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Abstract: A modified form of heparan sulfate (HS) known as 3-O-sulfated heparan sulfate 

(3-OS HS) generates fusion receptor for herpes simplex virus (HSV) entry and spread. 

Primary cultures of corneal fibroblasts derived from human eye donors have shown the 

clinical significance of this receptor during HSV corneal infection. 3-OS HS- is a product 

of a rare enzymatic modification at C3 position of glucosamine residue which is catalyzed 

by 3-O-sulfotransferases (3-OSTs) enzymes. From humans to zebrafish, the 3-OST 

enzymes are highly conserved and widely expressed in cells and tissues. There are multiple 

forms of 3-OSTs each producing unique subset of sulfated HS making it chemically 

diverse and heterogeneous. HSV infection of cells or zebrafish can be used as a unique tool 

to understand the structural-functional activities of HS and 3-OS HS and likewise, the 

infection can be used as a functional assay to screen phage display libraries for identifying 

HS and 3-OS HS binding peptides or small molecule inhibitors. Using this approach over 

200 unique 12-mer HS and 3-OS HS recognizing peptides were isolated and characterized 

against HSV corneal infection where 3-OS HS is known to be a key receptor. In this 

review we discuss emerging role of 3-OS HS based therapeutic strategies in preventing 

viral infection and tissue damage. 
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1. Introduction  

Heparan sulfate (HS) glycosaminoglycans are hybrid molecules with unbranched polysaccharide 

polymers covalently attached to the protein core [1–3]. The backbone of HS polymer is assembled by 

sequential addition of D-glucuronic acid; GlcA (or iduronic acid) alternating with N-acetylglucosamine 

(GlcNAc), reaching up to 100–150 residues in length (Figure 1).  

 

Figure 1. Structural features of heparan sulfate (HS). HS is a linear polymers composed of 
repeating uronic acid [D-glucuronic acid (GlcA) or L-iduronic acid (IdoA)] and D-glucosamine 
(GlcN) disaccharide subunits. Synthesized chain of HS is representing assembly of the 
tetrasaccharide linker region (GlcA-Gal-Gal- Xyl) at reducing end on serine residues of the 
protein core followed by the addition of alternating GlcA and GlcNAc residues. The chain 
extension is also accompanied by a series of modifications which includes 6-O, 3-O 
sulfations on glucosamine residue and the 2-O sulfation on glucuronic acid. The arrow 
shows the 3-O position of the glucosamine residue where sulfation is essential for HSV-1 
glycoprotein D (gD) binding.  

The synthesized chains are then modified heterogeneously, and in domains, by multiple enzymes [4,5]. 

Most common among these modifications is the addition of sulfate groups at various positions within 

the chain, which leads to the generation of specific motifs, making HS highly attractive for microbial 

adherence [6–8]. This structural diversity which is usually concentrated in the area of sulfation enables 

specific binding sites for >400 proteins, including cell adhesion molecules, growth factors, 

chemokines, and factors regulating angiogenesis and blood coagulation [9–12]. Because of the later 

properties HS plays important role in multiple pathological processes such as angiogenesis, and 

inflammation. Heparan sulfate proteoglycans (HSPG) have also been implicated in pathogenesis 

induced by human herpesviruses and multiple clinically relevant viruses [6,7,13–17]. The abundant 

expression and ubiquitous presence of HS on mammalian cell surfaces makes it ideal platform to 

capture the viruses and wide variety of pathogens including parasites [7]. Several lines of evidence 

have helped define the role of HS during viral infection. For instance, multiple envelope glycoproteins 
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and capsids from non-enveloped viruses bind to cell surface HS [17–23]. Further, enzymatic removal 

of HS by heparinase action significantly reduces viral attachment and entry [24–26]. Similarly cell 

defective in HS biosynthesis show reduced viral entry even in presence of viral entry receptor [6,27–29]. 

Also, a prior treatment of virus with soluble HS or HS-mimetic competes for cell surface HS, thereby 

reducing viral binding and entry [30–36]. Interestingly, presence of HS on spermatozoa plays a key 

role in the capture of human immunodeficiency virus (HIV) and its transmission to dendritic, 

macrophage, and T cells [37]. Similarly HS dependent uptake of HIV in brain endothelial cells aids the 

virus to cross the blood brain barrier [14]. In case of human papillomavirus (HPV), it has been 

demonstrated that HSPG play a key role in the activation of immune responses, which is critical for 

both vaccine development and viral pathogenesis [38]. Beside providing random docking sites to 

incoming virions, a special type of HS known as 3-O-sulfated heparan sulfate (3-OS HS) aids in  

HSV-1 penetration into host cells [6,39–42]. 3-OS HS is produced after a rare enzymatic modification 

in HS catalyzed by 3-O-sulfotransferases (3-OSTs) (Figure 1) [4,5]. It has been shown that the 

presence of 3-OS HS alone makes cell susceptible to HSV infection [39]. As per current model of 

HSV entry, the initial attachment or binding step requires viral glycoprotein B (gB) and C (gC) binding 

to unmodified HS [43,44]. In the next step, a third viral glycoprotein D, (gD) specifically recognizes  

3-OS HS, and this interaction can facilitate fusion pore formation during viral entry [45]. Various types 

of sulfation in HS chain are known to play critical role in viral entry, virus trafficking, and replication 

(Table 1). For instance, 3-OS HS also plays a role in hepatitis B virus replication [46], while 6-O in HS 

chain potentially supports entry of cytomegalovirus [47]. 

Table 1. Role of HS modifying enzyme during viral infections.  

HS Modifying Enzymes Viral Infections References 

* H 3-O-Sulfotransferases-2, -3, -4, -5, -6 Herpes simplex virus infection [6,39,41] 
* ZF 3-O-Sulfotransferases-2, -3, -4, -5, -6 Herpes simplex virus infection [48–50] 

3-O-Sulfotransferase-1  Herpetic infection of the eye [51] 
3-O-Sulfotransferase-1 Hepatitis B replication [46] 
6-O-Sulfotransferase Cytomegalovirus infection [47] 
6-O-Sulfotransferase Coxsackievirus B3 internalization [52] 
6-O-Sulfotransferase Baculovirus binding and entry [53] 
6-O-Sulfotransferase Hepatitis C virus tropism [54] 
2-O-Sulfotransferase Human immunodeficiency virus entry [55] 

* H: human; * ZF: Zebrafish. 

Interestingly, 2-O sulfation in HIV is recognized by HIV glycoprotein gp120 during viral entry [14,55]. 

In addition, 6-O sulfated HS mediates coxsackievirus B3 internalization [52]. Similarly, the role of 6-O 

sulfated syndecan-1 during baculovirus binding and entry was shown recently [53]. In addition, the  

O-sulfate group of heparin is central to its inhibition of HIV [56], pseudorabies virus [57], HSV [58], and 

murine leukemia virus infection [59]. Conversely, N-sulfation of heparin is required for inhibition of 

respiratory syncytial virus (RSV) infection [60]. Our recent findings using HSV-1 as a model system 

has shown that the virus exploits HS very early during virus-cell interactions [61]. For instance HS 

present on filopodia microstructures guide the virus to surf and reach the cell body (Figure 2, panel A). At 

the cell body the virus interacts with 3-OS HS receptors on actin rich filopodia for phagocytic like uptake 
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(Figure 2, panel B). The role of HS in viral surfing may be more significant than previously suggested [61]. 

A much deeper question remains unanswered whether surfing mechanism may also be used by the 

virus during cell-to cell spread via fine microstructures (Figure 2, panel C). Similarly, the question 

whether the surfing is guided via a specific HS-detecting radar system built-in the virus, helping it to 

find a suitable target cell remains unclear. Along the same lines, a phagocytic uptake model of HSV in 

primary cultures of corneal fibroblasts (CF) derived from human corneal donors provides a classic 

example of a poorly understood virus high jacking mechanism exploiting HS and the actin 

cytoskeleton of the host cells (Figure 2).  

  

Figure 2. Highlights of HS involvement during novel phagocytic uptake of herpes simplex 

virus (HSV-1) in primary cultures of corneal fibroblasts (CF). A cartoon illustrates the 

expression of HS (yellow) on actin polymerized (red) regions of a HSV infected cell A. HS 

mediated virus surfing on CF-microstructures or filopodia guide the virions to reach receptor 

expressing cell body B; A novel phagocytic-uptake pathway engulfs virions (blue) via actin 

polymerized filopodial protrusion expressing HS C; Similarly networks of actin-HS rich 

microstructures or tunneling nanotube (TNT) between the cells help virions to spread. 

2. Structural Diversity of HS and Implications in Corneal HSV Infection 

In late 90s the discovery that 3-OST isoform-3-generated HS allowed HSV penetration into host 

cells marked a landmark discovery assigning a novel structure-specific function to 3-OS HS [39]. The 

latter is generated by 3-OSTs, which act to modify HS late in its biosynthesis [3–5], and each member 

of the 3-OST family recognizes, as substrate, glucosamine residues in regions of the HS chain having 

specific, but different, prior modifications, including epimerization and sulfation at other positions [62,63]. 

Thus, each 3-OST can generate potentially unique protein-binding sites within HS. To date, six 

different isoforms of 3-OSTs (3-OST-1, 3-OST-2, 3-OST-3A, 3-OST-3B, 3-OST-4 and 3-OST-5) are 

known. All, except 3-OST-1, generate HSV-1 entry receptors [6,63]. Interestingly, only 3-OST-3A and 

3-OST-3B generate structurally identical gD receptors. The gD receptors generated by other isoforms 

are very similar, but likely not identical, in structure [63–66]. 3-OST-1 generates binding sites for 

antithrombin [62,67] but fails to produce a receptor that binds to HSV-1 gD [6]. 3-OSTs (one or more) 
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are expressed in human and mouse tissues relevant to HSV-1 infection examined thus far [8,68–71]. 

Using primary cultures of CF derived from human corneal donors we provided the first clinical 

significance of 3-OS HS promoting virus entry (Figure 3) [28].  

 

Figure 3. Clinical significance of heparan sulfate (HS) and 3-O sulfated heparan sulfate  

(3-OS HS) during herpes simplex virus (HSV) entry. Primary cultures derived from human 

corneal stroma: corneal fibroblast (CF) widely expresses both plain-type or unmodified HS 

(blue) and 3-OS HS (yellow). Highlighted regions in panel A depict the role of HS and  

3-OS HS during HSV entry into corneal stroma. Unmodified HS expressed by CF 

membrane provides virus attachment or binding sites (a) which is mediated by two HSV 

glycoprotein B (gB) and C (gC). This interaction results HSV glycoprotein D (gD) to 

interact with the modified form of HS (3-OS HS) which promotes virus-cell fusion (b) and 

virus capsid trafficking via endsome (c) resulting fusion of capsid with endosome to 

release viral genome. Highlighted regions in panel B demonstrates the ability of HSV-1 to 

penetrate deep in corneal stroma via z-section of deconvolution microscopy using capsid-tagged 

green fluorescent virus. 

Since the HSV virions spread cell-to-cell in vivo via membrane fusion to form polykaryocytes we 

also provided the first visual evidence that 3-OS HS co-localizes with HSV-1 glycoprotein D (gD) 

during the membrane fusion event [42]. Interestingly, enzymatic removal of HS and 3-OS HS by 

heparinase treatment, or pre-incubation of cells with HS and 3-OS HS recognizing peptides 

significantly reduced the viral entry and spread in CF [28]. During the primary HSV-1 infection or 

during reactivation, the virus gets an opportunity of affecting different structural components of the 

cornea leading to corneal keratitis [72]. Although both the direct effects of the virus and immune 

mediated responses are known to cause damage to the cornea, the roles of HS and 3-OS HS go beyond 

viral entry and spread [8]. For instance, HS plays crucial role during viral attachment to the corneal 

epithelium, while 3-OS HS mediates virus-cell fusion and spread from cell to cell. Corneal infection by 

HSV can lead to herpetic stromal keratitis (HSK), which is a major cause for infectious blindness [73–76]. 
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Similarly, HS is one of the major players proposed in the causation of neovascularization and 

angiogenesis [77,78]. They are found in free forms, in the extracellular matrix (ECM), or associated 

with the plasma membrane where they regulate the function of a wide range of ligands [79]. In 

particular, endothelial HSPGs modulate angiogenesis by affecting bioavailability and interaction of 

heparin-binding vascular endothelial growth factors (VEGFs) and fibroblasts growth factor (FGF) with 

signaling VEGFRs and their tyrosine kinase receptors [80]. Heparin/HS interaction with angiogenic 

growth factors depends on the degree/distribution of sulfate groups and length of the 

glycosaminoglycan chain, distinct oligosaccharide sequences mediating its binding activity [80–82]. 

The resulting angiogenesis compromises immune privileges of the cornea allowing extravasation of 

the inflammatory mediators in to the corneal stroma [72,83]. The latter event is responsible for corneal 

scarring and vision impairment. From cell biology standpoint the 3D constructs of corneal cells, 

keratocytes, exhibit long-range associations with collagen bundles in the developing matrix via an 

extended network of actin-rich tubular cytoplasmic protrusions-α keratopodia [84]. Interestingly, the 

presence of HSV not only enhances actin-rich filopodia in multiple cell types including primary 

cultures of corneal stroma derived from human eye donors [85] but also promotes viral spread since 

keratopodia are connected to adjacent cells [84]. Previous studies from our lab has shown that HSV-1 

infected cell expressing 3-OST-3 modified HS forms significantly higher number of filopodia than 

normal HS expressing cell [85,86]. Overall, HSV infection of the cornea provides a good model 

system to study the significance of HS and 3-OS HS. 

3. Zebrafish 3-OST Generated HS: A Tool to Study HSV Corneal Damage 

In recent years, the zebrafish has become a favorite model organism for biologists studying 

infectious diseases and associated pathologies [87–90]. Included among some of the advantages are its 

rapid embryonic development, the transparency of its embryos for direct visual imaging of viral 

pathogenesis, cell and tissue specific 3-OST expression in zebrafish embryo [48,91], availability of 3-OST 

knockouts [92], and the potential for high throughput screening in vivo [93]. Such advantages make it 

an ideal model system for studying 3-OS HS for both basic science as well as translational aspect of 

the glycoscience research [87]. These characteristics are also being exploited by researchers to 

understand host-pathogen interaction at the level of inflammation and innate immune response to 

infectious disease and, accordingly, there is a growing literature on the use of zebrafish to model viral 

disease including the HSV infection [87]. 

Anatomic and ultrastructural characterization of the zebrafish cornea has demonstrated many 

similarities to the human cornea and providing the basis for the use of the zebrafish model both to 

analyze HSV spread and inflammation. At 6 months post-fertilization (mpf), the zebrafish cornea is 

approximately 20 μm thick and contains all five major layers found in the human cornea: the 

epithelium, Bowman’s layer, stroma, Descemet’s membrane, and endothelium [94]. The earlier 

immunostaining experiments have shown a high signal for 3-OST isoform-3 in zebrafish similar to 

human corneal stromal fibroblasts. These results further illustrate the structural similarity between 

zebrafish and mammalian corneas. In addition, zebrafish corneal endothelium, like its human 

counterpart results in corneal edema following surgical injury and ouabain injection [94]. 
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Further, the powerful imaging techniques and relative ease of genetic manipulation especially with 

the availability of 3-OST isoform specific KOs have made zebrafish an attractive model system to 

study role of specific 3-OST isoform generated HS during HSV infection of the cornea. Studying 

ocular infection in the intact zebrafish model is a powerful tool for several reasons. The early time 

point infection and associated pathologies to the other neighboring eye regions besides the infected 

cornea can be visualized directly in real-time and events like angiogenesis and inflammation resulting 

in tissue damage can be recorded. In addition, a translational aspect of using zebrafish model is the 

ability to screen specific 3-OS HS inhibitors against multiple steps from preventing viral spread, 

tropism to associated complications [87]. Zebrafishes’ competitive advantage over other model 

systems is exemplified by the optical clarity of a vertebrate embryo amenable to large-scale screenings 

to identify receptor-specific and small viral entry inhibitor molecules [93]. Further, toxicity of the  

3-OS HS peptides can be studied. Therefore, the transparency of zebrafish embryos and early larvae 

permits observations to be made in vivo on intact animals, whereas similar procedures in rodents 

would require surgery or other invasive monitoring techniques. A further advantage of using zebrafish 

assays over traditional mammalian models is the short duration of such assays. For example, screens 

for compounds that are effective in blocking viral entry/replication/egress can be performed in intact 

zebrafish in one week. By comparison, in rodents, the assays for viral entry/replication will take a 

period between 3 and 5 weeks and the fate of the inhibitor could not be examined in the real-time. 

Recently, the expression pattern of multiple isoforms of 3-OSTs and their significance was reported 

in zebrafish. Cadwallader and Yost reported in vivo characterization of eight 3-OST family members in 

zebrafish with seven genes showing homology to known 3-OST genes in mouse and humans [91]. 

Interestingly, two zebrafish genes, 3-OST-3X and 3-OST-3Z, were found highly similar to human  

3-OST-3A and 3-OST-3B respectively. They are likely the true homologs since their catalytic domains 

are near 100% identical. Such a high degree of conservation points to highly conserved functions as 

well. In addition, it was noted that members of zebrafish 3-OST family share at least 63% similarity 

within the catalytic domain to the corresponding human isoform, with the exception of zebrafish  

3-OST-5, which showed only 53% similarity to human 3-OST-5 [91]. In terms of zebrafish 3-OST 

expression, most family members showed extensive brain expression which was restricted to very 

specific brain subdivisions. For instance, zebrafish 3-OST-2 was expressed in developing brain, otic 

vesicle, and olfactory areas during early zebrafish development, while 3-OST-3X was observed in 

neural tube and lateral plate mesoderm. Similarly, zebrafish 3-OST-6 was expressed at high level in 

hindbrain with no expression in spinal cord region. Interestingly, structural and cell adhesion 

properties of zebrafish HS bearing syndecan proteins were reported to be shared with higher 

vertebrates [95]. 

The diversity in the expression of 3-OST family members in a zebrafish system provided us an 

opportunity to examine the role of zebrafish 3-OST-3 in terms of HSV-1 entry [49]. Using CHO-K1 

cells that lack endogenous 3-O-sulfation, we demonstrated the role of zebrafish 3-OST-3 in HSV-1 

entry and spread. More direct and visual evidence for HSV-1 entry was demonstrated by using green 

fluorescent protein (GFP)-tagged HSV-1 (K26GFP) virions infecting zebrafish 3-OST-3 expressing 

CHO-K1 cells [88]. In recent years our group has cloned and characterized all the 3-OST isoforms 

expressed in zebrafish embryos [49,50,96,97]. Interestingly 3-OST enzymes are uniquely expressed in 

different cells and tissues during zebrafish embryonic development [91]. To date our results with 
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zebrafish clones to study HSV infection are very encouraging as they complement human 3-OST 

isoform in terms of supporting HSV entry and spread [50]. The result from the study promotes the 

usage of zebrafish as a new model to address the role of 3-OST generated HS in viral tropism, tissue 

specific damages in cornea and central nervous system (CNS) and associated inflammation and also 

for 3-OS HS structure-function studies for other systems. In cell culture model a unique phenotypes for 

HSV-1 entry was observed when individual zebrafish 3-OST isoforms were tested against HSV 

infection. For instance one group of 3-OST gene family isoforms (3-OST-2, -3, -4, and -6) with 

conserved catalytic and substrate-binding residues of the enzyme mediated HSV-1 entry and spread, 

while the other group (3-OST-1, -5, and -7) lacks these properties and hence did not contribute to HSV 

infection [50]. Taken together, our previous studies provide a clear rationale for studying cell and 

tissue specific HSV pathogenesis [87]. With the characterization of all other members of zebrafish  

3-OST for HSV infection provides unique explanation for their potential roles in HSV tropism and gD 

binding. For example, those zebrafish 3-OST members, 3-OST-3Z, 3-OST-4 and 3-OST-6, that are 

highly expressed in eye could contribute during HSV-1 infection in the eye as reported for human  

3-OST-3 isoform during ocular HSV infection [28]. Because zebrafish 3-OSTs are widely expressed in 

brain and HSV is a neurotropic virus, they are likely to be very important for neuro-pathologies 

associated with HSV infection [98]. Therefore, use of zebrafish embryo model to understand in vivo 

significance of 3-OS HS and its interaction with gD during HSV-1 entry/spread is innovative and 

further enhances our ability to understand the critical regions of HS and modified HS involved in HSV 

pathogenesis. The current murine and rabbit models used to study HSV infection suffer from the 

limitation of tracking viral trafficking (entry and spread) in real-time. 

The “optical clarity” in zebrafish embryos along with the expression of HS and 3-OS HS moieties 

in the zebrafish provides excellent opportunities to study real-time events during HSV entry and spread 

in relation to the receptor usage. Furthermore, the advantage of using a zebrafish model is to test  

3-OST receptor-specific inhibitors in short duration of time, which again is not possible with present 

murine and rabbit models against HSV infection. For instance, HSV-1 entry inhibitors generated 

against HS and 3-OST modified HS by our group, may also turn useful to study HSV-1 induced 

pathological damages especially during ocular corneal infection or neuronal damages along with 

recurrent infections in zebrafish model because HS and 3-OS HS have been widely implicated for their 

role in assisting HSV-1 entry and spread in both ocular and neuronal cells. 

4. Phage Display Library Screening Targeting Heterogeneous HS to Isolate Unique Peptides that 

Inhibit HSV Pathogenesis 

Generation of peptide or mimetic targeting sulfated regions of HS offers a realistic, straightforward 

approach to understand HSV-3-OS HS interactions for novel therapeutic interventions [30]. HS in 

general, and with 3-O sulfation, aid to HSV pathogenesis at multiple steps during virus life cycle [99,100]. 

During initial phase of virus infections HSV glycoproteins (gB, and gC) interact with unmodified HS 

at cell surface or on virus activated filopodia [61]. In addition, virus binding to cell primes or activates 

other signaling receptors and cascades which facilitate viral entry. To promote virus-cell fusion an 

enzymatic modification of HS via 3-O sulfation generates HSV fusion receptor [6]. Similarly, 

endogenous HS and or 3-OS HS aid in virus trafficking to the nucleus [85]. It is yet to be determined 
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whether the preferences of HSV glycoprotein for a distinct HS residue during entry, trafficking and 

egress differ or not? Further the pattern of sulfation in HS chain could be a molecular marker for HSV 

induced cell and tissue damage. Is it possible that virus controls the editing of HS modifications or 

locks the modifications in Gagosome?—A previously suggested place where HS biosynthetic enzymes 

gather and work in close proximity [101,102]. It is very clear that overall HS plays many critical roles 

in viral pathogenesis. Interestingly, a class of lipophilic HS mimetics has been generated that not only 

blocks HSV infection but also show virucidal activity against HSV-1 and HSV-2 [103,104]. This class 

includes PG545 [105], currently in clinical trials for cancer, which also shows potent viruclidal activity 

against HIV [106] and RSV [107]. In addition, a number of HS mimetic have been progressed to 

clinical development against cancer and proving good candidates as anti-inflammatory drugs [108–113]. 

The structural complexities of HS along with specific and rare sulfated modifications are the 

fundamental problems associated with the study of HS and modified HS. In addition due its large size, 

finding reagents to detect HS and/or to synthesize HS has been difficult [5]. This all has prevented the 

development of cell and tissue specific HS recognizing antibodies or markers for 3-O sulfation. One 

additional point of general interest is the fact that multiple pathogens including viruses use HS to 

initiate infection [7] and therefore, development of anti-HS and anti-3OS HS reagents including 

peptides will greatly boost biomedical research to study host-pathogen interactions and future broad 

spectrum drug development. Similarly, the appreciation of the structural diversity of HS species and its 

role in pathological conditions including viral entry and associated inflammation have been strongly 

hampered by the lack of appropriate methodologies. For instance sequence strategies are not at hand, 

and specific antibodies, obvious tools for studying diversity, are difficult to raise. To circumvent this, 

we used phage display technology to map different regions of HS and 3-OST generated HS to develop 

reagents that recognize HSV-1 gD-3-OS HS interaction to negatively affect HSV entry and  

spread [30,114]. 

Multiple rounds of screening of phages from a 12-mer peptide phage display library that targeted 

HS and 3-OS HS resulted in the enrichment of phages that bound HS or 3-OS HS [30]. By determining 

the nucleotide sequences of the portion of the phage genome that encoded the peptide sequences from 

individual plaques were used to determine peptide sequences. The predicted peptide sequences of 

about 200 plaques were determined and sorted into two groups on the basis of their targets. A 

frequently repeating peptide sequence from each group was subsequently selected for further 

characterization. As previously reported the two most frequently isolated peptide sequences 

LRSRTKIIRIRH (called G1 for HS binding group 1) and MPRRRRIRRRQK (G2 for 3-OS HS 

binding group 2) were synthesized and examined for their abilities to inhibit HSV entry. Anti-HS G1 

peptide probably recognizes HS moieties that may not be 3-O sulfated. Anti-3-OS HS G2 peptide, on 

the other hand, recognizes HS moieties with 3-O sulfation present. Among the structural differences 

between G1 and G2 peptide, it appears that G2 peptide showed more dependence on the positively 

charged residues than G1, which is probably also dependent on the presence of a Lys residue at the N 

terminus. In general, arginine has been found important for charge-charge interaction with HS [30] 

(Figure 4). Interestingly both the peptides were able to block HSV-1 entry into CHO-K1 cells expressing 

one of the three gD receptors, 3-OS HS, nectin-1, and herpesvirus entry mediator protein (HVEM). In 

addition using mouse corneal model of HSV infection we further demonstrated the efficacy of the 
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peptides in blocking infection in vivo, but it also shows that HS is an important HSV-1 coreceptor, not 

only for cultured cells but also for the cells in vivo [30]. 

 

Figure 4. Generation of unique 12-mer peptides against diverse HS via phage display 

library screening. A diagrammatic presentation of random M13-phage display library 

screening which lead the identification of representative candidates from two-different 

groups of anti-HS peptides with high positive charge densities. Group I, represented by G1 

peptide (LRSRTKIIRIRH), belongs to a class with alternating charges (XRXRXKXXRXRX), 

and group II, represented by G2 peptide (MPRRRRIRRRQK), shows repetitive  

charges (XXRRRRXRRRXK). 

In addition, we also tested G2 peptide against HSV-2 infection in a mouse model [114].Our animal 

study also provided a first-time proof of the importance of blocking of 3-OS HS during HSV-2 

infection in vivo [30,114]. In addition our group and others have previously shown that octasacchride 

generated through chemo enzymatic synthesis, dendrimers based molecule targeting HS also inhibit 

HSV infection [34,36,115]. Additional reports further expand the critical role of sulfated HS in 

sexually transmitted diseases such as HIV, hepatitis B virus (HBV) and HPV [7]. A recent study 

demonstrated a higher affinity for CD4—an entry receptor for HIV by conjugating to a HS-mimetic 

peptide [116,117]. Interestingly in context of HSV a unique possibility of cell and tissue tropism exists 

based on population of 3-OS HS expressed on a given cell and tissue. For instance, 3-OST-2 and 4 

isoforms are highly expressed in brain tissue compared to 3-OST-3 isoform which is expressed in the 

corneal stroma [28,41]. 

The major potential for such cell and tissue specific 3-OST expression can be used to develop novel 

inhibitors which target HSV tropism. To date 3-OST isoform specific HS chains have not been fully 

mapped against HSV gB and gD. In addition regions or domains of sulfated HS generated by multiple 

O sulfations and their implication on signaling and pathologies (angiogenesis and leukocytes 

migrations) are also lacking in HSV models. Interestingly our previous data indicates that HSV 

infection up-regulates the expression of HS carrying transmembrane protein syndecans [118,119]. 
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5. Anti-HS and Anti-3-OS HS Peptide: A Novel Tool to Study Virus Associated Inflammation 

Diverse groups of HS binding protein include cytokines/cheomokines which interact with unique 

set of “saccharide sequences” in HS chain to recruit inflammatory cells [120–122] therefore preventing 

those critical interactions is a novel strategy to control inflammation (Figure 5).  

 

Figure 5. Potential use of anti-3-OS HS peptide generated against 3-OS HS. Panel A 

demonstrate isolation of wide range of anti-3-OS HS peptides screening against diverse  

3-OS HS as a target. Panel B suggests the benefits of the isolated anti-3-OS HS peptides. 

Situations in presence (+) and absence (−) of anti-3-OS HS peptides are presented. In panel 

(a), blocking of HSV-1 gD interaction to 3-OS HS would likely to develop viral entry 

inhibitors. Similarly inhibiting interaction between 3-OS HS and growth factors (GF)/Cytokine 

(Cy)/Chemokines (Chem) (b) and preventing heparinase activity via anti-3-OS HS peptides 

(c) would like to likely to develop anti-inflammatory drug candidates. 

During HS-mediated recruitment of leucocytes at the site of inflammation or injury, HSPG 

regulates the gradients of chemokines and cytokines which are stimulated in response to tumor 

necrosis factor alpha (TNFα)—a pro-inflammatory factor. A number of chemokines and cytokines 

have been implicated during this processes, which include interleukin family (IL-2, -3, -4, -5, -7, -8, -10 

and -12), granulocytes macrophages colony-stimulating factor (GM-CSF), regulated on activation, 

normal T cell expressed and secreted (RANTES), and monocyte chemotactic protein (MCP-1 and 

MCP-4) [121,122]. The binding of IL-8 to cell surface HSPG is highly significant in recruiting 

neutrophils to inflammatory sites [123]. Interestingly patient corneas with HSK have been shown to 

express high levels of GM-CSF and IL-8 [124]. Therefore many of these molecules represent a 

promising therapeutic target during neutrophil-mediated tissue destruction. Several line of evidence 

indicates that HS interactions to chemokines not only protect them from proteolysis but enhance their 

chemokine activity via oligomerization. In addition, HS aids in immobilization of chemokines on the 

surface of endothelial cells- an event that leads leukocytes migration to blood vessels. Further, the 
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enhanced expression of heparinase enzyme results in the release of critical sequences of HS for tissue 

remodeling and angiogenesis during chronic inflammatory response. 

Several HS-binding growth factors (FGF-2 and VEGEF) are known to participate in angiogenesis.  

In fact HS-binding polypeptides are already implicated as potential anti-angiogenic drug in cancer 

therapy [10,77,125,126]. Interestingly it was discovered that knocking down of one of the HS 

modifying enzyme, called 6-O-sulfotransferase, in zebrafish with morpholino antisense 

oligonucleotides reduced vascular branching and corresponded to changes in the HS structure [127]. It 

has been suggested that both oligosaccharides and small molecule biosynthetic enzyme inhibitors 

could be valuable HS-based strategies for controlling aberrant angiogenesis in diseases as diverse as 

cancer and heart disease. In this regard peptides that compete for HS and 3-OS HS regions required for 

sequestering chemokines, cytokines and growth factors will be useful for studying inflammation 

(Figure 5). In addition, whether HSV entry blocking peptide would also interfere HSPG mediated 

inflammation needs to be investigated. Similarly evaluating the anti-angiogenic potential of anti-3-OS 

HS peptides in the mouse cornea model will also be advantageous as high vasculature activities in the 

cornea lead to severe scarring and blindness during HSK. Despite of current understanding on the role 

of HS and 3-OS HS in HSV entry, inflammation and angiogenesis, many questions still needs to be 

addressed. For instance, the precise regulation of 3-OST enzymes or other enzymes (2-O and 6-O 

sulfotransferases) involved in HS modifications in healthy cornea vs. HSV infected and inflamed 

cornea remains poorly understood. Further, which HSV glycoprotein or combination of glycoproteins 

and the counter sequences in HS impact the corneal tissue remodeling and angiogenesis? Similarly the 

other aspects like role of 3-OS HS dependent signaling in leukocytes recruitment, extravasations and 

migration, and release of cytokine and chemokines and activation of innate immune cells need to be 

investigated in context to the corneal damage. Modifications of HS by 3-OSTs have generated interest 

in the field of viral entry. As our understanding of 3-OS HS is expanding on its role in inflammation 

and angiogenesis; in the future we will be able to rationally design 3-OS HS based therapeutics to 

prevent viral infection and associated cell and tissue damages. These strategies will need additional 

workout in defining 3-OST expression levels in the cornea during HSK, clinical isolates of HSV and 

their dependence on 3-OS HS, and the regions of the targets involved in cell and tissue remodeling 

during pathogenesis. Designing novel drugs that target multiple events during HSV corneal 

pathogenesis are encouraged. The goal is to prevent both virus spread as well as long term chronic 

inflammation. The availability of 3-OST isoform specific zebrafish KO embryos is a valuable tool for 

investigating the role of 3-O sulfation during HSV induced corneal damage. The applicability of  

anti-3-OS HS peptides as drugs has been suggested against HSV ocular infection [30]; however, novel 

small molecule mimetics may provide a better alternative with high degree of specificity. For instance, 

a study has shown that HS-mimetic PI-88 targets HSV-2 via gD [128]. At the current time, only a few 

such molecules have been identified with virtually no anti-herpes activities demonstrated in vivo. 

Therefore, more work is needed before their promise as anti-herpes drug can be proven.  

6. Conclusions 

Molecular diversity in the HS chain is remarkable as it generates extraordinary binding sites for 

multiple protein ligands [1–4]. One such example is the sulfation at the C3 position of glucosamine 
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residues in HS chain via 3-OST enzymes [5], which results a unique receptor for HSV entry and  

cell-to-cell spread [6]. Using phage display mapping we have established the proof-of-concept that  

3-OS HS plays a significant role during HSV infection [30]. Since the glycobiology-virology based 

information on sulfated HS is constantly evolving [129–131], therefore, the precise synthesis of HS 

mimetic with required charges, and relative positions of the sulfate groups will likely aid in designing 

potent anti-inflammatory molecules [10,77,125,126]. Such candidates will in turn advance the 

development of HS based therapeutics to control HSV induced corneal scarring and blindness and may 

offer help to rationalize prevention strategy against multiple other viruses dependent to sulfated HS [6,132]. 
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