanding of the contributing factors would assist local health services

in planning and asthmatic individuals in managing their condition. We are only aware of two

thunderstorm asthma prediction services, namely those operating in Wagga Wagga (in New

South Wales) [19] and Victoria [20]. Melbourne, Australia, is a particularly interesting location

in this regard, as between 1984 and 2016 the city experienced at least six thunderstorm asthma

events, with the last of these events on 21st November 2016, being the most extreme [13, 21–

25].

Here we aim to evaluate the potential for predicting thunderstorm asthma episodes by

studying asthma-related hospital admissions in Melbourne over a 16-year period (n.b. this

period does not include the event on November 21, 2016 as admissions data for the year were

not available). We begin by examining the seasonality of asthma for the whole population and

different age groups, and use non-linear statistical regression to predict the daily numbers of

asthma-related admission. The predictor variables in these regression analyses account for sea-

sonal variation, thunderstorm indicators, weather, air quality and ambient pollen concentra-

tions. We examine the association between these environmental factors and asthma admission

rates. From this time-series, we identify days with unusually high asthma admissions and test

the capability of our models for predicting these high asthma admission days.
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Materials and methods

Data

Health records. Admissions data for public hospitals within the Greater Melbourne

region for the period January 1990 to June 2015 were provided by the Victorian Department

of Health and Human Services and were extracted from the Victorian Admitted Episodes

Dataset. Diagnoses were coded according to the World Health Organisation’s International

Classification of Diseases (ICD) 9th revision (ICD-9) until March 1998, and thereafter accord-

ing to the 10th revision (ICD-10). Data were extracted for patients with a principal diagnosis of

asthma (ICD-9 code 493 and ICD-10 codes J45, J46) and included the patient’s age (by 5-year

intervals: 0-4, 5-9, . . ., 80-84 and 85+), gender and the local government region of patient’s

place of residence. Time of admission was not provided, so the number per day spans 00:00h

until 23:59h. Data were available for 9312 days and 170344 admissions in total, with a mean

admission rate of 0.543 admissions per day per 100,000 population (all age groups included).

The project was approved by the Human Research Ethics Committee of Austin Health.

Airborne pollen. Daily pollen concentrations were measured from October 1st to Decem-

ber 31st each year since 1991, a period that includes the grass pollen season in Melbourne [18].

The sampling site at the University of Melbourne (in Parkville, Victoria) is 1.7 km north of

central Melbourne (defined as the General Post Office). Measurements were taken at 13 m

above ground level until 2006 and subsequently at a nearby site 20 m above ground level. Sam-

pling locations are shown in S1 Fig. This dataset spans most of the period of the asthma admis-

sion records. Samples were collected using a Burkard volumetric trap (Burkard Manufacturing

Co. Ltd., Rickmansworth, Hertfordshire, UK), and pollen grains were identified by micros-

copy (for protocols, see [26]). The classification was limited to grass taxa or non-grass taxa.

The choice to focus on grass pollen (as opposed to other aeroallergens) was based on the avail-

ability of this data and the assumption that grass was the major outdoor aeroallergen in the

region, a finding supported by previous studies [23]. Measured concentrations represent a

24-hour average from 16:00h one day to 16:00h the next day. The measured concentration is

associated with the day in which the measurement concluded (as this day covers 67% of the

measurement period). While the grass pollen season in the Melbourne region peaks around

November and December, pollen will be present in the air throughout the year, with several

tree species emitting large quantities of pollen in the months of July through to September

[26]. However, data on other taxa were not available for the time-period of this study.

Meteorology. We used half-hourly measurements of wind speed and direction, precipita-

tion, temperature and relative humidity; these data were recorded by the Australian Bureau of

Meteorology at Melbourne Airport, located 19 km to the north north west of central Mel-

bourne (S1C Fig). Values from midday were used in the regression analyses, apart from pre-

cipitation (which used total daily rainfall from 00:00h until 23:59h). The choice of the midday

snapshot, rather the daily averages, was related to the assumption that day-time values were

more representative of exposure than averages; furthermore, in the case of allergic asthma,

aeroallergens such as pollen can be assumed to be found at higher concentrations during the

day (due to stronger wind speeds and greater surface heating). The analysis presented below

was performed using either midday meteorological snapshots or daily mean values, and while

regression coefficients showed minor differences the resulting conclusions were ostensibly

identical.

For the identification of thunderstorms, several different thunderstorm indicators were

considered (discussed in detail in Appendix 1). A thunderstorm was deemed to have occurred

when reported by the meteorological observers at Melbourne Airport; this corresponded to

the code “TS” in the aviation weather reports (METAR/SPECI). This site has a wide field of
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view and is staffed continuously by trained meteorological observers, hence it provides an

excellent vantage point for detection of thunderstorm activity in the vicinity of the city.

Air quality. Hourly measurements of ozone (O3) and airborne particulate matter with an

aerodynamic diameter less than 2.5 μ m (PM2.5) or 10 μ m (PM10) were measured by the Vic-

torian Environmental Protection Agency. Data were available at a total of nine sites (not all

species were recorded at each site). The monitoring network changed over the 11 years that

these data spanned, and as such we chose to use only data from a single monitoring site (in

Alphington, 7.1 km north east of the Melbourne central business district) rather than taking a

spatial average. The Alphington monitoring site was the closest long-term monitoring site to

the city not affected by major industrial developments. For each species, we calculated average

concentrations across all hours of the day (i.e. 00:00h until 23:59h). These data were available

only for the period 2003-2014. In the analysis presented below, we did not use PM10 as an

explanatory variable, as it is highly correlated with PM2.5 (R2 > 0.74), and of the two PM2.5 is

associated with stronger health effects [27].

Analysis

Analysing patterns of temporal variation. The full time-series of asthma admissions

(1990-2015) exhibited variation on a range of scales. A strong annual cycle was observed, as

well as a trend in raw admissions (S3 Fig). The trend can partly be understood by growth of

42% between 1991 and 2015 in Melbourne’s population [28, 29]; however, even population-

normalised asthma admissions showed considerable heteroscedasticity (S4 Fig). In order to

estimate the annual cycle of asthma admission rates, we fitted a smooth curve (a cyclical cubic

spline) to the population-adjusted daily admission rate as a function of day-of-year. This was

done both for all individuals in the dataset and separately for different age groups (Fig 1). For

the spline fit, the number of degrees of freedom was estimated by generalised cross validation

[30].

Prediction of asthma hospital presentation rates via regression. We used non-linear

statistical regression to help understand factors affecting day-to-day variation in asthma

admissions, and assess the predictability of such admissions. When configuring the regression

models, various choices had to be made as to which variables to include, how to treat these var-

iables and the time period to be considered. As these choices affected the results, we shall pres-

ent the outcomes from eight different regression models (summarised in S2 and S3 Tables)

and describe findings that were consistent across multiple models.

Generalized additive models, or GAMs [30, 31], were fitted to the population-adjusted

daily admission rate, with the following predictor variables: the day-of-year (as a continuous

variable), the day of the week (as a categorical model), relative humidity, temperature, precipi-

tation, north-south wind speed, east-west wind speed, thunderstorms, grass pollen concentra-

tion and non-grass pollen concentration. The GAMs allowed for non-linear relationships

between the dependent and the continuous independent variables (S6 to S13 Figs). Additional

GAMs were fitted to examine the effect of air pollutants (O3 and PM2.5) and the interaction

between thunderstorms and pollen. Further, the temperature and relative humidity terms

were decomposed into two components: a rolling, backward-looking 14-day mean and the

daily deviation from this rolling mean (the sum of the two components is the original daily

value). Similarly, in some of the regression models the mean pollen concentration for the pre-

vious 3 days were included as predictor variables; these “lagged” means did not include the

value from the day of interest. Automatic smoothness selection was applied using generalised

cross validation, aiming to find a balance between additional degrees of freedom and minimis-

ing the out-of-sample prediction error (similar to minimising the Akaike Information
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Content); this process allowed for implicit variable selection, such that terms that did not

appear to contribute to the fit were effectively dropped from the model. S6 to S13 Figs show

the fitted splines from the GAMs.

The full time-series (1990-2015) could not be used because, despite careful matching of the

ICD-9 and ICD-10 codes, inconsistencies between the two coding periods were observed.

Fig 1. seasonal cycle in population-normalised asthma-related hospital admissions. The seasonal cycle in population-normalised asthma-related hospital admissions,

normalised by the population size in each age-gender category. The individual panels show the cycle for the full population (A), children and teenagers (B), working-aged

adults (C) and retiree-aged adults (D). The dashed lines show the effect plus or minus one standard error of the fitted cyclical cubic spline. Note the different scales on the

y-axis in the four panels.

https://doi.org/10.1371/journal.pone.0194929.g001
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Furthermore, a change occurred in 1999 in the archiving of meteorological observer data from

Melbourne Airport that affected the consistency of the thunderstorm indicator used in this

study. Accordingly, regression analysis was performed for the period 2000-2015. When air

quality variables were included, data availability further restricted the period being considered

to 2003-2014. Models using meteorological and air quality variables only were fitted for the

full year, and models also using the pollen data were fitted for the October to December period

due to the limited availability of these data (see S3 Table).

The results of the regression models are presented as t-statistics, F-statistics and p-values

from the associated tests of the model parameters, as well as an estimate of the “effect size” (S4

to S11 Tables, Appendix 2). The effect size aims to quantify the practical significance (c.f. sta-

tistical significance) of the variable. The effect sizes reported are an estimate of the number of

asthma admissions in a population of 4 million (n.b. the population of Melbourne grew from

to 3.45 to 4.53 million over the period June 2000 to June 2015 [28, 29]) attributed to this

explanatory variable (e.g. precipitation) when this variable is at its 95% quantile (or, in the case

of binary or categorical variables, simply when it applies).

Prediction of high-asthma episodes. In order to identify high asthma admissions days

(HAADs) relative to the admissions in the surrounding period, we began by calculating nor-

malised residuals from the admissions time-series. These were obtained by subtracting from

the original admissions time-series a running trimmed mean and then dividing the result by

a running trimmed standard deviation; both trimmed statistics were based only on the cen-

tral 50% of values within the centred 31-day window (S5 Fig). We defined a HAAD as having

a normalised residual of 4.5 or greater (i.e. 4.5 local standard deviations above the local

mean), as this corresponded to a sharp departure from an otherwise smooth curve in the

Gaussian quantile-quantile plot (S14 Fig). A total of 16 HAADs met this criterion, of which

10 were in the October-December period, one was in mid-September, and five fell in mid- to

late-February (Table 1, S15 Fig). A logistic regression model was used to predict the binary

variable of whether a given day would be a HAAD or not; the choice of predictor variables

was the similar to model 3 (S3 Table) but with two exceptions. Firstly, spline terms were

replaced with linear terms (apart the day-of-year effect, for which the fitted term shown in

Fig 1A was used), and secondly the weekday effect was replaced by a binary working day vs.

non-working day (accounting for both weekends and public holidays). Both of these mea-

sures were required to reduce the number of degrees of freedom of the model, given the

small number of HAADs available to fit such models. Only the October-December period

was used to fit this model (given the use of the pollen variables). A random sample of 70% of

individual days was used to train the model, while the remaining 30% was reserved to evalu-

ate the skill of the predictive model. This predictive process was repeated on 100 randomly

sampled test and training sets. The number of HAADs varied in each random sample, but at

least two HAADs were present in each test set (if not, the random selection was performed

again).

We also examined the predictive skill of a machine-learning classifier; the method chosen

was “gradient boosting” [32], which builds a classification model from an ensemble of “base

learners”. Linear base learners were used for most variables, smoothing splines were used for

precipitation, rolling mean temperature and rolling mean humidity (see S6 to S13 Figs for evi-

dence of non-linearity in the GAM fits), and a classification-tree based base-learner was used

for the thunderstorm and pollen variables (thus allowing for interactions).

Statistical software. The R statistical computing environment was used for all analyses

[33]. The R package mgcvwas used for fitting the GAMs with penalised regression splines

[31]. Gradient boosting was performed using the R package mboost [34].

Seasonal asthma in Melbourne, Australia, and some observations on thunderstorm asthma

PLOS ONE | https://doi.org/10.1371/journal.pone.0194929 April 12, 2018 6 / 24

https://doi.org/10.1371/journal.pone.0194929


Results

Seasonality

In the full time-series (1990-2015) there was a clear seasonal cycle of asthma emergency depart-

ment presentations with four peaks that were centred in late February, June, August and mid-

November (Fig 1A). The late February peak was likely due to the return-to-school effect as it

occurred two to three weeks after the start of the school year following the summer holidays and

Table 1. Details of the HAADs. Abbreviations: WK = day of week, RA = raw admission numbers, NA = normalised admissions given as the number of admissions per

100,000 population, WS = wind speed at Melbourne airport at midday (units = km/h), WD = wind direction (i.e. from which the wind is blowing) at Melbourne airport at

midday (units = degrees clockwise from North), EW = east-west component of the wind-speed at Melbourne airport at midday (units = km/h, positive means winds from

the west), NS = north-south component of the wind-speed at Melbourne airport at midday (units = km/h, positive means winds from the south), PR = precipitation at Mel-

bourne airport from 00:00h to 23:59h (units = mm), TM = temperature at Melbourne airport at midday (units = ˚ C), RH = relative humidity at Melbourne airport at mid-

day (units = %), TS = thunderstorm reported at Melbourne airport from 00:00h to 23:59h (Y = yes, N = no), GR = daily grass pollen concentration at the University of

Melbourne averaged from 16:00h the previous day to 16:00h the date stated (units = grains/m3), NG = daily non-grass pollen concentration, xlg = “lagged” average value of

variable x over the 3 days prior to the given day (i.e. not including the value on the given day), O3 = daily average ozone (units = parts per billion by volume), PM2.5 = daily

average particulate matter with an aerodynamic diameter less than 2.5 μ m (units = μ g/m3), NA = not available.

Date WK RA NA WS WD EW NS PR TM RH

1993-02-14 Su 69 2.3 28 360 0.0 -28.0 0.0 27 37

1993-02-15 Mo 70 2.3 59 350 10.2 -58.1 0.8 24 47

1994-11-20 Su 52 1.7 26 310 19.9 -16.7 3.6 23 33

1996-11-03 Su 52 1.7 37 360 0.0 -37.0 2.5 19 73

2001-02-18 Su 54 1.7 42 10 -7.3 -41.4 0.0 29 28

2001-11-25 Su 53 1.6 31 340 10.6 -29.1 1.2 20 38

2003-11-20 Th 76 2.3 22 350 3.8 -21.7 4.4 30 45

2005-02-21 Mo 47 1.4 13 250 12.2 4.4 0.0 22 67

2009-02-16 Mo 52 1.4 9 70 -8.5 -3.1 0.0 24 44

2009-10-31 Sa 58 1.5 26 10 -4.5 -25.6 9.4 29 39

2009-11-01 Su 49 1.3 2 90 -2.0 0.0 1.6 16 90

2010-11-13 Sa 71 1.8 21 180 0.0 21.0 19.8 14 94

2010-11-25 Th 144 3.7 24 220 15.4 18.4 23.0 19 92

2011-10-29 Sa 65 1.7 22 240 19.1 11.0 11.4 19 56

2011-11-08 Tu 73 1.9 13 70 -12.2 -4.4 7.6 22 71

2013-09-16 Mo 55 1.3 21 10 -3.6 -20.7 1.8 16 64

Date TS GR NG GRlg NGlg O3 PM2.5

1993-02-14 Y NA NA NA NA NA NA

1993-02-15 N NA NA NA NA NA NA

1994-11-20 N 107 336 73 126 NA NA

1996-11-03 Y 251 281 102 258 NA NA

2001-02-18 N NA NA NA NA NA NA

2001-11-25 N 48 151 76 227 NA NA

2003-11-20 Y 60 761 91 820 24 9

2005-02-21 N NA NA NA NA 11 8

2009-02-16 N NA NA NA NA 17 22

2009-10-31 Y 105 126 31 84 25 5

2009-11-01 N 22 44 59 100 18 5

2010-11-13 N 24 130 147 492 14 NA

2010-11-25 N 23 109 92 675 11 3

2011-10-29 N 32 84 76 385 NA NA

2011-11-08 Y 98 660 109 489 28 NA

2013-09-16 Y NA NA NA NA NA NA

https://doi.org/10.1371/journal.pone.0194929.t001
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primarily affected children and adolescents [35], with a smaller effect seen in working-aged adults

(Fig 1B and 1C). Similarly, the June and August peaks (which are not differentiated in the 65+

age-group) were most likely related to the winter-time exacerbations induced by upper-respira-

tory viral infections [36]. The November peak, presumably related to seasonal allergies, has a sim-

ilar height to the June peak in the full population and was the largest of the asthma admissions

peaks for children and adolescents; it was not evident, however, in the 65+ age-group.

Most admitted individuals were children or teenagers, with 52% of admissions aged 0-9,

11% aged 10-19, 29% aged 20-64 and 8% aged 65 or older. Within each age-group, there were

clear differences in the overall admission rates between males and females (Fig 1), with more

male patients than female patients among children and younger teenagers (below 15), and

more female than male patients among older teenagers (aged 15 or more) and adults. These

patterns are well-recognised in asthma admissions [37]. Apart from the differences in magni-

tude, the seasonal cycle of admissions were generally very similar for male and female patients

within a given age-group.

Closer examination of the distribution of admissions by age and sex (Fig 2) shows that the

largest group of asthma patients was comprised of boys aged less than 10, constituting 30-40%

of admissions in most months, and around 50% for HAADs in February. Girls aged less than

10 represented 20% or less of all admissions in most months except February. The mean age of

male patients was around 10-15 years, while the mean age of female asthma patients admitted

to hospital ranged between 20-33 years. Male admissions were more common in all months

other than January (when there were very few admissions) and from June to August (coincid-

ing with the winter peak). While asthma admissions for the February HAADs tended to be

younger than the February average, the November HAADs showed an overrepresentation of

adult patients (for both sexes) relative to the distribution for November.

We applied a binomial test of proportions to assess whether, within a given age group, the

fraction of male patients was significantly different from 0.5. Differences (significant at the

0.05 level) were found in virtually all age categories, with the exception of when one restricts

the analysis to HAADs only (the lack of statistical significance in such cases is likely due to the

smaller number of cases).

Prediction of asthma hospital admissions

As mentioned previously, eight different regression models were fitted, which differed in

terms of which groups of predictor variables to use, and which period to run (see S2 and S3

Tables). In order to remain robust to the more sensitive elements, we summarise conclusions

over a range of models (S4 to S11 Tables and S6 to S13 Figs). The regression was performed

for the age-group 0-64, since the 65+ age group shows little response to the November (sea-

sonal allergy) peak. The most “informative” models (having the greatest predictive skill in out-

of-sample data) were model 3 & 7 (S2 and S3 Tables). These models included the cyclical day-

of-year effect, non-linear effects related to meteorological, pollen and air quality variables (air

quality variables appear in Model 7 but not in Model 3), the impact of thunderstorms and day-

of-week effects; these models did not include interaction terms between the thunderstorm and

pollen variables. The inclusion of such interaction terms added substantial complexity but did

not improve the out-of-sample predictive skill. Model 3 can be expressed as:

yi ¼ cþ SðDOYiÞ þ sðRHrl;iÞ þ sðRHdv;iÞ þ sðTMrl;iÞ þ sðTMdv;iÞ þ sðPRiÞ

þ sðNSiÞ þ sðEWiÞ þ sðGRiÞ þ sðNGiÞ þ sðGRlg;iÞ þ sðNGlg;iÞ

þ bMo � IMo;i þ bTu � ITu;i þ bWe � IWe;i þ bTh � ITh;i þ bFr � IFr;i þ bSa � ISa;i

þ bTS � ITS;i þ ei;

Seasonal asthma in Melbourne, Australia, and some observations on thunderstorm asthma

PLOS ONE | https://doi.org/10.1371/journal.pone.0194929 April 12, 2018 8 / 24

https://doi.org/10.1371/journal.pone.0194929


where yi is the asthma admissions rate (per 100,000 population) on day i, c is a constant offset

parameter, s(x) is a mean-zero cubic spline (for predictor variable x), S(x) is a mean-zero cycli-

cal cubic spline, DOYi is the day of the year, RH is the relative humidity, TM is the tempera-

ture, PR is the precipitation, NS is the north-south wind component, EW is the east-west wind

component, GR is the grass pollen concentration, NG is the non-grass pollen, βY is a parameter

associated with variable Y, IX is an indicator variable (equal to 1 when condition X is true, and

0 when it is false) and ei is the residual (assumed to be independent, following a Gaussian dis-

tribution with mean 0 and constant variance). The subscript Yrl,i denotes a backward-looking

rolling 14-day mean for variable Y, Ydv,i denotes the daily deviation from this rolling mean,

Fig 2. Proportion of admissions by age and gender over the year and for HAADs. The proportion of admissions by gender and five-year

age-group (stacked bar-chart) and the mean age of admitted individuals per gender (triangles), shown for HAADs in February and

November and each month of the year. The left y-axis applies to the stacked bar-charts, while right y-axis applies to the points. The x-axis

labels show the set of days and the gender of the individuals. To the left of the vertical black-grey dashed line is the same representation of

the age-gender distribution for HAADs only or all days. Vertical grey dashed lines separate data for different months.

https://doi.org/10.1371/journal.pone.0194929.g002
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and Ylg,i denotes a lagged mean of the previous three days before day i. The conditions for

binary variables are encoded as follows and appear as subscripts: thunderstorm (TS), Monday

(Mo), Tuesday (Tu), Wednesday (We), Thursday (Th), Friday (Fr) and Saturday (Sa). For the

categorical variables of weekday and the thunderstorm indicator, the reference levels were

Sunday and “no thunderstorm”. Model 7 also has terms representing smoothed effects of par-

ticulate matter and ozone. We note that the model-fitting process had the ability to implicitly

exclude uninformative variables, and the east-west wind component (EW) was found to con-

tribute little predictive information when all other variables were considered.

When looking across the whole year (Models 1, 5) the seasonal cycle in admissions (Fig 1A)

was the most important explanatory variable for observed asthma admission rates, followed

by the rolling mean temperature and the rolling mean humidity. The peaks in the annual sea-

sonal cycle reflect those shown in Fig 1 (which was estimated without other covariates); for the

October-December period (Models 2-4, 6-8), admissions peaked between October 27th and

November 6th. The effect of the fortnightly rolling-mean temperature shows increased asthma

admissions at around 20 degrees, and decreased admission rates below 15 degrees or above 25

degrees. For the rolling-mean relative humidity, admission rates were higher above 55-60%

RH, and lower below this point.

For the models fitted with data from the October-December period only (models 2-4 & 6-

8), rainfall explains a relatively larger part of the variation (c.f. Models 1, 5), with admissions

exacerbated for days with 15-25 mm rainfall in particular. Thunderstorms were associated

with an increase in asthma admission rates, estimated at in around 1-2 additional admissions

(in a population of 4 million) on thunderstorm days. When the interaction between thunder-

storms and the pollen variables are allowed, thunderstorms without pollen led to a decrease (of

roughly 1.4 fewer admissions) in admission rates, whereas high levels of grass pollen over the

three days preceding the thunderstorm were associated with increased admissions (roughly 3-

5 additional admissions).

Considering the October-December period, the effect of the daily grass and non-grass pol-

len was not consistent across the eight models. The lagged pollen variables (averaged over 3

days prior to the given date), however, were associated with increased asthma admission rates.

When average grass pollen concentration of the previous three days exceeded 70 grains/m3,

the exacerbation became significant, plateauing at around 4 additional admissions per day for

mean concentrations of 100 grains/m3 or more. Increased asthma admissions were associated

with periods when the mean non-grass pollen concentrations over the previous three days ran-

ged between 500 and 1300 grains/m3.

None of the air quality variables showed a consistent association with increased asthma

admissions, despite the well-characterised impacts of fine particulate matter and ozone in par-

ticular [38, 39]; this is likely due to limitations of the monitoring network in estimating popu-

lation-level exposure. This result was found both when using comparing admissions with

measurements from one stable site (Alphington) and when averaging over data from available

sites (not shown).

The day-of-week effect was apparent in all models, with Sunday and Monday having the

highest admissions (the effect size was around 2-3 more admissions on Sunday and Monday

than on Thursday or Friday). The discrepancy between the different weekdays varied through-

out the year, with the discrepancy between Sunday/Monday and the rest of the week being

greatest during the months of February and March (S16 Fig), and smallest in January; we note

that January is the main summer holiday period for Melbourne residents.

In the GAMs (S6 to S13 Figs) there was evidence of non-linear relationships between some

of the explanatory variables and the observed admission rates. Apart from the annual seasonal
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cycle (Fig 1A), considerable non-linearity was exhibited for precipitation, the rolling mean

temperature and the rolling mean humidity.

Considering the output of one of the fitted models (model 3, S3 Table), we see that the fitted

values are dominated by the seasonal cycle (Fig 3). The fitted model accounts for 53% of the

variation in the observations, although once the seasonal cycle is subtracted from both the

observed and fitted values, the correlation fell to 31%. Furthermore, the model had little skill

in predicting the extreme cases.

A high asthma episode of particular interest is the 21st November 2016, as it was the most

extreme on record. While our admissions dataset does not extend into 2016, we have applied

each of the eight models to the environmental covariates of that day. In the case of two of the

Fig 3. Modelled and observed population-normalised asthma admission rates (above), and deseasonalized equivalents (below).

Upper row: Time-series of observed population-normalised asthma-related hospital admissions (black) and the corresponding

predicted values from the model (red). Lower row: the same time-series minus the seasonal mean. Left column: a time-series of these

data is shown for a shorter period (2010-2015) to highlight the seasonality. Right column: a scatter plot of modelled versus observed

values for the full data series (2000-2015), shown as a two-dimensional density plot (with outliers given as points); these panels also

show some summary statistics and the least-squares linear model fit.

https://doi.org/10.1371/journal.pone.0194929.g003
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models (models 1 and 5, which were trained on the full annual time-series and did not rely on

pollen), the predicted admission rate for this day was in the top 1% of predicted admission

rates, while for the other models it was on par with the top 3%-6% of predicted admission

rates. However, the models showed no skill in predicting the magnitude of the event (which

was unprecedented in scale); all predicted between 24.6 and 28.5 admissions. This pales in

comparison to the 476 excess admissions (above the seasonal average) as reported by the Vic-

torian Inspector General for Emergency Management [40]; n.b. the figure of 476 excess admis-

sions is for a slightly larger area, encompassing both the Melbourne and Geelong regions (the

Greater Melbourne Region had a population of 4.485 million in 2016, and Geelong population

of 0.279 million at a national census in August 2016 [41]) and a longer period (30 hours vs. 24

hours). Regardless, all eight models dramatically underestimated the number of admissions.

High-asthma episodes

Table 1 lists the 16 most extreme HAADs during the 25-year period. Of these, 10 were during

the October-December period, one fell in mid-September and the remaining five occurred

during the last two weeks of February. All six HAADs in February occurred on a Sunday (two

dates) or a Monday (four dates). Two of the HAADs (2003-11-20, 2010-11-25) have previously

been described as “thunderstorm asthma” events [23, 24].

Thunderstorms in Melbourne are also highly seasonal, with an average of roughly 1.5-2

thunderstorm days per month between November and January. This compares to 0.5 thunder-

storm days per month or fewer from April to September [42] and around 1.3 thunderstorm

days per month in February, March and October. However, days with thunderstorms were

still over-represented among the HAADs (44% vs. 12% for the full dataset, p< 0.001 for the

χ2-test for equality of proportions), as were days with at least 2 mm of rainfall (56% vs. 19%,

p< 0.001) and winds over 15 km/h from the north (56% vs. 26%, p = 0.05). Considering the

HAADs occurring in the October-December period, pollen concentrations above 50 grains/

m3 were over-represented in the daily concentration (50% vs. 24% for grass, p = 0.11), the aver-

age over the previous three days (90% vs. 26% for grass, p< 0.001), and the previous seven

days (70% vs. 27% for grass, p< 0.01); none of the differences for non-grass pollen were statis-

tically significant.

Prediction of high-asthma episodes

In light of the poor skill of the GAMs in predicting extreme asthma admissions cases (Fig 3),

we now consider the skill of the logistic regression model or a gradient boosting model in the

prediction of HAADs. For each of the 100 random splits between the testing and training data-

sets, the number of predicted and observed non-HAADs and HAADs was calculated. The fre-

quency of HAADs in the training set was used to set the threshold response values of each

model to discretise the modelled data (i.e. if there were four HAADs present in the test set, the

dates with the four highest predicted probabilities were taken to be the “modelled HAADs”).

Averaging across 100 replicates, we see that the models rarely correctly identified HAADs,

and most of the predicted HAADs were not actually HAADs (Table 2). Gradient boosting

appeared the more skilful of the two approaches, although both methods had low true positive

rates (13% for the logistic regression and 17% for the boosting).

Discussion

Although multivariate statistical regression was successful in simulating seasonal variation in

asthma admissions, it explained only a small fraction of the variation around the seasonal aver-

age. These findings echo those of Soyiri et al. [43], who used similar regression techniques to
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examine two years of asthma admissions data in London. The statistical classification of

HAADs vs. non-HAADs showed similarly poor skill, which is partly a result of the rare nature

of HAADs. The small number of cases makes it difficult to build up a robust representation of

conditions conducive for such an effect. It is possible that other predictive techniques (e.g.

based on prognostic weather models, coupled to an atmospheric-transport model for pollen)

may prove more successful. The negative results notwithstanding, this study presents a num-

ber of other useful findings regarding the most predictable triggers of asthma at a community

level.

One element that was not considered in this study was exposure estimation, and this this

may be a fruitful direction of study in future. Indeed, the November 2016 event was likely to

have been made more acute as a result of the storm front passing over the city at 17:30h on a

weekday [40].

The strength of the associations may have been weakened by a degree of temporal mis-

match between some of the key variables in the regression analysis. Some variables were

midday snapshots (most of the meteorological parameters), others were accumulated from

midnight to midnight (admissions, thunderstorms, rainfall), and the pollen data were averaged

from 16:00h one day to 16:00h the next day. The limited representativity of midday snapshots

can be seen in the temporal profiles of the meteorological variables over the HAAD days (S17

to S19 Figs); however a sensitivity analysis (not shown) using daily means rather than midday

snapshots yielded virtually the same conclusions. We also note that there can be a degree of

delay between the onset of asthma and asthma admissions. On the 25th of November 2010, the

most extreme HAAD in the time-series presented here, a storm front reached Melbourne

around 20:00h the previous evening (24/11/2010), yet most of the admissions were recorded

the following day [24, 25].

Seasonality in health care attendances for asthma is well recognised, although the size and

timing of peaks varies by age-group and geographic location. Spring peaks are usually attrib-

uted to aeroallergens, winter peaks to increases in respiratory viral infections in the commu-

nity, and autumn peaks have been associated with the return to school period in children [2, 5,

44]. Consistent with the wider literature, peaks in the study occurred in all seasons with the

lowest asthma admission rate in the summer months of December and January. Asthma is a

heterogeneous syndrome with many different causal factors, precipitants and clinical pheno-

types. For example, asthma that begins in childhood is commonly allergic in origin, while

asthma that initiates in adulthood is less commonly associated with an allergic predisposition

or immediate allergic responses to environmental triggers [45, 46]. The differences in the sea-

sonal patterns of presentations in different age-groups are likely to reflect the different clinical

phenotypes of asthma. There was some evidence for differences in the patient cohorts for

HAADs relative to all days; the admitted patients tended to be younger during February

HAADs than the Feburary norm, while the opposite was true for HAADs in November. While

asthma exacerbations during thunderstorm epidemics is strongly associated with an acute

Table 2. Mean number of predicted and observed HAADs from the October-December period, averaging over randomly selected test datasets. The left half of the

table shows values for the logistic regression, while the right half of the table shows values from gradient boosting. Note that the “observed” number of HAAD/non-HAAD

days has a fractional component, due to the averaging over randomly partitioned testing/training sets.

Predicted

Logistic regression Boosting

Not HAAD HAAD Not HAAD HAAD

Observed Not HAAD 401.51 2.33 402.16 2.22

HAAD 2.48 0.38 2.36 0.50

https://doi.org/10.1371/journal.pone.0194929.t002
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allergic response [47], it is not possible to identify the underlying reason for asthma symptoms

in any individual case from hospital administrative datasets. Training the models on the subset

of asthma admissions restricted to those caused by acute allergic responses would likely have

improved the capacity of the statistical model to predict high asthma admission days associated

with thunderstorms. This, however, was not possible due to the small number of cases with

this particular diagnosis, and the considerable temporal variation with which this diagnosis

was applied (much more in some years than others).

After the seasonal cycle the most important predictor of asthma admission rates was the

moving-average relative humidity; asthma rates were higher after humid periods. One possible

explanation is that this is a statistical artefact, arising because trends in the moving-average rel-

ative humidity are a marker for year-to-year variation in the timing of the peaks in asthma

admissions. Another interpretation is that this is a meaningful association. It may reflect a

change in behaviour (more time being spent indoors, thus increased exposure to indoor aero-

allergens such as dust mites), or a change in either indoor or outdoor aeroallergens, such as

dust mites or fungal spores. Fungal sensitisation and asthma severity show a close association

[48]. Spores for some fungal taxa are found more often in humid conditions [49], and spores

of some outdoor fungal taxa have been associated with increased asthma admissions in chil-

dren and adolescents in Melbourne [50].

The effect of behaviour may be reflected in the differential admission rates for the days of

the working week throughout the year. In Melbourne, the month of January generally coin-

cides with summer holidays (for all school children and many adults). Also potentially

reflecting behaviour patterns, all the HAADs from the return-to-school period fell on either

a Sunday or a Monday (Table 1). There appeared to be a non-linear response for rainfall,

leading to increased admission as rainfall increased until about 20mm/day and then appear-

ing to fall thereafter (n.b. the frequency of such intense rainfall declines substantially at this

point); the declining asthma rates on very wet days may be either due to causative reasons

(e.g. wet deposition of outdoor aeroallergens) or behavioural changes affecting time spent

outside.

The impact of pollen was complicated; associations were found between asthma admission

rates and not only the daily grass pollen concentration, but also the average concentration

from the previous three days. This could reflect sensitisation due to recent exposure to the

aeroallergen [51], or it might reflect other delayed allergic or non-allergic pathophysiological

pathways. While high levels of non-grass pollen in the prior three days were associated with a

slight elevation in asthma admission rates, the total daily non-grass pollen had no clear impact

on asthma admissions; this taxonomic grouping is most likely too broad to provide much

information.

Thunderstorms by themselves were seen to have a mild impact on asthma admission rates

(associated with an increase of around 10%). The evidence for the modulating effect of pollen

was somewhat ambiguous, with a stronger association to the lagged pollen levels than the daily

pollen concentration. Clearly the impact of storms on asthma varies, and the treatment in this

study is extremely simple (a day either did or did not have a thunderstorm). A more nuanced

classification of storm types may improve our understanding of their impacts on respiratory

health.

The air pollutants examined (O3 and PM2.5) are well recognised precipitants of asthma

exacerbations and have been documented to be associated with admissions for asthma in mul-

tiple studies the world over [38, 39]. However in this analysis they were not associated with

asthma admissions, either for concentrations from a single site or a geographical average. The

relatively limited air monitoring network in Melbourne could have resulted in exposure mis-

classification in individual patients, which would have biased results towards the null.
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Thunderstorm asthma is generally considered a rare event that makes only a small contri-

bution to the total burden of disease from asthma [11]. However at least six thunderstorm

asthma events have been reported in Melbourne over the last 30 years, including the extreme

event of the 21st November, 2016 [13, 21–25]; this contradicts the view of its rarity and that it

may instead be a semi-regular seasonal occurrence, with an average incidence of once every

five years in this region. In general (ignoring the influence of thunderstorms), the rate of

asthma epidemics depends on the threshold used to demarcate such incidents; considering

those cases listed in Table 1, we find an average frequency of two events per three years.

Despite the lack of skill in predicting thunderstorm asthma episodes, one can still character-

ise some of their features, at least for Melbourne. All such incidents have occurred in the sec-

ond to the fourth weeks of November and synoptic-scale changes in wind, temperature and

humidity [25]. Seasonal grass pollen in Melbourne has been associated with seasonal spring

rainfall [52], and grass phenology may be broadly diagnosed from remote-sensing data [53].

Such elements may form part of an operational warning system. However at this stage the sci-

ence has not yet advanced to the stage where the interactions between clinical characteristics

with season, palynology, meteorology and individual clinical factors are understood suffi-

ciently to enable a valid and reliable daily forecasting system during these time periods. It is

clear that February and November are especially high risk months for high asthma admission

days in Melbourne and other parts of Australia (S15 Fig), and that those that occur in late

spring are frequently associated with thunderstorms. Public health messaging prior to and

during these high risk time periods could help individuals at risk, their treating doctors and

health services to be better prepared to manage an event, especially those who are aware that

they have allergies to pollen or other aero-allergens.

Appendix 1

The choice of thunderstorm indicators

Unfortunately there is no unequivocal method for identifying thunderstorms. The Americal

Meteorological Society’s Glossary of Meteorology offers the following definition [55]:

“In general, a local storm, invariably produced by a cumulonimbus cloud and always

accompanied by lightning and thunder, usually with strong gusts of wind, heavy rain, and

sometimes with hail.

It is usually of short duration, seldom over two hours for any one storm. A thunderstorm is

a consequence of atmospheric instability and constitutes, loosely, an overturning of air lay-

ers in order to achieve a more stable density stratification. A strong convective updraft is a

distinguishing feature of this storm in its early phases. A strong downdraft in a column of

precipitation marks its dissipating stages . . .A unique quality of thunderstorms is their

striking electrical activity.”

To add to the complexity of defining thunderstorms, there is some evidence to suggest

that only certain types of thunderstorms risk exacerbating asthma at a population-level [12].

Storms leading to outflow gusts, and with winds coming from the source regions for putative

bioaerosol triggers have elements that may lead to thunderstorm asthma, however the mecha-

nisms are as yet unclear (see, for example, [56]).

In this study, we have not made any assumptions about what types of thunderstorms

may be more likely to instigate asthma exacerbations. The long time-series of 25 years of
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admissions, meteorological and pollen data allows us insights that might not be possible with a

shorter data-set, however it brings with additional challenges.

First, the time-series is too long to make manual identification thunderstorms possible,

such as was done in Marks et al. [12]. Second, different data-sets that may allow us to identify

thunderstorms (henceforth “thunderstorm indicators”) exist for different periods, with limited

overlap. Third, there is no “gold standard” reference in this case. As such, we aim to select the

best thunderstorm indicator available, for the longest possible period.

GPATS lightning strike count around Melbourne. The Global Positioning and Tracking

Systems (GPATS) Pty. Ltd. is a commercial company runs a network of lightning tracking

equipment. A time-series of lightning strike counts within 50 km of the Melbourne GPO was

purchased. The data are given as the total number of strikes per day, and runs from 2003 to

2010. For the purposes of this part of the study, a thunderstorm was deemed to have occurred

if more than 2 lightning strikes were reported on a given day.

Gridded GPATS lightning strike counts. A gridded dataset of GPATS lightning stike

counts [57] was accessed through the Austrlian National Computation Infrastructure (NCI).

The dataset covers the period 2008 to 2015 on a 0.75˚ × 0.75˚ spatial resolution (roughly 75

km × 75 km) and at hourly temporal resolution. To improve match with the GPATS lightning

strick data around Melbourne (above), we restricted the data the 2 × 2 grid-cells closest to Mel-

bourne GPO (or equivalently, those grid-cells for which the centre lies within 75 km of this

location).

Melbourne airport METAR/SPECI. Observer reports used for aviation reporting

(METAR/SPECI) from Melbourne Airport were obtained from the Australian Bureau of

Meteorology for the period 1990-2015, although there was a change in the way the data were

archived around 1999. The METAR/SPECI reports are provided in a very specific encoding.

For this indicator, thunderstorms were deemed to have occurred if the observer reported this

(coded as TS).

Thunder heard at Melbourne airport. The observer reports from Melbourne Airport

also included whether any thunder was heard. For this indicator, thunderstorms were deemed

to have occurred on days when a “thunder heard” report was noted by the observer.

High CAPE at Melbourne airport. Weather balloons record wind speed/direction, tem-

perature, pressure and humidity throughout the vertical profile. Such profiles allow for the cal-

culation of CAPE (convective available potential energy), a widely used measure for the

potential for thunderstorm formation. Thunderstorms require two key ingredients to form: a

large amount of moist air, and a lifting mechanism. The lifting mechanism can be orographic

(air passing over mountains) or convective. The CAPE is a measure of the convective potential

energy. Values over 5 J/kg are considered “high”.

Weather balloons are released at Melbourne airport twice daily, at 00 H UTC (10 am Aus-

tralian Eastern Time) and at 12 H UTC (10 pm Australian Eastern Time). These are archived

(together with weather soundings worldwide) by the University of Wyoming, and soundings

for the period August 1999 to December 2011 were downloaded from from their website [58].

These files also include a number of summary statistics, and among them was the CAPE. For

this indicator, a thunderstorm was recorded when the CAPE was above 5 J/kg.

Strong rain rates. One common feature of thunderstorms is intense rain rates. Half-

hourly observations from all Australian automatic weather stations were purchased from the

Bureau of Meteorology. We calculated hourly rain-rates for the 16 stations within 75 km of the

Melbourne GPO and which had been operational since 2000. For this indicator, thunder-

storms were deemed to have occurred on days when at least 25% of these stations reported

rain rates of 3 mm/hour.
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The Australian Bureau of meteorology’s severe storm archive. The Australian Bureau

of Meteorology’s maintains a database of severe weather events [59]. One cannot select

“thunderstorms” specifically (available options are: Rain, Hail, Wind, Tornado, Lightning,

Waterspout, Dust devil). We extracted reports of all storm types for Victoria for the period

1990-2015. These were then filtered (based on the geographical coordinates of the report

location) to a radius of 75 km around the Melbourne GPO. For this indicator, thunder-

storms were deemed to have occured on a given day if at least one report appeared within

this region.

Comparison of thunderstorm indicators. It was possible to calculate all of the thunder-

storm indicators for a total of 1084 days, spanning three years (2008-2010, with data from 12

days missing). During this overlap period, we calculated the agreement, as measured by the

“Equitable Threat Score”, henceforth the ETS [60]. The ETS is a measure of the skill of a binary

(true/false) prediction, adjusting for the fact that some of the apparent skill may be due to

chance. The ETS has been shown to be subject to bias, and the ETS tends to increase with the

total number of true “events” [60]. As such we acknowledge the limitation; it is used here to

provide some guidance about which thunderstorm indicator to use, rather than an absolute

metric of skill (especially since there is no “reference” set). An ETS value of 1.0 indicates per-

fect agreement, and the statistic ranges from −1/3 to 1.0.

The strongest agreement can be seen between the GPATS around Melbourne, the gridded

GPATS and the METAR (see S1 Table). It can be argued that lightning is a necessary condition

of thunderstorms (which measured by the GPATS data), and the METAR provides us the clos-

est proxy for these data. The METAR indicator is preferable since it provides us with the lon-

gest possible time-series, of which we choose to use the 1999-2015 period. This is because the

change in archiving method for these METAR data during 1999 led to some inconsistencies in

the data, such that we had less confidence in the 1990-1998 period.

Appendix 2

Calculation of effect sizes

S4 to S11 Tables, respectively, results of regression models 1 to 8 (see S3 Table for further

details of each model). They show the t-value (the estimate of the coefficient, normalized by

the associated standard error), the associated p-value from the hypothesis test that this term is

non-zero, and an estimate of the “effect size”.

The motivation for presenting an estimate of the effect size is that there is distinction

between statistical significance and practical significance. If one has an enormous dataset, one

can typically find patterns of high statistical significance but with only trivial practical impact.

By contrast, in a very small dataset, even effects of large practical significance may not be

demonstrable statistically (using the Frequentist statistical approach). Also relevant is that the

presentation of raw regression coefficients is, by itself, uninformative, since variables are gen-

erally on different scales and may have different units.

The effect sizes presented in S4 to S11 Tables represent an estimate of the number of daily

asthma admissions associated with particular causes, assuming a population of 4.0 million (n.

b. Melbourne’s population surpassed 4.5 million in 2015; [29]). For numerical predictor vari-

ables (see S2 Table), this was done by calculating the 0.95 quantile of each predictor variable,

multiplying this by the regression coefficient obtained, and then multiplying again by 40 (the

number of cases in a population of 4.0 million will be 40 times the rate per 100,000 individu-

als); the choice of the 0.95 quantile means that this will be on the upper end of the effect-size

distribution, however it provides a yardstick with which to compare. For binary or categorical

variables, the effect size was simply the regression coefficient multiplied by 40.
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Supporting information

S1 Fig. Maps of the region. Maps of the region. Panel A: Australia, with the state Victoria

highlighted. Panel B: Victoria, with the state capital, Melbourne, labelled. Panel C: The greater

Melbourne metropolitan region, with the location of Melbourne Airport illustrated with an

ascending aeroplane symbol. Panel D: The location of the two pollen sampling sites relative to

the centre of the city (the Melbourne General Post Office). Panels A, B and D were generated

using Google Maps (locations of the samplers on panel D were added manually). Panel C

derives from pp. 5 of [54], with the aeroplane symbol added manually.

(PDF)

S2 Fig. Locations of air quality monitoring sites. Sites are shown relative to the Melbourne

Central Business Distict. The Alphington site is indicated. See S1 Fig for the broader geograph-

ical context.

(PDF)

S3 Fig. Raw (unadjusted) number of admissions per diagnostic category. The top-left and

top-right panels show daily admission numbers for admission categories J45 and J46, respec-

tively, following the World Health Organisation’s International Classification of Diseases

(ICD) 10th revision (ICD-10). The bottom panel displays the sum of the daily counts for these

two diagnostic codes. The J45 category refers to asthma and includes predominantly allergic

asthma, nonallergic asthma and mixed or unspecified asthma. The J45 classification excludes

acute severe asthma, chronic asthmatic (obstructive) bronchitis or chronic obstructive asthma,

eosinophilic asthma, lung diseases due to external agents and status asthmaticus. The J46 cate-

gory refers to status asthmaticus, includeing acute severe asthma.

(PDF)

S4 Fig. Population normalised daily admissions for the 25 year period considered.

(PDF)

S5 Fig. Residuals in the admissions time-series. Residuals in the admissions time-series. A:

residuals normalised by the 31-day centred running mean and standard deviation. B: residuals

normalised by the annual mean and standard deviation. C: population-normalised residuals

minus the seasonal component (Fig 1 in the main text).

(PDF)

S6 Fig. Smoothing spline fits for the non-linear terms for model 1. Smoothing spline fits for

the non-linear terms for Model 1. The solid black line shows the estimated fit; this is sur-

rounded by a grey area, which represents 2 standard errors above and below the estimate.

These confidence bands include the uncertainty about the overall mean (thus each has an aver-

age of 0.0). The blue dashed horizontal line was drawn at y = 0.0 on each plot. The small verti-

cal dashes from the bottom of each panel show the distribution of values of that variable. Note

that the scale on the y-axis differs between the panels. To estimate the corresponding “effect

size” (i.e. the additional number of admissions associated with each term in a population of 4

million), one multiplies the functions by 40. See also S4 Table.

(PDF)

S7 Fig. Smoothing spline fits for the non-linear terms for model 2. See also S5 Table and the

captions of S4 Table and S6 Fig for further details.

(PDF)

S8 Fig. Smoothing spline fits for the non-linear terms for model 3. See also S6 Table and the

captions of S4 Table and S6 Fig for further details.

(PDF)
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S9 Fig. Smoothing spline fits for the non-linear terms for model 4. See also S7 Table and the

captions of S4 Table and S6 Fig for further details.

(PDF)

S10 Fig. Smoothing spline fits for the non-linear terms for model 5. See also S8 Table and

the captions of S4 Table and S6 Fig for further details.

(PDF)

S11 Fig. Smoothing spline fits for the non-linear terms for model 6. See also S9 Table and

the captions of S4 Table and S6 Fig for further details.

(PDF)

S12 Fig. Smoothing spline fits for the non-linear terms for model 7. See also S10 Table and

the captions of S4 Table and S6 Fig for further details.

(PDF)

S13 Fig. Smoothing spline fits for the non-linear terms for model 8. See also S11 Table and

the captions of S4 Table and S6 Fig for further details.

(PDF)

S14 Fig. Quantile-quantile plot of the normalised residual admission rates. Quantile-quan-

tile plot for the residuals normalised by the 31-day centred running mean and standard devia-

tion (see Fig A). The horizontal line, at a value of z = 4.5, shows the threshold above which

dates were labeled as “high asthma admissions days” (HAADs). Above this threshold, points

were drawn in grey if they fall in the October to December period and in black at any other

month of the year.

(PDF)

S15 Fig. Monthly numbers of HAADs and average pollen concentration in Melbourne. The

monthly distribution of HAADs and mean monthly pollen concentration as measured in Mel-

bourne. Grass pollen data shown here are based on Erbas et al. [61].

(PDF)

S16 Fig. Day-of-week effects on asthma admission rates by month of year. The average

admissions per day-of-week, for each month of the year, across the full 1990-2015 period.

(PDF)

S17 Fig. Meteorological data from selected HAADs (part 1). Half-hourly meteorological

data recorded at Melbourne Airport (by the Bureau of Meteorology) on four high asthma

admission dates in the months of October through to December (see Table 1 in the main text).

The cumulative precipitation is reset at 9 am each day. Wind direction is shown when data

were available at the 30 minutes past the hour. Continued in S18 and S19 Figs.

(PDF)

S18 Fig. Meteorological data from selected HAADs (part 2). See S17 Fig for further details.

(PDF)

S19 Fig. Meteorological data from selected HAADs (part 3). See S17 Fig for further details.

(PDF)

S1 Table. Thunderstorm metrics compared with the Equitable Threat Score. The seven

thunderstorm metrics considered, compared using the Equitable Threat Score (ETS), a mea-

sure of the correspondence between the classification of thunderstorm events, corrected for

chance agreement. A value of 1.0 indicates perfect agreement, and the statistic ranges from −1/
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3 to 1.0. The column on the right-hand side show the total number of events indicated during

the three-year period.

(PDF)

S2 Table. Details of variables included in the regression analysis. For each variable,

details are provided of their respective spatial and temporal resolutions. Abbreviations:

BoM = Australian Bureau of Meteorology, MPC = Melbourne Pollen Count. Variable types

are coded as follows: P = predictor, O = outcome, N = numerical, B = binary, C = categorical.

The seasonal effect (the derived variable in the last row) is shown in Fig 1A in the main text.

(PDF)

S3 Table. Summary of regression models considered. Summary of regression models consid-

ered. Abbreviations: Step = use step-wise variable selection?, YD = seasonal or day-of-year

effect, RH = relative humidity, TM = temperature, PR = precipitation, NS = north-south

wind component, EW = east-wst wind component, TS = thunderstorm, GR = grass pollen,

NG = non-grass pollen, WK = weekday, � = decomposed into a rolling (backward-looking)

14-day mean and the daily deviation from this rolling mean, † = consider lagged variable over

different times, A × B = interactions between variables A and B, Y = yes, N = no. When creat-

ing lagged variables for the pollen time-series, two variables were used in the regression (per

pollen type—grass or non-grass): the value on the day of interest, and th means of the 3 days

prior to the day of interest (i.e. not including the value of the day of interest).

(PDF)

S4 Table. Summary of the fit for model 1. Summary of the fit for Model 1 (see S3 Table). The

upper part of the table corresponds to the linear, binary or categorical terms whereas the lower

half of the table provides information about fit of continuous variables that were allowed to

vary non-linearly. The first column in both parts of the table gives the name of each term.

Abbreviations used in the model summaries: yday = day-of-year effect; RH = relative humid-

ity; TM = temperature; PR = precipitation; NS = north-south wind component; EW = east-

wst wind component; TS = thunderstorm; GR = grass pollen; NG = non-grass pollen;

WK = weekday; A:B = the interaction term between binary variable A and numerical variable

B (set to zero when A is false); subscripts “rl” and “dv” = the rolling, backward-looking 14-day

mean and the daily deviation from this rolling mean (respectively); terms WKM, WKTu, WKW,

WKTh, WKF, WKS = the day-of-week effect (for Monday through to Saturday, respectively),

relative to Sunday (positive values mean higher than the effect for Sunday); the EDF represents

the estimated number of degrees of freedom for the non-linear terms. If the EDF is equal to

1.0, then the term shows no evidence of non-linearity; if the EDF is equal to 0.0, then the term

has been dropped via shrinkage (implicit model selection). In the upper half of the table, the t-
statistic and the associated p-value corresponds to a test for whether the parameter is non-

zero. The “Effect size” column displays an estimate of the number of daily admissions, in a

population of 4.0 million, associated with each term (see Appendix 2); the associated confi-

dence interval accounts only for uncertainty in the regression coefficient, and does not address

the range of the predictor variable. The lower part of the table shows information about the

non-linear terms. The F-statistic and the associated p-value corresponds to a test for whether

all the coefficients associated with this term are zero.

(PDF)

S5 Table. Summary of the fit for model 2. Summary of the fit for Model 2 (see S3 Table). See

the caption of S4 Table for further details.

(PDF)
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S6 Table. Summary of the fit for model 3. Summary of the fit for Model 3 (see S3 Table). See

the caption of S4 Table for further details.

(PDF)

S7 Table. Summary of the fit for model 4. Summary of the fit for Model 4 (see S3 Table). See

the caption of S4 Table for further details.

(PDF)

S8 Table. Summary of the fit for model 5. Summary of the fit for model 5 (see S3 Table). See

the caption of S4 Table for further details.

(PDF)

S9 Table. Summary of the fit for model 6. Summary of the fit for model 6 (see S3 Table). See

the caption of S4 Table for further details.

(PDF)

S10 Table. Summary of the fit for model 7. Summary of the fit for model 7 (see S3 Table).

See the caption of S4 Table for further details.

(PDF)

S11 Table. Summary of the fit for model 8. Summary of the fit for model 8 (see S3 Table).

See the caption of S4 Table for further details.

(PDF)
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