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Abstract: The WRKY gene family is an important inducible regulatory factor in plants, which has
been extensively studied in many model plants. It has progressively become the focus of investigation
for the secondary metabolites of medicinal plants. Currently, there is no systematic analysis of the
WRKY gene family in Scutellaria baicalensis Georgi. For this study, a systematic and comprehensive
bioinformatics analysis of the WRKY gene family was conducted based on the genomic data of S.
baicalensis. A total of 77 WRKY members were identified and 75 were mapped onto nine chromosomes,
respectively. Their encoded WRKY proteins could be classified into three subfamilies: Group I, Group
II (I-a, II-b, II-¢, 1I-d, 1I-e), and Group III, based on the characteristics of the amino acid sequences
of the WRKY domain and genetic structure. Syntenic analysis revealed that there were 35 pairs
of repetitive fragments. Furthermore, the transcriptome data of roots, stems, leaves, and flowers
showed that the spatial expression profiles of WRKYs were different. qRT-PCR analysis revealed that
11 stress-related WRKYs exhibited specific expression patterns under diverse treatments. In addition,
sub cellular localization analysis indicated that SSWRKY26 and SbWRKY41 were localized in nucleus.
This study is the first to report the identification and characterization of the WRKY gene family in S.
baicalensis, which is valuable for the further exploration of the biological function of SbWRKYs. It
also provides valuable bioinformatics data for S. baicalensis and provides a reference for assessing the
medicinal properties of the genus.
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1. Introduction

Scutellaria baicalensis Georgi is a perennial herb of the Lamiaceae family and a popular
Chinese medicine, whose dried root (Huang-Qin) is the primary medicinal component [1].
The main active ingredients of S. baicalensis are flavonoids, which possess several vital
pharmacological antioxidation, anti-tumor, and anti-virus attributes [2—4]. What is even
more noteworthy is that it has significant influences on the treatment of COVID-19 [5].
Most transcription factor families can regulate the biosynthesis of secondary metabolites
in plants and control the expression levels of some key enzyme genes in the synthesis
pathway, which can adjust the content of secondary metabolites. Due to the great medicinal
and economic value of S. baicalensis [1], the exploration of critical genetic functions has
aroused the intense interest of researchers.

Abiotic stresses and hormone treatments can seriously impact various processes
during plant growth. For instance, salinity [6], heavy metals [7], low-temperature and
drought [8] may greatly reduce crop yields. Plants can almost always respond by mitigating
or offsetting the damage caused by diverse stressors. Transcription factors (TFs) are defined
as DNA binding proteins that can specifically interact with the cis-elements of eukaryotic
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genes to further activate or inhibit gene transcription. Under adverse conditions, TFs
such as MYB [9], bZIP [10] and WRKY [11] play critical regulatory roles in plant growth
and development processes, as they typically regulate the expression profiles of stress-
responsive genes.

The structure of WRKYs consists of an N-terminal DNA binding domain and a C-
terminal zinc finger structure [12]. The amino acid sequence of its DNA binding domain
is WRKYGQK; however, occasionally there can be variations such as WRKYGKK and so
on [13], and there are two types (C2H2 and C2HC) of zinc finger structures of WRKY [14].
The WRKY gene family comprises three diverse groups according to the number of WRKY
domains and zinc finger structures.

The proteins of Group I contain two WRKY domains, whereas both Group II and
Group III have single WRKY domains and their zinc finger structures are different. Further,
C2H2 belongs to Group II and C2HC belongs to Group III [15]. Due to differences in its
primary amino acid sequences, Group Il is further divided into five subgroups, designated
as II-a, II-b, II-¢, II-d, and II-e [16]. WRKYs have been extensively studied in Arabidopsis
thaliana [17], Panax ginseng [18], Taxus chinensis [19] and other plants. Over time, they have
become the focus of research on the secondary metabolites of medicinal plants.

The WRKY gene family is involved in the regulation of a variety of defense stress
responses [20], growth and development [21-23], plant hormone signal transduction, and
the modulation of pathogen-triggered cellular responses in numerous plant species [24].
For example, the CaWRKY6 of pepper can bind to and activate the CaWRKY40 prompter
which regulates heat-stress tolerance [25]. The WRKY34 transcription factor negatively
mediates the cold sensitivity of mature Arabidopsis pollen and might be involved in the
CBF signal cascade in mature pollen [26].

GhWRKY21 plays a negative role in the drought response of cotton; however, the silenc-
ing of GWWRKY?21 in cotton dramatically increases drought tolerance [27]. Drought resis-
tance has been observed to be improved in TaWRKY2-overexpressing transgenic wheat [28].
The expression of C¢WRKY57 in transgenic plants is higher than that in wild type plants
under abscisic acid (ABA) stress [29]. MeJA primes the expression of PpWRKY70, and is
identified as a transcription activator of PpPAL and Pp4CL via binding to their W-BOX [30].
The above research confirms that WRKYs are of significant importance in the responses of
plants to abiotic stresses, which further illustrates their potential functions for enhancing
plant stress tolerance.

However, there is currently a lack of systematic analysis of the WRKY gene family in S.
baicalensis. The importance of WRKY genes in the various physiological processes of plants
makes it necessary to study their specific roles in S. baicalensis. In this work, we identified 77
SOWRKY genes from the genome-wide data of S. baicalensis based on the highly conserved
domains of its family members.

Furthermore, we systematically and comprehensively analyzed the phylogenetic
relationships of SbWRKY proteins, chromosome distribution, gene structure, motif com-
position, gene synteny, and collinearity. In addition, we detected the expression patterns
of the stress responsive SYWRKYs in different tissues and under abiotic stressors. These
results might provide several candidate genes for the further functional investigation of
S. baicalensis.

2. Results
2.1. Identification and Chromosome Location of SDWRKY Genes

The hidden Markov model (HMM) of the WRKY domain (PF03106) was employed to
search for S. baicalensis WRKY genes, and a total of 77 WRKY genes were surveyed (Table S1).
Pfam and SMART analyses results revealed that all these proteins contained a complete
WRKY domain. These sequences were unevenly distributed on the nine chromosomes of
S. baicalensis. We designated the genes as SOWRKY1-SbWRKY75 according to their location
on the chromosome, and another two genes (SbWRKY76 and SbWRKY77) did not belong to
any chromosome.
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Most of the SOWRKY's were abundant on chromosome 9 (16 genes, 20.77%) and chro-
mosome 5 (15 genes, 19.48%) whereas they were negligible on chromosome 7 (1 gene,1.2%).
In this case, 12 genes were distributed on chromosome 3, 11 on chromosome 1, and nine
on chromosome 2. Five and four SbWRKYs were identified on chromosomes 4 and 8,
respectively, and two genes were located on chromosome 6 (Figure 1). The diverse sizes
and structures of chromosomes may cause these uneven distributions.
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Figure 1. Chromosomal distribution of SO WRKY genes. The position of every SOWRKY gene can
be determined using the left scale. Chr1-Chr9 above the colored bars indicates chromosome (Chr)
numbers. The physical location of each SO WRKYs is shown, and the gene name is indicated on the
right side of each bar as SPWRKY# and the red font indicate tandem duplications.

We also analyzed the characteristics of the SbWRKYs, including the CDS length,
protein molecular weight (MW), isoelectric point (pl), and subcellular location. Among
these 77 proteins, SbOWRKY22 and SbWRKY23 were identified as the smallest with 58 amino
acids, while the largest was SbWRKY?71 with 720 amino acids. The MW of the SbWRKYs
ranged from 6.844 (SbWRKY22) to 9.81 (SbWRKY71) kDa, and the pI ranged from 4.54
(SbWRKY42) to 9.81 (SbWRKY21). The subcellular localization prediction revealed that 74
SbWRKYs were in the nuclear region, while three proteins (SbWRKY22, SbWRKY23, and
SbWRKY42) were located outside the nucleus (Tables S1 and S3).

2.2. Multiple Sequence Alignment and Phylogenetic Analysis of SOWRKY Family

To understand the characteristics of the WRKY domains of each SbWRKY protein,
Geneious Prime was employed to perform multiple sequence alignment analysis with
the amino acid sequences of the WRKY domains in the SbWRKY proteins. The results
showed that most of WRKYs contained complete, or close to complete domains in their
core sequences. Among them, a few individual amino acids of the conservative motifs of
the SbWRKY protein have undergone specific mutations and evolution.

For example, the conservative motifs of SbWRKY12 and SbWRKY36 changed from
“WRKYGQK” to “WRKYGKK?”. In addition, the zinc finger structures of the gene sequences
of SbWRKY10, SbWRKY12, SbWRKY30, and SbPWRKY36 were missing, and the other
SbWRKY sequences all contained the zinc finger structure of C2H2 (Figure 2).
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Figure 2. Multiple sequence alignment of the WRKY domain from SbWRKYs. The shading in

different shapes and colors indicate the same and conserved amino acid residues, respectively.

To deeply explore the evolutionary relationships of the SO WRKY family members,
we selected 72 AtWRKYs of Arabidopsis as a reference. MEGA-X was used to cluster and
analyze the WRKYs between S. baicalensis and Arabidopsis. We referred to the classification
of AtWRKYs and further distributed the Sb WRKYs into three categories: Group I, Group
II (II-a, II-b, II-c, II-d, and II-e), and Group III. In addition, Group II was further divided
into five subclasses. The classification of SbWRKYs confirmed the diversity of their protein
structures, and inferred that various subfamily members might have different regulatory
functions. The proteins belonging to Group I contained 15 members with two WRKY
domains, Group II contained 48 members, and Group III contained nine members with a

single WRKY domain (Figure 3).
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Figure 3. Comparative phylogenetic tree showed the domains relationship of SbWRKYs and
AtWRKYs. The unrooted neighbor-joining (NJ) tree was constructed based on the amino acid
sequences of WRKYs from S. baicalensis (77) and Arabidopsis (72) using MEGA-X with 1000 bootstrap
replicates. The name of groups (Group I, Group II (Group II-a-Group II-e) and Group III) are shown
outside of the circle, indicating different WRKY subgroups. Black star refers to Sb WRKYs and white
star refers to the AtWRKYs.

These results might be useful for predicting the functions of unknown SbWRKYs
based on the functionality confirmed in AtWRKYs or subfamily in Arabidopsis. SbWRKY29
in Group II-e might have a similar function as AT4G01250 (AtWRKY22), which might
be involved in plant morphogenesis and development that is regulated by auxin and
temperature [31]. AT4G39410 (AtWRKY13) can enhance cadmium tolerance by promoting
D-CYSTEINE DESULFHYDRASE and hydrogen sulfide production [32], which implies
that SbWRKY13 might be related to cadmium tolerance.

2.3. Gene Structure and Motif Composition of SOWRKY's

Since the diversity of gene structures can reflect the evolution of gene families, we
analyzed the structure of each SOWRKY gene to obtain a deeper elucidation of the S.
baicalensis WRKY family. The data analysis results revealed that SOWRKY22, SOWRKY23,
and SbWRKY30 contained only one exon. The exon populations in the structures of most
SbWRKY genes were primarily concentrated at from 2 to 7. The protein members of the
same family and their coding genes were highly similar in structure and composition,
which verified the reliability of phylogeny.



Int. . Mol. Sci. 2022, 23, 4225

6 of 19

To further understand the conservation and diversity of the proteins, the MEME
program was used to analyze the conserved motifs of Sb WRKYs and predicted the motif
composition of the SbOWRKY protein. Figure 4 shows that the same group of SO WRKY had
highly similar conserved motifs. Motifl and motif2 were contained in most genes, whereas
motif5 was unique to Group I, while motif6, motif7, and motif8 existed only in Group II-b,
which meant that they were quite conserved in the SbOWRKY protein.
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Figure 4. The phylogenetic relationships, gene structure, and composition of conserved motifs in
WRKY from S. baicalensis. (A) The phylogenetic on the left contains 77 WRKY proteins (named
SbWRKY1 to Sb WRKY77). (B) The motif patterns of 77SbWRKY proteins. (C) Exon/intron structures
of WRKY genes.

2.4. cis-Element Analysis of SOWRKY Genes

We analyzed the cis-elements of the promoters of the SOWRKY genes and focused on
the response elements involved in plant growth and development, hormone regulation,
and adverse stress. We found that the promoter sequences of 55 SOWRKY genes contained
the light-responsive element (G-BOX), 52 SbWRKY genes contained the ABRE abscisic acid
response element, and 39 genes contained the CGTCA-motif methyl jasmonate response
element, and 35 family members contained ERE ethylene response elements. There were



Int. . Mol. Sci. 2022, 23, 4225

7 of 19

SbWRKY1
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27 family members with TC-rich repeats for defense and emergency response and drought-
inducible MBS elements, and 22 family members had LTR low-temperature response
elements. The SbWRKY1, SbDWRKY12, SOWRKY27, SOWRKY36, and SbBWRKY74 genes
contained six cis-elements, and the SYWRKY60 gene contained seven cis-elements (Figure 5
and Table S4). This might mean that these six family members played significant roles in
plant growth, development, and stress resistance.
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Figure 5. Predicted cis-elements that relate to abiotic stress in the SbOWRKY prompters. The dis-
tribution of cis-elements in the 1500 bp upstream promoter regions of SOWRKY genes. Different

cis-elements are represented by different colors.

2.5. Duplication, Synteny and Ka/Ks Analysis of SYWRKY Genes

Gene duplication caused by polyploidization or duplication-related tandem and seg-
mental duplication is the main factor in gene family expansion. To clarify the expansion
mechanism of the WRKY gene family in S. baicalensis, BlastP and MCScanX were employed
to identify gene replication modes (tandem and segmented replication). We identified
thirty-five pairs of repetitive fragments in the SSWRKY genes, and found that some genes
that formed tandem repetitive events were from the same subfamily. For instance, Sb-
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WRKY2 and SbWRKY60 are tandem repeat genes clustered together belonging to Group I;
SbWRKY25 and SbWRKY31 in Group III are tandem repeat genes (Figure 6).

3
o
P
@x
=
£
@ 7]
S,
5 ?:ﬁ EE L
[
3 g%%ig‘?

£
T chr?
%

SbWRKY16
SbWRKY15

Figure 6. Synteny analysis of interchromosomal relationships of SPWRKY genes. All gene pairs
and SbWRKY gene pairs in the S. baicalensis genome were indicated by gray lines and red lines,

respectively.

To explore the origin and evolution of the SYWRKY genes, we developed a collinearity
map of the S. baicalensis WRKY family using three dicotyledonous plants (Arabidopsis,
potato, and tomato) and three monocotyledonous plants (Populus trichocarpa, Zea mays, and
Oryza sativa). There were 65, 55, 54, 46, 17, and 22 SBWRKY genes, respectively, that were
collinear with the WRKY genes of P. trichocarpa, potato, tomato, Arabidopsis, Z. mays, and
O. sativa.

A total of 157 collinear WRKY gene pairs of S. baicalensis and P. tomentosa were iden-
tified, followed by S. baicalensis and potato (85 pairs), S. baicalensis and tomato (83 pairs),
S. baicalensis and O. sativa (29 pairs), S. baicalensis and Z. mays (27 pairs). We also found
that several SO WRKY genes (SbWRKY65 and SbWRKY17) had collinear genes with all six
selected species, which meant that these genes were likely important in the evolution of the

SbWRKY family (Figure 7).
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Figure 7. Synteny analysis of SbWRKY genes between and six plant species. The collinear blocks
between S. baicalensis and other species were showed gray lines. The syntenic WRKY gene pairs
between S. baicalensis and other species were highlighted in red. The chromosome number was
indicated at the top of each chromosome.

To further investigate whether these homologous SbWRKYs underwent selection
pressures (purification and positive selection), we calculated the agreed replacement rate
(Ks) and non-synonymous replacement rate (Ka) to identify homologous SbWRKY gene
pairs. Subsequently, the Ka/Ks was calculated to determine whether selection pressure
acted on protein-coding SbWRKYs. We found that the Ks/Ka ratio of all homologous
SbWRKY gene pairs was less than 1, indicating that these gene pairs were purified and
selected (Table S2).

2.6. Analysis of Tissue-Specific Expression Patterns SOWRKY Genes

To intensely explore the expression patterns of SO WRKYs, we utilized the transcrip-
tome data of four organs (roots, stems, leaves, and flowers) to analyze the transcript
abundance (Figure 8 and Table S6). The transcripts of three SbPWRKYs (SbWRKY45, Sb-
WRKY46, and SBWRKY47) were not detected in the organs, which signified that they might



Int. . Mol. Sci. 2022, 23, 4225

10 of 19

be pseudogenes. In contrast, most SYPWRKY members were expressed in at least one of the
four tested tissues (FPKM > 0). SBWRKY?26 and SbWRKY41 showed high expression levels
in all tissues, particularly in leaves.
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Figure 8. Heat map representation and hierarchical clustering of the SYWRKY gene expression profiles
in four tissues. Red and blue boxes indicate high and low expression levels of SVWRKYs, respectively.

2.7. Analysis of SOWRKY Gene Expression Patterns of under Different Stress Treatments

To confirm whether the expressions of SOWRKY's were affected by different types of
stress treatments, 11 members distributed in different subfamilies were selected based
on the analysis results of known stress-related WRKY proteins and cis-elements. Subse-
quently, qRT-PCR was employed further to analyze the effects of different stressors on gene
expression. Figure 9 shows the expression levels of selected SYWRKY's under four stress
conditions (low-temperature, drought, MeJA, and ABA).

Except SOWRKY29 and SVWRKY35, almost all of the genes, comparatively, were
significantly up-regulated under low-temperature stress. Among them, SOWRKY41 was
up-regulated ~19-fold at 1 h and 3 h and ~30-fold at 6 h and 12 h after treatment, and the
up-regulated increase in gene expression at 24 h was the same at 1 h and 3 h. SO WRKY62
was upregulated ~22-fold at 12 h. Under drought stress, SOWRKY5, SbWRKY29, and
SbWRKY67 were down-regulated, while other genes were up-regulated. Interestingly,
four genes (SbWRKY15, SOWRKY17, SOWRKY28, and SbWRKY41) initially exhibited an
up-regulated trend, down-regulation, and then up-regulation with prolonged stress time,
where the second up-regulation occurred at 12 h of stress treatment.

Under MeJ A stress, except for SOWRKY29 and SbBWRKY67, the other genes were up-
regulated. SOWRKY15 was up-regulated ~20-fold at 3 h and SbWRKY41 was up-regulated
~40-fold at 1 h and 24 h and ~20-fold at 12 h and 12 h following stress treatment. Under ABA
stress, except for SOWRKY?29, the other genes were up-regulated. Among them, SOWRKY26
was up-regulated ~10-fold at 12 h and 24 h, SSWRKY31 was up-regulated ~15-fold at 24 h,
whereas SOWRKY41 and SbWRKY62 were up-regulated ~20-fold at 24 h following the stress
treatment.
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Figure 9. Expression profiles of SPWRKY genes under different stress treatments at 0, 1,3,6,12, and 24
h. (A) 4 °C. (B) Drought. (C) MeJA. (D) ABA. The data were normalized to the SbPACT2 gene and
analyzed with a two-way method using GraphPad Prism, version 8. Asterisks (p < 0.05) indicate
significant differences compared with the control group (* p < 0.05, ** p < 0.01, ** p < 0.001).

2.8. Subcellular Localization of SOWRKY26 and SOWRKY41

To reveal the potential functionality of Sb WRKY26 and SbWRKY41 in a transcriptional
regulation system, HBT-SbWRKY26-GFP-NOS and HBT-SbWRKY41-GFP-NOS fusion
protein expression vectors were developed, and an HBT-GFP-NOS vector was used as
a positive CK. These vectors were subsequently transferred into Arabidopsis protoplasts,
where the transient expression was observed under a laser confocal microscope. The GFP
positive CK was expressed in the cytoplasm and nucleus, which was consistent with the
biological state. The SPWRKY26 and SbWRKY41 experimental group GFPs were mainly
expressed in the nucleus (Figure 10), which was consistent with the results of the previous
bioinformatic analysis. Similar to many other TFs, SbWRKY26 and SbWRKY41 may play
roles in the transcriptional regulation system.
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Figure 10. Subcellular localization analysis of Sb WRKY26 and SbWRKY41. Subcellular localization
of SP WRKY26-GFP and SbWRKY41-GFP in nucleus was confirmed in Arabidopsis protoplasts by laser
confocal microscopy, with GFP as the positive control (Scale bar: 15 um).

3. Discussion

The WRKY gene family is ubiquitous across all plant species and is essential for
plant growth and development, as well as the regulation of plant responses to adverse
stressors [16,33]. The WRKY gene family has been identified in many species, such as
cash crop rice, cucumber [34], P. trichocarpa [35], P. ginseng [18], and T. chinensis [19]. The
identification of the WRKY gene family in S. baicalensis has not been reported to date, which
hinders research into SVWRKYs functionality to a certain extent. Therefore, we conducted a
systematic bioinformatics analysis of the WRKY gene family of S. baicalensis.

For this study, a total of 77 members were identified in the S. baicalensis genome. The
number of SbWRKYs was less than the identified WRKY genes in Arabidopsis (102) and P.
trichocarpa (104); however, it was more than many species such as T. chinensis (61), P. ginseng
(48), Isatis indigotica (64) [36] and Salvia miltiorrhiza (61) [37]. This suggests a relatively
large number of WRKY family members in S. baicalensis, suggesting that repetitive events
may occur during genome evolution. It was apparent that two gene replication events
(tandem and phased replication) led to gene recombination and amplification that further
expanded the WRKY gene family [38]. Relevant studies revealed that gene duplication may
be the main driving force behind plant WRKY evolution. The results of multiple sequence
alignment and phylogenetic tree analysis indicated that 77 SbWRKY proteins were divided
into Group I, Group 1II (Il-a, II-b, Il-c, II-d, II-e), and Group III contingent on conserved
WRKY domains, which was similar to specific WRKY family proteins in other species.

Previous investigations showed four main WRKY TF lineages in flowering plants,
namely Group I+II-c, Group II-a+II-b, Group II-d+II-e, and Group III, which accurately
reflected the evolution of the WRKY gene family [39], which was also verified for S.
baicalensis. Group II-d and Group II-e were found to be divided into two branches, and
they belonged to the same large branch in the phylogenetic tree. Although the WRKY
domain of the WRKY family was strongly conserved, the SbOWRKY protein showed a certain
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degree of structural difference. As is well known, WRKYGQK is the protein sequence
of the conserved domain of the WRKY family; however, several SbOWRKY proteins have
undergone mutations. For example, the conserved domains of SO WRKY12 (II-c) and
SbWRKY36 (II-d) have changed from WRKYGQK to WRKYGKK. Several similar variants
have also been found in other species, such as S. miltiorrhiza [37], Broomcorn millet [40], Castor
Bean [41]. These mutations may give WRKY various biological functions [42]; however,
further experimental verification is required.

Gene duplication primarily includes three forms (tandem, fragment, and genome
duplication), which are the main driving force behind the expansion of gene families in
plant genomes [43]. There are 35 pairs of fragment duplications in SOWRKYs. We also
found that some tandem duplication events occurred in the same subfamily of genes, such
as ShWRKY35 and ShWRKY31 tandem duplications, which both belong to Group III.

We speculated that gene duplication, particularly fragment duplication, is related to
the amplification of the SbWRKY family. We also constructed a collinearity map of the
SbWRKY family with monocots (P. trichocarpa, Z. mays, O. sativa) and dicots (Arabidopsis,
tomato, potato). There are 157 collinear gene pairs between S. baicalensis and P. trichocarpa,
85 pairs between S. baicalensis and potato, 83 pairs with tomato, 29 pairs with O. sativa,
and 27 pairs with Z. mays. This indicated that the evolutionary relationship between
S. baicalensis and P. trichocarpa was relatively close.

In addition, the collinear gene pairs between S. baicalensis and monocots were fewer
than those between S. baicalensis and dicotyledons, which may mean that these gene pairs
were formed following the differentiation of dicotyledonous and monocotyledonous plants.
Furthermore, the analytical results found that several SbOWRKY (SbWRKY?7, SbWRKY65)
proteins and the six selected WRKY protein species possessed collinearity gene pairs, which
indicated that they existed before ancestral differentiation.

The exploration of gene expression patterns in different tissues is of great significance
for the mining of functional genes. Many studies have found that the WRKY gene is
expressed in one or more tissues and plays a vital role in the growth and development
of plants. It is well acknowledged that gene expression is intimately related to gene
function [44]. This study analyzed the expression patterns of 77 SOWRKY genes in the roots,
stems, leaves, and flowers of S. baicalensis. We found that SOWRKY genes in S. baicalensis
were closely related to their growth and development. Approximately one-third of SOWRKY
genes were highly expressed in roots, stems, leaves, and flowers (SO WRKY31, SOWRKY41
and other genes).

Similar results have been found in quinoa [45] and cotton [46]. SPWRKY41 and
SbWRKY31 are highly expressed in roots, and show a close relationship with AT1G80840
and AT4G23810, respectively, in the evolutionary tree. This indicates that SYWRKY41 and
SbWRKY31 may have similar functions in the regulation of root growth and cell cycles.
There are also several other genes that are commonly expressed in roots, stems, leaves, and
flowers including SOBWRKY17, SOWRKY63, SOWRKY67, SbWRKY62, and SOWRKY72. This
suggests that they might be involved in the regulation of certain biological processes in
corresponding tissues; thus, they can be used as candidate genes for research into genetic
functionality.

Relevant evidence shows that WRKY genes play critical roles in the regulation of
plant growth and development, while improving plant tolerance to adversity, including
biotic and abiotic stressors [16,33]. We found that almost all SYWRKY genes contain stress-
related cis-elements (e.g., light, heat, cold, drought, and injury), which indicated that these
SbWRKY genes were involved in various stress responses. Among the 77 SOWRKY genes,
52 contained ABRE abscisic acid response elements, and 39 contained CGTCA-motif methyl
jasmonate response elements, which implied that SSWRKY genes were involved in a variety
of plant hormone regulatory pathways.

Further, 27 members contained TC-rich repeats defense and emergency components, and
MBS drought inducible components, whereas 22 members contained LTR low-temperature
response components. In other species, the WRKY gene has been confirmed to be involved
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in these stress responses. For example, when Arabidopsis is under drought stress, AtWRKY53
accumulates oligosaccharides through sucrose metabolism, which ultimately affects its
drought tolerance [47]. A total of 47 SBWRKY genes were found to be expressed in the wheat
genome under salt stress [48]. Further, VbBWRKY 32 positively regulates the transcription
level of cold response genes, thereby maintaining membrane stability and improving the
survival capacity of Verbena bonariensis under cold stress [49].

The latest research reveals that HHWRKY$83 can positively regulate the expression of
JA-ethylene and injury-responsive genes in the lactating cells of rubber trees [50]. Several
genes in S. baicalensis also responded to some abiotic stresses. For instance, SOWRKY41
gene expression was up-regulated 19 times after 6 h and 12 h of low-temperature induction.
Simultaneously, SSWRKY5, SbWRKY29, and SPWRKY67 were significantly down-regulated
under drought stress, whereas under MeJA stress (for 1 h and 24 h) the expression of
SbWRKY41 was up-regulated 40 times. Under ABA treatment for 24 h, the expressions of
SbWRKY41 and SbPWRKY62 genes were observed to increase by 20 times.

4. Materials and Methods
4.1. Identification, Chromosomal Distribution, Sequence Analysis, Multiple Sequence Alignment
and Phylogenetic Analysis of SOWRKY's

We downloaded the hidden Markov model file of the WRKY domain (PF03106) from
the Pfam protein family database (http://pfam.xfam.org/family /PF03106, accessed on 6
April 2022) [51], and HMMER3.0 was used to search the WRKY genes in the S. baicalensis
genome assembly of our lab with 0.01 cut-off value default parameters. According to Pfam
and SMART analysis, all of these genes contained the complete WRKY domain. The tools
provided by the ExPasy website (http://web.expasy.org/protparam/, accessed on 6 April
2022) [52] were used to obtain the sequence length, molecular weight, isoelectric point, and
subcellular location prediction of the identified WRKY proteins.

The chromosome positions of all SYWRKY genes were determined from the genome
annotation file, and TBtools v1.089 (Chengjie Chen et al., China) [53] software was used to
draw the chromosome position map.

The domain sequences of the characterized WRKY protein were employed to create
multiple sequence alignments with the default parameters of ClustalW [54]. By comparing
the predicted coding sequence with its corresponding full-length sequence, the MEME
online program (http://meme.nbcr.net/meme/Intro.html/, accessed on 6 April 2022) [55]
for protein sequence analysis was used to identify the conservation of the identified Sb-
WRKY protein Motif. The optimized parameters were as follows: the number of repeats
was arbitrary, the maximum sequence number was 10, and the optimal width of each motif
was between 6 and 100 residues.

For multiple alignment analysis, the SMART program (http://smart.embl.de/, ac-
cessed on 6 April 2022) was used to obtain the core sequence of the SbWRKY domain,
whereas Geneious v9.1.4 (Biomatters, Auckland, New Zealand) and ClustanXv2.1 (Higgins
D.G. et al., Ireland) software further analyzed the core SbBWRKY sequence. Simultaneously,
we used the WEBLOGO (http:/ /weblogo.berkeley.edu/logo.cgi, accessed on 6 April 2022)
online program to show the characteristics of this field. For the phylogenetic tree analysis of
the SbBWRKYs, we employed the neighbor-joining method to construct a phylogenetic tree
with MEGA-X [56] software (1000 bootstraps) and EvolVIEW 2.0 (China national center for
bioinformation, Beijing, China) [57] was used for a better image. The Arabidopsis WRKY pro-
tein sequence was downloaded from the TAIR database (https://www.arabidopsis.org/,
accessed on 6 April 2022), and the phylogenetic tree between S. baicalensis and Arabidopsis
was constructed in the same way.

4.2. Conserved Motifs, Gene Structure Analysis, cis-Elements, Ka/Ks and Synteny Analysis of
SbWRKY Proteins

TBtools [53] software was used to display motif results of the XML file obtained from
MEME. We also used TBtools software combined with the genomic sequence to show the
genetic structures of SOWRKYs.
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BioEdit (Borland, Scotts Valley, CA, USA) software was used to obtain the 1500 bp
promoter sequence located upstream of the gene in the whole genome data of S. baicalensis,
and search for potential cis-elements of SOWRKYs in the PlantCare database [58]. We
used TBtools to visualize the cis-elements of the promoter. To verify whether there was
positive selection in the evolution of SYWRKY genes, the online websites of Clustal Omega
(https:/ /www.ebi.ac.uk/Tools/msa/clustalo/, accessed on 6 April 2022) and PAL2NAL
(http:/ /www.bork.embl.de/pal2nal/, accessed on 6 April 2022) were used to calculate the
synonymous substitution rate (Ks) and non-synonymous substitution rate (Ka) values of
homologous gene pairs and their amino acid sequences in the SbWRKYs.

The Multiple Collinearity Scan toolkit (MCScanX) [59] was utilized to check gene
duplication events with default parameters. To explore the syntenic relationships between
S. baicalensis and other species, the Dual Systeny Plot of TBtools was used to map synteny
between S. baicalensis and the other selected species (P. trichocarpa, potato, tomato, Ara-
bidopsis, Z. mays, and O. sativa) and Advanced Circos of TBtools was used to show the
intraspecies gene duplication of S. baicalensis.

4.3. Subcellular Localization Analysis of SOWRKY26 and SOWRKY 41

SbWRKY26 and SOWRKY41 were cloned from cDNA obtained by reverse transcrip-
tion of S. baicalensis, which were obtained as previously described via SbWRKY26-F/R
and SbWRKY41-F/R primers. The amplified products were then inserted into a TOPO
vector (Vazyme) and verified by DNA sequencing. The amplification of SbWRKY26 and
SbWRKY41 was performed using GFP-SbWRKY26-F/R and GFP-SbWRKY41-F/R primers
(Table S5). The amplified PCR products of the Sb WRKY41 and HBT-GFP-NOS vectors
were digested with BamH I and Sma I, whereas the products of the SbWRKY26 and HBT-
GFP-NOS vectors were digested using Sac II and Kpn I. Subsequently, the SbWRKY26,
SbWRKY41, and HBT-GFP-NOS vector products were ligated with DNA ligase to cre-
ate HBT-SbWRKY26-GFP-NOS and HBT-SbWRKY41-GFP-NOS fusion protein expression
vectors.

Mesophyll protoplasts were then isolated from Arabidopsis and transformed as previ-
ously described [60,61]. The transformed protoplasts were grown at 21 °C for 12 to 16 h,
after which high resolution confocal laser microscopy (Leica TCS SP5, LEICA, Wetzlar,
Germany) was used to observe the subcellular localization of fusion proteins and to take
images of GFP, chlorophyll, and bright field channels (excitation at 488 nm; emission at
500-535 nm), respectively, which were then merged.

4.4. Plant Material and Treatments

S. baicalensis seeds collected from Yangcheng County, in Shanxi Province were soaked
in water for 12 h to soften the seed coat, and then placed at room temperature 23 &2 °C
under natural light (16 h light/8 h dark) and 60-80% humidity conditions to facilitate
germination. Subsequently, three-month-old seedlings were subjected to different abiotic
stresses. For the low-temperature treatment the three-month-old seedlings in the pots
were exposed to 4 °C, whereas for the drought treatment the seedlings were subjected to
different treatments for 0 h (as the control sample),1 h, 3 h, 6 h, 12 h, and 24 h by pouring
20% PEG6000 on the roots of the seedlings growing in the soil mixture containing pots.

For the hormonal treatments, the surface of the aboveground part of seedlings was
sprayed with 100 pM MeJA and ABA, respectively. Plants under the different stress
conditions were collected at the corresponding five time periods (O h, 1h, 3 h, 6 h, 12 h,
and 24 h), immediately frozen in liquid nitrogen, and stored at —80°C for subsequent RNA
extraction. To study the expression patterns of SPWRKY's genes under different stressors,
we selected 11 SOWRKY genes for further qRT-PCR analysis.

4.5. Extraction of Total RNA and Synthesis of cDNA

RNA was extracted from the whole Plant of S. baicalensis using Plant Rapid RNA
Extraction Kit RP3501 (BioTeke, Wuxi, China), while the RNA concentration and ratio
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(A260/A280 and A260/A230) were measured via a NanoDrop2000c spectrophotometer
(Thermo Science, Waltham, MA, USA), after which the RNA integrity was observed with
1% agarose gel. For cDNA synthesis, a total of 1 ug RNA was used for reverse transcription
in a volume of 20 uL following the instructions of the PrimeScriptRT kit (Highland City,
Kusatsu City, China).

4.6. RNA-Seq Expression and qPCR Analysis

Four different tissues (roots, stems, leaves, and flowers) of S. baicalensis were col-
lected during the flowering period for transcriptome sequencing, and the tissue-specific
expression patterns of SO WRKY's were further detected. The method used to calculate the
transcript abundance of SO WRKYs was through its estimation according to the number of
fragments per base in the exon model (FPKM) per million mapped reads. Real-time fluo-
rescent quantitative PCR (qPCR) used a Roche LightCycler 96 system (Roche Diagnostics
GmbH, Basel, Switzerland) with ChamQTM SYBR® qPCR Master Mix (Roche), where the
PCR reaction conditions were 95 °C for 30 s, 95 °C for 5 s, and 60 °C for 30 s, for a total of
45 cycles. Each reaction had three biological and technical replicates, using 20-fold diluted
cDNA as a template. The 2-22CT method was employed to calculate the corresponding
expression of SOWRKYs.

5. Conclusions

This study lays the foundation for the functional analysis of the role of the SPWRKY
gene in S. baicalensis. We identified 77 SOWRKY genes and conducted a comprehensive anal-
ysis in terms of phylogeny, genetic structure, conserved domains, homology, collinearity,
and gene expression patterns. In addition, we predicted the potential functions of several
SbWRKY proteins through phylogenetic comparison and gene expression profiling. This
study reveals a basic understanding of the characteristics of the SbWRKY gene family and
provides valuable information for enhancing the growth regulation and defense capabilities
of S. baicalensis.
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