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ABSTRACT The level of expression of an imprinted gene is dependent on the sex of the parent from which it
was inherited. As a result, reciprocal heterozygotes in a population may have different mean phenotypes for
quantitative traits. Using standard quantitative genetic methods for deriving breeding values, population
variances, and covariances between relatives, we demonstrate that although these approaches are equivalent
under Mendelian expression, this equivalence is lost when genomic imprinting is acting. Imprinting introduces
both parent-of-origin-dependent and generation-dependent effects that result in differences in the way
additive and dominance effects are defined for the various approaches. Further, imprinting creates a covariance
between additive and dominance terms absent under Mendelian expression, but the expression for this
covariance cannot be derived using a number of the standard approaches for defining additive and dominance
terms. Inbreeding also generates such a covariance, and we demonstrate that a modified method for
partitioning variances can easily accommodate both inbreeding and imprinting. As with inbreeding, the con-
cept of breeding values has no useful meaning for an imprinted trait. Finally, we derive the expression for the
response to selection under imprinting, and conclude that the response to selection for an imprinted trait
cannot be predicted from the breeder’s equation, even when there is no dominance.
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A gene is imprinted when its level of expression is dependent on the
sex of the parent from which it was inherited. For example, insulin-like
growth factor 2 (Igf2) is expressed only from the paternal allele in
most fetal tissues of eutherian and marsupial mammals, while the
maternally inherited allele is inactivated (DeChiara et al. 1991; O’Neill
et al. 2000). More generally, imprinting results in nonequivalence
of reciprocal heterozygotes, where inheriting an A1 allele from one’s
mother and an A2 allele from one’s father gives a different pheno-
type, on average, than the reverse inheritance pattern. Complex pro-

cesses of epigenetic regulation are necessary for the repression of one
allele while the other is expressed. These processes include allele-
specific modifications such as differential DNA methylation, chro-
matin structure and histone packing, and differences in replication
timing of the maternally and paternally inherited genomes (Rand and
Cedar 2003).

Approximately 234 imprinted genes have been identified in mam-
mals, including 68 in humans, and many of these genes are thought to
be involved in traits such as growth and development (Morison et al.
2005). A publication predicting imprinted genes based on sequence
characteristics suggests that imprinted loci in the human genome
number as high as 156 (Luedi et al. 2007). Recent years have seen
an increasing number of statistical methods developed that aim to
identify imprinting in quantitative traits. Using QTL mapping, for
example, imprinting has been suggested for quantitative traits as di-
verse as carcass composition, growth, coat color and reproductive
traits (de Koning et al. 2001; de Koning et al. 2000; Hager et al.
2009; Hirooka et al. 2001; Knott et al. 1998; Lee et al. 2003; Milan
et al. 2002; Quintanilla et al. 2002; Rattink et al. 2000), while general
mixed models have demonstrated the involvement of imprinting in
traits such as milk yield, litter size, and growth (de Vries et al. 1994;
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Engellandt and Tier 2002; Essl and Voith 2002; Kaiser et al. 1998;
Schaeffer et al. 1989; Stella et al. 2003; Tier and Solkner 1993).

The inclusion of imprinting effects in these genetic methods
highlights the significance of imprinting to a range of economically
important livestock production traits and to human health and dis-
ease, as well as the importance of understanding the effect imprinting
may have on traditional approaches to modeling quantitative genetic
traits. Quantitative traits may be influenced by many genes, the en-
vironment, and any number of interactions between them, and
models for these traits are correspondingly complex. Nevertheless,
we here employ a one-locus, two-allele quantitative genetic model to
demonstrate the differences in a number of standard approaches for
theoretically defining breeding values, genotypic variance and cova-
riances between relatives. In doing so, we show that genomic im-
printing may have a significant effect on the assumptions made in
these most minimal models, and is therefore likely to also influence
more complex models involving many alleles and multiple genetic
loci. We also compare the effects of imprinting and inbreeding on
quantitative genetic parameters and predict the response to selection
for an imprinted trait.

In Table 1, we list and define the important symbols used in this
paper, following the convention of Nagylaki and Lou (2007). The
reference is either to the equation closest to the definition of each
symbol [thus (7), (7)+, and (7)- would mean equation (7), the text
below (7), and the text above (7), respectively], or to or the relevant
approach or table. The table is ordered alphabetically and split into
Roman letters, Greek letters, equation simplifications, and subscripts
and superscripts.

THE MODEL
We here present an overview of a number of approaches for deriving
quantitative genetic models for imprinting at one locus. Such models
are the basis for many quantitative genetic approaches for dissecting
genetic and environmental effects in quantitative traits. Following the
approach of Spencer (2002), consider an autosomal diallelic locus
subject to imprinting, with alleles A1 and A2 at frequency p1 and p2
(= 1 2 p1) respectively in the population. Note that the population
under consideration is static, without selection, migration or mutation
operating. Assume that on some suitable scale, the genotypic value (Gij

for genotype AiAj) of A1A1 homozygotes is 0 and A2A2 homozygotes
is 2a. Assuming no maternal effects, writing the maternally inherited
allele first, A2A1 heterozygotes have genotypic value a(1+k1) and A1A2

heterozygotes have value a(1+k2), following the notation of Santure
and Spencer (2006) (Figure 1).

In general, imprinting is thought of as complete inactivation of one
allele dependent on parental origin, corresponding to k1 = 21 and
k2 = 1 (complete silencing of the maternal allele), or k1 = 1 and
k2 = 21 (complete silencing of the paternal allele). More recently,
however, imprinting has been treated as a quantitative trait, which
implies that maternal or paternal alleles may only be partially inacti-
vated (see, e.g., Naumova and Croteau 2004; Sandovici et al. 2005;
Sandovici et al. 2003), and k1 and k2 may take any values in the range
[21,1]. Note that if k1 = k2 = 0 then the trait is purely additive, and
both reciprocal heterozygotes have a genotypic value midway between
the homozygotes. If k1 and k2 are equal but of opposite sign (for
example, k1 = 21 and k2 = 1, giving complete maternal inactivation)
then the locus is subject only to imprinting. However, in the most
general case, where k1 and k2 take any values in the range [21,1], we
might consider that both imprinting and dominance are acting on the
locus, as the mean genotypic value of heterozygotes is not the mean of
the homozygotes.

With the help of Figure 1, the mean genotypic value over the
population is

m ¼ p21ð0Þ þ p2p1ðað1þ k1ÞÞ þ p1p2ðað1þ k2ÞÞ þ p22ð2aÞ
¼ ap2ð2þ p1ðk1 þ k2ÞÞ: (1)

and the total genetic variance is

s2
G ¼ p1p2ða2

f þ a2
m þ a2p1p2ðk1 þ k2Þ2Þ (2)

where

af ¼ að1þ k1p1 2 k2p2Þ (3)

and

am ¼ að1þ k2p1 2 k1p2Þ: (4)

(Spencer 2002). We follow a number of approaches in calculating
breeding values, components of variance and covariances between
relatives. Doing so illustrates that various assumptions made in these
approaches are not valid in the presence of imprinting.

APPROACHES
Five approaches are outlined in the Appendix, and the results of their
partitioning breeding values, the corresponding calculation of varian-
ces and covariances, and the derivation of covariances between
relatives are shown in Tables 2–4. In the absence of imprinting, all
of these approaches give identical breeding values, variance compo-
nents, and covariances between relatives. The expressions for these
terms in the absence of imprinting are obtained by setting k1 = k2 = k.
Importantly, it can be seen that it is only by modifying the least
squares regression approach (Approach 2b) can the sex-specific addi-
tive and dominance values derived by Spencer (2002) be recovered
(Santure and Spencer 2006). The other three approaches (Approaches
2a, 3a, and 3b) fail to incorporate sex effects, and give incorrect results
when partitioning the variance components and calculating covarian-
ces between relatives.

INBREEDING AND IMPRINTING
An interesting aspect of the above variance decompositions is the
similarity between inbreeding and imprinting, as inbreeding also
introduces a covariance between additive and dominance effects
(Harris 1964) that may not be partitioned if an incorrect method is
used. To investigate this similarity, we incorporate inbreeding into
Approach 2b. We represent an inbred population by dividing the
population into two groups: a group that represents the expected
Hardy-Weinberg proportions, comprising an overall proportion of
(12 f ), and a completely homozygous group with no heterozygotes,
comprising a proportion f of the population. Thus genotypic frequen-
cies for A1A1, A2A1 and A1A2, and A2A2 genotypes are p21 þ fp1p2;
p1p2ð12 f Þ each and p22 þ fp1p2, respectively. Now the overall pop-
ulation mean incorporating both inbreeding (I) and imprinting is

mðIÞ ¼ ap2ð2þ p1ð12 f Þðk1 þ k2ÞÞ: (5)

When there is no inbreeding, f = 0, the population is in Hardy-
Weinberg proportions, and the mean reduces to ap2ð2þ p1ðk1 þ k2ÞÞ
as expected. With no imprinting, the mean reduces to 2ap2ð1þ kp1
ð12 f ÞÞ. We assume that the inbreeding coefficient f is stable across
generations, so the proportion of heterozygotes does not change.
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As in Approach 2b, male and female additive and dominance
deviations may be calculated separately (Santure and Spencer 2006).
For example, the additive effect of inheriting an A1 allele maternally is

e1 • ðIÞ ¼ G11ðp1 þ fp2Þ þ G12ðp2ð12 f ÞÞ2mðIÞ
¼ �ap2ð1þ k1p1 2 k2p2 þ f ð12 k1p1 þ k2p2ÞÞ:

The remaining additive effects are

e • 1ðIÞ ¼ �ap2ð1þ k2p1 2 k1p2 þ f ð12 k2p1 þ k1p2ÞÞ
e2 • ðIÞ ¼ ap1ð1þ k1p1 2 k2p2 þ f ð12 k1p1 þ k2p2ÞÞ
e • 2ðIÞ ¼ ap1ð1þ k2p1 2 k1p2 þ f ð12 k2p1 þ k1p2ÞÞ:

Breeding values and dominance deviations may be calculated as in
Approach 2b.

Genetic variance components
The total variance for an inbred population with imprinting is

s2
GðIÞ ¼ s2

G þ fp1p2ð4a2 2a2
f 2a2

mÞ2 a2f 2p21p
2
2ðk1 þ k2Þ2

where s2
G is the total genetic variance for the case of imprinting only

(2). When there is complete inbreeding ( f = 1), the total variance is

s2
GðI; f/1Þ ¼ 4a2p1p2 (6)

and for no inbreeding ( f = 0), we recover

s2
GðI; f/0Þ ¼ s2

G: (7)

The total variance may also be rewritten as

n Table 1 Important symbols used in this paper

Symbol Reference Definition

Roman letters
a (1)2 Additive term
Ai (1)2 Allele i
E (19)+ Expectation
f (5)2 Inbreeding coefficient
Gij (1)2 Genotypic value of genotype AiAj

h2 (33)+ Narrow sense heritability
k (9)2 Dominance term
ki (1)2 Imprinting term
pi (1)2 Frequency of allele i
S (19)+ Selection differential
t (18)+ Selection coefficient
wij (18)+ Relative fitness of genotype AiAj

Greek letters
Dm (19)2 Response to selection
d (20)2 Difference between the mean genotypic values of offspring

before and after selection
ei Approach 3a Average additive effect of allele Ai

ei • Approach 2a Average additive effect of inheriting an Ai allele from the mother
e • j Approach 2a Average effect of inheriting an Aj allele from the father
fij (18)2 Absolute fitness of genotype AiAj
�f (18)+ Mean fitness
lij Approach 2a Dominance effect of genotype AiAj

m (1)2 Population mean
s2
G (2)2 Total genetic variance

s2
A Table 3 Additive variance

s2
D Table 3 Dominance variance

sAD Table 3 Covariance between additive and dominance effects
Equation simplifications

a (10) að1þ kðp12p2ÞÞ
af (3) að1þ k1p12k2p2Þ
am (4) að1þ k2p12k1p2Þ
g (30) 1

2ðs2
Af ð1Þ þ sADf ð1Þ þ s2

Amð1Þ þ sADmð1ÞÞ

c (29)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
Dð1Þ þ sADf ð1Þ þ sADmð1Þ

q

Subscripts and superscripts
f (12)+ Female (maternal)
I (5)2 Inbreeding model
ij (1)2 Genotype AiAj

m (12)+ Male (paternal)
� (25)2 Next generation before selection

Figure 1. Genotypic values (Gij) for genotypes AiAj under genomic
imprinting.
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s2
GðIÞ ¼ ð12 f Þs2

GðI; f/0Þ þ fs2
GðI; f/1Þ

þ 1
2 f ð12 f Þðs2

Df ð1Þ þ s2
Dmð1Þ þ 2sADf ð1Þ þ 2sADmð1ÞÞ

(8)

and for the case of no imprinting (k1 = k2 = k), the total genetic
variance becomes

s2
GðI;  k1¼k2¼kÞ ¼ ð12 f Þs2

GðI; f/0;  k1¼k2¼kÞ þ fs2
GðI; f/1Þ

þ f ð12 f Þs2
Dðk1¼k2¼kÞ (9)

(Harris, 1964), where

s2
GðI; f/0;  k1¼k2¼kÞ ¼ p1p2ð2a2 þ 4a2k2p1p2Þ;

a ¼ að1þ kðp1 2 p2ÞÞ (10)

and

s2
Dðk1¼k2¼kÞ ¼ 4a2k2p21p

2
2:

Comparing equations (6) and (7), we can see that in the absence of
imprinting and dominance (k1 = k2 = f = 0), the total variance for an
inbred population is twice that of an outbred population (k1 = k2 = 0,
f = 1), and indeed the effect of inbreeding is linear; an inbreeding
coefficient of f ¼ 1

2 yields a total variance
3
2 times the variance with no

inbreeding. However, for dominance but no imprinting (9), the effect
of increasing inbreeding is nonlinear; the population variance may
increase or decrease relative to an outbred population depending on

the allele frequencies and the value of the dominance coefficient. A
similar effect is evident with imprinting; if there is no dominance (i.e.,
k1 = 2k2), the population variance linearly increases with increasing
inbreeding, while with both dominance and imprinting ðk1 6¼ �k2Þ
the population variance is a quadratic function of f. Thus, it is dom-
inance but not imprinting which determines the relationship of the
population variance with increasing inbreeding.

For a highly selfing species, the degree of imprinting may have
a large effect on the total population variance. For example, consider
a population with f ¼ 1

2 and a ¼ p1 ¼ p2 ¼ 1
2. Setting k1 = 2k2 (im-

printing, no dominance), the total variance is 0.20 for k1 ¼ 1
2 and 0.25

for k1 ¼ 1. Interestingly, the effect of imprinting becomes less pro-
nounced as inbreeding levels increase; for f ¼ 1

4, the total variance
increases from 0.18 for k1 ¼ 1

2 to 0.25 for k1 ¼ 1, while for f ¼ 3
4

the variance increases from 0.23 for k1 ¼ 1
2 to 0.25 for k1 ¼ 1.

The female and male additive variances are

s2
Af ðIÞ ¼ 2p1p2ð1þ f Þðaf þ f ð2a2af ÞÞ2

¼ s2
Af þ 2p1p2ðfa2

f

þð1þ f Þð2faf ð2a2af Þ þ f 2ð2a2af Þ2ÞÞ
(11)

and

s2
AmðIÞ ¼ 2p1p2ð1þ f Þðam þ f ð2a2amÞÞ2

¼ s2
Am þ 2p1p2ð fa2

m

þð1þ f Þð2famð2a2amÞ þ f 2ð2a2amÞ2ÞÞ
(12)

where s2
Af and s2

Am are the female and male additive variances
calculated from Approaches 1 and 2b (Table 3). The female and
male dominance variances are

n Table 2 Summary of breeding values for all approaches

Genotype

A1A1 A2A1 A1A2 A2A2

Approach 1 and 2b
Female �2p2af af ðp12p2Þ af ðp12p2Þ 2p1af

Male �2p2am amðp12p2Þ amðp12p2Þ 2p1am

Mean �p2ðaf þ amÞ 1
2ðp12p2Þðaf þ amÞ 1

2ðp12p2Þðaf þ amÞ p1ðaf þ amÞ
mean ¼ 1

2ðp12p2Þðaf þ amÞ
Approach 2a �p2ðaf þ amÞ p1af2p2am �p2af þ p1am p1ðaf þ amÞ

mean ¼ 1
2ðp12p2Þðaf þ amÞ

Approach 3a �p2ðaf þ amÞ 1
2ðp12p2Þðaf þ amÞ 1

2ðp12p2Þðaf þ amÞ p1ðaf þ amÞ
mean ¼ 1

2ðp12p2Þðaf þ amÞ

Approach 3b �p2ðaf þ amÞ aðp12p2 þ k1
22p1p2ðk1 þ k2ÞÞ

aðp12p2 þ k2
22p1p2ðk1 þ k2ÞÞ p1ðaf þ amÞ

mean ¼ 1
2ðp12p2Þðaf þ amÞ

n Table 3 Summary of variance components for all approaches

Additive variance
s2
A

Dominance variance
s2
D

Covariance between additive
and dominance effects

sAD

Approach 1 and 2b
Female s2

Af ¼ 2p1p2a
2
f a2p1p2ððk12k2Þ2 þ p1p2ðk1 þ k2Þ2Þ sADf ¼ ap1p2af ðk22k1Þ

Male s2
Am ¼ 2p1p2a

2
m sADm ¼ ap1p2amðk12k2Þ

Approach 2a and 3b p1p2ða2
f þ a2

mÞ ðap1p2ðk1 þ k2ÞÞ2 0

Approach 3a 1
2p1p2ðaf þ amÞ2 1

2a
2p1p2ððk12k2Þ2 þ 2p1p2ðk1 þ k2Þ2Þ 0
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s2
Df ðIÞ ¼ s2

D þ fp1p2ða2
f 2a2

m þ 4ða2af Þða2amÞ
2 f ða2p1p2ðk1 þ k2Þ2 þ 2ð2a2af Þð2a2 2af 2amÞÞ
þ2f 2ð2a2af Þ2Þ

(13)

and

s2
DmðIÞ ¼ s2

D þ fp1p2ða2
m 2a2

f þ 4ða2af Þða2amÞ
2 f ða2p1p2ðk1 þ k2Þ2 þ 2ð2a2amÞð2a2 2am 2af ÞÞ
þ2f 2ð2a2amÞ2Þ:

(14)

where s2
D is the dominance variance (Approaches 1 and 2b, Table 3).

Interestingly, and unlike the pure imprinting case, the dominance
variance is different for males and females. The female and male
covariances between additive and dominance terms are

sADf ðIÞ ¼ sADf 2 fp1p2ð2aðaf 2amÞ þ 2afam

þf ð2a2af Þð3af þ am þ 2f ð2a2af ÞÞÞ (15)

and

sADmðIÞ ¼ sADm 2 fp1p2ð2aðam 2af Þ þ 2afam

þf ð2a2amÞð3am þ af þ 2f ð2a2amÞÞÞ: (16)

where s2
ADf and s2

ADm are the female and male covariances between
additive and dominance effects (Approaches 1 and 2b, Table 3).
When there is no imprinting, the female and male covariances re-
duce to the same value:

sADf ðI;  k1¼k2¼kÞ ¼ sADmðI;  k1¼k2¼kÞ
¼ �2a2fp1p2ð1þ f þ kð12 f Þðp1 2 p2ÞÞ2:

(17)

Considering that f ; p1;   p2 2 ð0; 1Þ we can see that �2a2fp1p2 , 0
and hence the covariance is strictly negative under inbreeding alone.
Recall that under imprinting alone

sADf ¼ ap1p2af ðk2 2 k1Þ

and

sADm ¼ ap1p2amðk1 2 k2Þ
(Table 3). Now we may rearrange af to give af ¼ am þ aðk12k2Þ,
so that

sADf ¼ �sADm 2 a2p1p2ðk1 2 k2Þ2

and hence 1
2ðsADf þ sADmÞ, 0, so the average of male and female

covariances under inbreeding is also strictly negative. However, if k1
and k2 are of opposite sign, then one of sADf or sADm may be
positive. Thus, although both imprinting and inbreeding introduce
a covariance between additive and dominance effects, it is only the
presence of imprinting that allows the covariance in one sex to be
positive. Imprinting can therefore have a significant effect on the
total genetic variance and on the sex-specific components of vari-
ance of an inbred population.

RESPONSE TO SELECTION
We follow the approach of Heywood (2005) to investigate the re-
sponse of an imprinted quantitative trait to natural selection. To in-
clude selection, let the absolute fitness of parent genotype AiAj be fij;
and define the relative fitness wij as fij=�f where

�f ¼
X2
i; j¼1

pipjfij (18)

is the mean fitness. Following Heywood (2005), we consider the
special case with the linear fitness function fij ¼ 1þ Gijt, which
gives wij ¼ ð1þ GijtÞ=�f. We denote mean offspring genotypic val-
ues after selection as G9

ij. We can now write the change in mean trait
value from the parent to the offspring generation (the response to
selection; DmÞ as

Dm ¼ sGw þ EðwDGÞ
¼ Sþ EðwDGÞ (19)

where sGw ¼ S, the selection differential, is the covariance between
parent relative fitness and genotypic value, DG ¼ G92G is the
change in mean trait value from parent to offspring, and the ex-
pectation is taken over parents (Heywood 2005; Price 1970; Price
1972).

Heywood (2005) defines G�
ij as the mean genotypic value of off-

spring from parent AiAj before selection, then sets d ¼ G92G� and,
after some algebra, restates (19) as

Dm ¼ bG�GSþ swG� • G þ swd þ EðdÞ þ EðG� 2GÞ (20)

or, alternatively,

Dm ¼ bG9GSþ swG� • G þ swd • G þ EðdÞ þ EðG� 2GÞ (21)

(Heywood 2005). We now apply this approach to an imprinted
quantitative trait. As usual, we need to define both male (paternal)
and female (maternal) terms. The absolute fitnesses of the four
genotypes are

n Table 4 Summary of covariances between relatives for all approaches

Parent-offspring Full sib Half sib

Approach 1 and 2b1

Female 1
2p1p2af ðaf þ amÞ 1

4p1p2ð2ða2
f þ a2

mÞ þ a2p1p2ðk1 þ k2Þ2Þ 1
2p1p2a

2
f

Male 1
2p1p2amðaf þ amÞ 1

2p1p2a
2
m

Approach 2a and 3b 1
2p1p2ða2

f þ a2
mÞ 1

4p1p2ða2
f þ a2

mÞ 1
4p1p2ð2ða2

f þ a2
mÞ þ a2p1p2ðk1 þ k2Þ2Þ

Approach 3a 1
4p1p2ðaf þ amÞ2 1

8p1p2ðaf þ amÞ2
1
4p1p2ðaf þ amÞ2 þ 1

2a
2p1p2ððk12k2Þ2

þ2p1p2ðk1 þ k2Þ2Þ
1These covariances between relatives were also derived by Dai and Weeks (2006) using an extension to the Li and Sacks (1954) method of calculating joint genotype
probabilities between pairs of relatives. Dai and Weeks (2006) distinguish maternal and paternal genotypes in order to incorporate imprinting.
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f11 ¼ 1
f21 ¼ 1þ atð1þ k1Þ
f12 ¼ 1þ atð1þ k2Þ
f22 ¼ 1þ 2at

and

�f ¼ P2
i; j¼1

pipjfij

¼ 1þ tm: (22)

Relative fitnesses are shown in Table 5, along with the frequency of
each genotype and average values of offspring before and after selec-
tion. Note that the population mean, variances and covariances
ðm; s2

G; s2
Af ; s2

Am; s2
D; sADf and sADmÞ are the same as derived

for Approaches 1 and 2b (Table 3).
Now the allele frequencies after selection are

p91 ¼
p1ð2þ ap2tð2þ k1 þ k2ÞÞ

2ð1þ ap2tð2þ p1ðk1 þ k2ÞÞÞ (23)

and

p92 ¼
p2ð2þ atð4þ p1ð2 2þ k1 þ k2ÞÞ
2ð1þ ap2tð2þ p1ðk1 þ k2ÞÞÞ (24)

For both female and male parents, the mean genotypic value of
offspring before selection is equal to the mean genotypic value:

�G�
f ¼

X2
i; j¼1

pipjG
�
ijf ¼ m (25)

�G�
m ¼

X2
i; j¼1

pipjG
�
ijm ¼ m (26)

The mean values of offspring after selection for female and male
parents are:

�G9
f ¼

P2
i; j¼1

pipjG9
ijf

�G9
m ¼

X2
i; j¼1

pipjG
9
ijm

The difference between male and female offspring means after
selection is

�G9
f 2 �G9

m ¼ 1
2ap1p2tðk2 2 k1Þðaf þ amÞ=�f (27)

which is zero when there is no imprinting (k1 = k2 = k). This result
clearly demonstrates the difference between female and male parents
in their effect on offspring means.

We derive the full set of covariances and expectations required for
equations (20) and (21) in the Appendix. Now, the response to
selection is

Dmf ¼ tgð�f2 1
2tcÞ=�f2

Dmm ¼ Dmf (28)

where

c ¼ ap1p2ðk1 þ k2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
D þ sADf þ sADm

q
(29)

and

g ¼ 1
2ðs2

Af þ sADf þ s2
Am þ sADmÞ: (30)

It is clear, therefore, that the response to selection is the same for
males and females, and is, as expected, related to the population
variances and covariances in addition to the selection coefficient t. In
the absence of imprinting k1 = k2 = k, g ¼ 2p1p2a2, where
a ¼ að1þ kðp12p2ÞÞ, and c ¼ 2akp1p2, and our total response to
selection becomes

Dm ¼ ts2
Að�fðk1¼k2¼kÞ2 1

2tsDÞ=�f2
ðk1¼k2¼kÞ (31)

(Heywood 2005) where

s2
A ¼ 2p1p2a

2;

s2
D ¼ ð2akp1p2Þ2

and

�fðk1¼k2¼kÞ ¼ 1þ 2ap2tð1þ kp1Þ:

How does the magnitude of the response to selection compare to
what we would predict if imprinting is ignored, and reciprocal
heterozygotes are assumed to have the same genotypic value?
Substituting k ¼ 1

2ðk1 þ k2Þ into (31), we find that the expression

n Table 5 Population values under selection model

Genotype A1A1 A2A1 A1A2 A2A2

Genotypic value 0 að1þ k1Þ að1þ k2Þ 2a
Frequency before selection p2

1 p2p1 p1p2 p2
2

Fitness 1=�f ð1þ atð1þ k1ÞÞ=�f ð1þ atð1þ k2ÞÞ=�f ð1þ 2atÞ=�f
Average value of offspring

before selection: maternal
ap2ð1þ k2Þ 1

2aðp1ð1þ k1Þ þ p2ð3þ k2ÞÞ 1
2aðp1ð1þ k1Þ þ p2ð3þ k2ÞÞ aðp1ð1þ k1Þ þ 2p2Þ

Average value of offspring
before selection: paternal

ap2ð1þ k1Þ 1
2aðp1ð1þ k2Þ þ p2ð3þ k1ÞÞ 1

2aðp1ð1þ k2Þ þ p2ð3þ k1ÞÞ aðp1ð1þ k2Þ þ 2p2Þ

Frequency after selection p2
1=

�f p2p1ð1þ atð1þ k1ÞÞ=�f p1p2ð1þ atð1þ k2ÞÞ=�f p2
2ð1þ 2atÞ=�f

Average value of offspring
after selection: maternal

ap9
2ð1þ k2Þ 1

2aðp9
1ð1þ k1Þ þ p9

2ð3þ k2ÞÞ 1
2aðp9

1ð1þ k1Þ þ p9
2ð3þ k2ÞÞ aðp9

1ð1þ k1Þ þ 2p9
2Þ

Average value of offspring
after selection: paternal

ap9
2ð1þ k1Þ 1

2aðp9
1ð1þ k2Þ þ p9

2ð3þ k1ÞÞ 1
2aðp9

1ð1þ k2Þ þ p9
2ð3þ k1ÞÞ aðp9

1ð1þ k2Þ þ 2p9
2Þ
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for the response to selection is identical to the full expression derived
with separate k1 and k2 terms (28). This suggests that even if imprint-
ing is acting, the predicted response to selection is the same whether
calculated using separate genotypic values, or using the average of the
genotypic values for the two reciprocal heterozygotes. If k1 = 2k2 so
there is imprinting but no dominance (as the mean heterozygote
genotypic value is midway between the homozygote genotypic values;
k ¼ 1

2ðk1 þ k2Þ ¼ 0), expressions (28) and (31) become

Dm ¼ 2a2p1p2t=ð1þ 2ap2tÞ: (32)

Comparison to breeder’s equation
The response to selection according to the breeder’s equation is

Dm ¼ h2S (33)

where the narrow sense heritability, h2, is the ratio between the addi-
tive and total genetic variance and S ¼ sGw ¼ ts2

G=
�f as previously.

For the case of imprinting, we can see that the breeder’s equation

Dm ¼ s2
Að1Þ=s

2
G • swG

¼ s2
Að1Þ=s

2
G • ts2

G=
�f

¼ ts2
Að1Þ=�f ð34Þ

is only equal to the response to selection

Dm ¼ tgð�f2 1
2tcÞ=�f2 (28)

when the dominance variance and the male and female covariances
between the additive and dominance terms are zero, which requires
k1 = k2 = 0. For the case of no imprinting, the breeder’s equation
becomes

Dm ¼ ts2
A=

�fðk1¼k2¼kÞ (35)

and is equal to the response to selection (31) when sD ¼ 0. There-
fore, we can see the well-known result that the response to selection
and the breeder’s equation are equal only when the dominance
variance is zero, and hence the breeder’s equation only predicts
the response to selection in the absence of dominance, whether
the locus is imprinted or not.

The difference between the breeder’s equation (34) and the pre-
dicted response to selection (28) is a function dependent on a, t, k1, k2
and p1 (= 1 2 p2). For a dominant trait with no imprinting
ðk1 ¼ k2 ¼ k 6¼ 0Þ the true response to selection (31) is strictly less
than that predicted by the breeder’s equation (35). Similarly, if k1 =
2k2 so there is imprinting but no dominance (as the mean heterozy-
gote genotypic value is midway between the homozygote genotypic
values), the breeder’s equation becomes

Dm ¼ ts2
Að1;k1¼2 k2Þ=

�fðk1¼2 k2Þ
¼ 2a2p1p2tð1þ k21Þ=ð1þ 2ap2tÞ (36)

while the true response to selection is

Dm ¼ 2a2p1p2t=ð1þ 2ap2tÞ: (37)

Comparing equations (36) and (37), we can see that the breeder’s
equation again overestimates the response to selection for the special

case of imprinting but no dominance. For the case of complete in-
activation of the maternal or paternal allele ðk21 ¼ 1Þ, the breeder’s
equation predicts a response double that of the true response.

If we include both imprinting and dominance, and let a ¼ 1
2, t = 1,

k1 2 ð21; 0Þ, k2 2 ð0; 1Þ and p1 2 ð0; 1Þ, the response to selection
(28) is also generally less than that predicted by the breeder’s equation.
However, it is interesting to note that if the difference between k1 and
k2 is less than � 0:1, then the predicted response to selection may be
the same as or slightly more than that predicted by the breeder’s
equation. Therefore, very small differences in the genotypic values
of reciprocal heterozygotes may result in the breeder’s equation
underestimating the response to selection.

These results contrast with the derivation of de Vries et al. (1994),
who from the covariance of parents and offspring predicted the re-
sponse to selection for an imprinted trait as

Dm ¼ Sðh2 þ 1
2s

2
pÞ (38)

where s2
p is defined as the variance due to imprinted genes.

DISCUSSION
We have demonstrated that a simple one-locus two-allele model of
genomic imprinting produces large differences in predictions for
additive (Table 2) and dominance terms from a number of standard
approaches for partitioning the genotypic value of an individual.
These approaches are equivalent in the absence of imprinting under
standard Mendelian expression (where heterozygotes have equivalent
genotypic values and hence k1 = k2). Although all approaches give
identical total genetic variance, there are differences in the partitioning
of the genetic variance into additive, dominance and covariance terms
(Table 3).

The major differences in the approaches arise due to differences in
how breeding values and additive effects are defined. Approaches 1
and 2b incorporate both sex- and generation-dependent terms, and
breeding values are equivalent for these approaches (Table 2). How-
ever, Approaches 2a and the regression methods (Approaches 3a and
3b) are unable to partition separate male and female terms. Consider
how breeding values are calculated for the different approaches. Ap-
proach 1 defines breeding values in terms of allelic contribution to
offspring, and breeding values are the same for reciprocal heterozy-
gotes. Genotypic values in Approach 2b are defined in terms of the
male or female effect they pass on to offspring, and so include the
same sex-specific generation effect as Approach 1. Breeding values are
consequently equivalent for reciprocal heterozygotes. The single re-
gression Approach 3a similarly forces genotypic equivalence for the
predicted value of reciprocal heterozygotes. In contrast, the other two
approaches define breeding values in terms of an individual’s own
genotype and the parental origin of alleles in that genotype. As a con-
sequence of imprinting, the parental origin of these alleles has an
effect on the genotypic value of individuals and hence reciprocal
heterozygotes have different breeding values (Table 2).

Under standard Mendelian expression, breeding values are
expected to be equivalent whether defined as the sum of additive
allelic effects (Approaches 2 and 3) or from the means of offspring
(Approach 1). However, differences have been noted where alleles in
the population are not in Hardy-Weinberg equilibrium (Ewens 1979),
in relation to populations with nonrandom mating and inbreeding
(Falconer 1985; Fisher 1941; Templeton 1987), and as a result of
population subdivision (Goodnight 2000). Genomic imprinting rep-
resents a distinct phenomenon causing differences in the definition of
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additive effects between the approaches we have investigated. The
difference of these approaches in predicted breeding values mirrors
the conclusion of Falconer (1985), who found that, “the concept of
breeding value [has] no useful meaning when mating is not random.”
In addition, genomic imprinting introduces a covariance between
breeding values and dominance deviations (Spencer 2002). This co-
variance between additive and dominance effects has only been noted
previously when a population is inbred (Harris 1964).

In comparing these approaches, we assumed that Approach 1 gives
us “correct” values for population parameters. Approach 1 is the most
time-intensive method for partitioning genetic variance because it
requires derivation of mating tables to give offspring mean values.
However, this approach does allow separate calculation of male and
female variances and covariances, which is of great value when con-
sidering offspring-parent and halfsib covariances in real populations.

Approach 2a was able to retrieve the additive variance, but the true
additive-by-dominance covariance was included in the expression for
the dominance variance. By defining additive terms specific to male
and female inheritance, we were able to “rescue” this method to in-
clude separate breeding values and dominance deviations, and
their corresponding variances, for the two sexes (Approach 2b). Of
particular note is that Approach 2b was the only approach able to
recover the Approach 1 covariance between additive and dominance
effects. Defining separate male and female dominance terms ðlijf ¼
Gij2m2ei • 2ej • and lijm ¼ Gij2m2e • i2e • jÞ includes a “genera-
tion” effect that is not accounted for in Approaches 2a and 3. Ap-
proach 1 is based on calculating breeding values and dominance
deviations that relate to the following generation because we use off-
spring means in their calculation. The equivalence of Approach 1 with
Approach 2b is a reassurance that defining separate male and female
dominance terms is an appropriate measure to include a sex and
generation effect in this approach. A closer investigation of Ap-
proaches 1 and 2b is presented for a model including maternal genetic
effects and genomic imprinting (Santure and Spencer 2006).

It is well known that parental effects may have a significant effect
on the phenotype of offspring. It is important for methods to include
such effects, but it is not easy to imagine how the linear regression
models (Approaches 3a and 3b) could be extended to allow for
parental effects such as imprinting and maternal genetic effects.

It is interesting to assess how different these approaches are in
their estimation of variance and covariance components. The
numerical examples in Table 6 contrast genetic variance components
and resemblances between relatives for the different approaches for
two scenarios, one where alleles are largely paternally inactivated, and
one where maternally inherited alleles are largely inactivated. We
assume that phenotypic (and hence genotypic) values range from
0 to 1 ða ¼ 1

2Þ. We can see that, as one would expect, paternal in-
activation increases the covariance between mothers and offspring and
half sibs sharing a mother, relative to fathers and offspring and half
sibs sharing a father respectively (and vice versa) (from the correct
expressions using Approaches 1 and 2b). Approach 3a underestimates
the true additive variance, while Approaches 2a, 3a, and 3b all un-
derestimate the dominance variance. As discussed previously,
Approaches 2a, 3a, and 3b are not able to calculate the covariance
between additive and dominance effects (Table 6). This covariance
between breeding values and dominance deviations is included in the
expressions for resemblance between parents and offspring and full
sibs and is likely to play a large role in identifying quantitative traits
that are influenced by imprinted loci (Spencer 2002).

By using Approach 2b, we were able to extend the imprinting
model to include inbreeding. As previously noted, inbreeding also
creates differences in how breeding values are defined (see Falconer
1985) and creates a covariance between additive and dominance
effects that is not present in a randomly mating population (Harris
1964). Interestingly, we have demonstrated that in the presence of
both inbreeding and imprinting, the dominance variance is different
for males and females. The covariance between additive and dominance
terms is strictly negative under inbreeding alone, and is on average
negative when averaged over males and females under imprinting
alone. However, it is only imprinting that allows the covariance in
one sex to be positive. The sex-based differences introduced by imprint-
ing represent an important difference between the effects of inbreeding
and imprinting on the derivation of quantitative genetic models.

Finally, we derived the full expression for the response to selection
of an imprinted trait. For an imprinted trait, the breeder’s equation
generally overestimates the true response to selection, a result well
established when a trait is known to exhibit dominance. Excitingly,
we have demonstrated that even in the absence of dominance, where

n Table 6 Values of variances and covariances for all approaches, given paternal and maternal inactivation

Paternal inactivation
p1 ¼ 1

2;p2 ¼ 1
2; a ¼ 1

2; k1 ¼ 9
10; k2 ¼ � 8

10

Maternal inactivation
p1 ¼ 1

3;p2 ¼ 2
3; a ¼ 1

2; k1 ¼ � 7
10; k2 ¼ 95

100

Approaches
1 and 2b

Approaches
2a and 3b

Approach
3a

Approaches
1 and 2b

Approaches
2a and 3b

Approach
3a

Additive variance
Female 0.4278 0.2153 0.1250 0.0020 0.1777 0.1020
Male 0.0028 0.3534

Dominance variance 0.1808 0.0002 0.0905 0.1520 0.0008 0.0764
Additive by dominance
covariance
Female 20.1966 0 0 0.0122 0 0
Male 0.0159 20.1635

Offspring-parent covariance
Female 0.1156 0.1077 0.0625 0.0071 0.0888 0.0510
Male 0.0094 0.0949

Half-sib covariance
Female 0.1070 0.0538 0.0313 0.0005 0.0444 0.0255
Male 0.0007 0.0883

Full-sib covariance 0.1077 0.1077 0.0851 0.0890 0.0890 0.0701
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on average reciprocal heterozygotes have a genotypic value midway
between the two homozygotes, the breeder’s equation does not predict
the true response to selection. This result has very great significance
for predicting the reaction to selection in natural populations—if
heterozygotes are not distinguished and we only measure additive
variance, we are very likely to overestimate the expected change in
mean trait values between generations.

Detecting genomic imprinting of a quantitative trait using, for
example, covariances between relatives, is likely to be difficult given
the large sampling variance of such covariances and the possibility of
maternal effects increasing the covariance of offspring with their
mothers (Santure and Spencer 2006; Spencer 2002). However, the
derivations above do suggest that a number of different quantities
may provide indicators for the influence of imprinting, such that if
one approach lacks power to distinguish imprinting from nonimprint-
ing, another avenue may provide fruitful. For example, 1) large differ-
ences in the covariance of offspring with their mothers compared to
fathers (particularly if the covariance with fathers is greater), 2) the
existence of a non-zero covariance between additive effects and dom-
inance deviations (particularly if there is a difference in sign between
male and female covariances), and 3) a smaller than expected response
to selection based on the breeder’s equation (particularly when there is
little evidence for dominance) all provide good evidence for the in-
fluence of genomic imprinting on a quantitative trait. A large range of
methods is presently available for assessing the role of imprinting in
complex and quantitative traits. These methods follow the broad spec-
trum of genetic approaches for dissecting complex traits, from general
mixed models, use of covariances between relatives and identification of
parent of origin effects in phenotype inheritance for traits without
genotypic information available; to the marker-based approaches of
linkage mapping, association studies and QTL mapping. A number
of these approaches utilize variance component estimation, resemblan-
ces between relatives or differences in the phenotypic values of hetero-
zygotes; quantities discussed in this manuscript. Such approaches are
invaluable in the dissection of quantitative traits, and we encourage
researchers to employ an approach that can successfully incorporate
genomic imprinting into a model of the quantitative trait of interest.
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APPENDIX

Approach 1 (Falconer and Mackay 1996)
This approach is based on using the genotypic values of parents

and offspring to calculate genotypic deviations, population breeding
values and dominance deviations, components of variance, and
covariances between relatives. The genotypic deviation of a genotype
is the difference between its genotypic value (Gij) and the population
mean ðm ¼ ap2ð2þ p1ðk1 þ k2ÞÞÞ. The breeding value is defined as
twice the difference between the mean genotypic value of the class’s
offspring and the population mean, and can be derived separately for
males and females (Spencer 2002). The dominance deviation for a ge-
notypic class is the difference between the genotypic deviation and the
breeding value. The genetic variance of the population is the variance
of the genotypic deviations, male and female additive genetic variances
are the respective variances of their breeding values and the male and
female dominance genetic variances are the variances of the male and
female dominance deviations (Spencer 2002). Resemblances between
relatives are calculated from first principles with the help of a mating
table.

Approach 2a (Lynch and Walsh 1998)
Based on a general least squares approach to calculate population

breeding values, dominance deviations, components of variance and
covariances between relatives. The genotypic value Gij for genotype
AiAj is the sum of the population mean ðmÞ plus additive ðeÞ and
dominance ðlÞ effects:

Gij ¼ mþ ei• þ e•j þ lij

where ei • is the average additive effect of inheriting an Ai allele
from the mother, e • j is the average effect of inheriting an Aj allele
from the father and lij is the remaining dominance term (also see
Santure and Spencer 2006). Note that here “•” represents either of
an A1 or A2 allele in the genotype. Breeding values are defined as
the sum of additive effects of alleles for each genotype, for example
the breeding value of the A1A2 genotype is e1 • þ e •2. The additive
variance is the variance of the additive allelic effects, while the
dominance variance is the variance of the dominance deviations.
By definition, the covariance between additive allelic and domi-
nance effects is zero.

In the absence of separate female and male variances, we follow
Fisher (1918) and define the covariances between relatives as sums of
additive and dominance variances.

Approach 2b (Lynch and Walsh 1998)
Approach 2a (above, and in Santure and Spencer 2006) calculated

total additive and dominance effects and did not allow separate cal-
culation of female and male additive and dominance variances as was
possible in Approach 1. By treating individuals as parents in terms of
the alleles that they will pass onto offspring in the next generation, we
can redefine the genotypic value of an individual as the sum of addi-
tive effects inherited by its offspring, plus the population mean and
a sex-specific dominance deviation (Santure and Spencer 2006). In
using these definitions, we partition the additive and dominance terms
into those specific to male and female inheritance.

Now the partitioning of the genotypic value becomes different for
males and females:

Gij ¼ mþ ei• þ ej• þ lijf
¼ mþ e•i þ e•j þ lijm

where the extra subscript on l indicates female ( f ) and male (m)
dominance effects, defined as

lijf ¼ Gij 2m2 ei• 2 ej•

and

lijm ¼ Gij 2m2 e•i 2 e•j

Male and female breeding values are then defined as the sum of
male and female additive effects;

bvf ðAiAjÞ ¼ ei• þ ej•
bvmðAiAjÞ ¼ e•i þ e•j

The male and female additive genetic variances are the variances of
male and female additive effects, dominance genetic variances are the
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variances of the dominance deviations, and the covariance between
dominance deviations and breeding values is similarly calculated
separately for males and females. Covariances between relatives are
then calculated following Spencer (2002) as sums of additive, domi-
nance and covariance terms.

Approach 3a (Fisher 1918; Lynch and Walsh 1998)
An alternative approach is to follow a regression method,

expressing the genotypic value Gij of the AiAj genotype using least
squares regression (Fisher 1918): based on the relationship between
the number of copies of the A2 allele in the genotype and the geno-
typic value, we may define Gij as the sum of a predicted regression
value ðĜijÞ and a residual error corresponding to a dominance de-
viation ðlijÞ. The predicted regression value may be further decom-
posed into the mean of the genotypes ðmÞ plus additive effects ðeiÞ,
where additive effects are linear terms dependent on the number of
A1 and A2 alleles in the genotype (N1 and N2 = (22 N1) respectively),
so that

Gij ¼ Ĝij þ lij ¼ mþ N1e1 þ N2e2 þ lij

Breeding values, dominance terms, variances, and covariances are
calculated as in Approach 2a. By definition, the covariance between
additive and dominance terms is zero.

Approach 3b (Lynch and Walsh 1998)
Alternatively, we may extend to a multiple regression approach

to dissect the genotypic value into additive and dominance com-
ponents. Using matrix notation, we can express the genotypic
value as

Gij ¼ Xbþ l

where Gij is the matrix of genotypic values, X is an incidence matrix,
b is the vector of the intercept (k) and the two parental partial re-
gression coefficients ðtfemale and tmaleÞand d is the vector of domi-
nance effects:

Gij ¼

2
6664

G11

G21

G12

G22

3
7775 ¼

2
6664

0

að1þ k1Þ
að1þ k2Þ
2a

3
7775;

X ¼

2
6664

1 0 0

1 1 0

1 0 1

1 1 1

3
7775;b ¼

2
64

k

tfemale

tmale

3
75;

l ¼

2
6664

l11

l21

l12

l22

3
7775

The terms k; tfemale and tmale may then be estimated using a gen-
eralized least squares approach, so that

b̂ ¼ ðXTRXÞ2 1XTRGij

where

R ¼ diagð p21 p2p1 p1p2 p22 Þ

is the matrix of genotypic frequencies. Additive effects for each geno-
type are defined as the difference between the genotypic value and the
sum of the population mean and dominance effect. Breeding val-
ues, dominance terms, variances and covariances are calculated as in
Approach 2a. By definition, the covariance between additive and
dominance terms is zero.

Response to selection
We here derive the full set of covariances and expectations which,

in addition to equations (22)–(26), are required to describe the re-
sponse to selection of an imprinted trait [equations (20) and (21)].

The covariances between genotypic values before and after se-
lection are

sGG9
f
¼ P2

i; j¼1
pipjGijG9

ijf 2m�G9
f

¼ 1
4ðs2

Af þ 2p1p2afam þ p1p2tðaf þ amÞð4ap2af

þa2p1p2ðk21 2 k22ÞÞÞ=�f

and

sGG9
m
¼ 1

4ðs2
Am þ 2p1p2afam þ p1p2tðaf þ amÞð4ap2am

þ a2p1p2ðk222 k21ÞÞÞ=�f:

The covariance between selection coefficients and genotypic values
after selection are

sG9
f w

¼ P2
i;j¼1

pipjG9
ijf wij 2 �G9

f

¼ tsGG9
f
=�f

sG9
mw

¼ tsGG9
m
=�f:

Thus, although the mean values of offspring after selection for
female and male parents differ, the relationship between selection
coefficients and the difference in genotypic values before and after
selection are the same for the offspring of female and male parents.
Other covariances are shown below

sGw ¼ P2
i; j¼1

pipjGijwij 2m

¼ ts2
G=

�f

sGG�
f
¼ P2

i; j¼1
pipjGijG�

ijf 2m2

¼ 1
2ðs2

Af þ sADf Þ
sGG�

m
¼ 1

2ðs2
Am þ sADmÞ

sG�
f w ¼ P2

i; j¼1
pipjG�

ijf wij 2m

¼ tsGG�
f
=�f

sG�
mw ¼ tsGG�

m
=�f
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swdf ¼
P2
i; j¼1

pipjwijdijf 2 Eðdf Þ

¼ �1
4t
2ðap21p22ðk1 þ k2Þðaf þ amÞ2Þ=�f2

¼ swdm

Eðdf Þ ¼
P2
i; j¼1

pipjdijf

¼ 1
4tðs2

Af þ s2
Am þ 2sADf Þ=�f

EðdmÞ ¼ 1
4tðs2

Af þ s2
Am þ 2sADmÞ=�f ¼ Eðdf Þ:

Now we can find the components of the response to selection.
Recalling equations (20) and (21), the components of equation (20)
for females are

bG�
f G
S ¼ ðsGG�

f
=s2

GÞS
¼ sGG�

f
sGw=s

2
G

¼ 1
2tðs2

Af þ sADf Þ=�f
(39)

sG�
f w • G ¼ sG�

f w 2sGwsGG�
f
=s2

G
¼ 0

(40)

swdf ¼ 2 1
4t
2ðap21p22ðk1 þ k2Þðaf þ amÞ2Þ=�f2 (41)

Eðdf Þ ¼ 1
4tðs2

Af þ s2
Am þ 2sADf Þ=�f (42)

EðG�
f 2GÞ ¼ P2

i; j¼1
pipjðG�

ijf 2GijÞ
¼ 0

(43)

and similarly, the components of (20) for males are

bG�
mG

S ¼ 1
2tðs2

Am þ sADmÞ=�f (44)

sG�
mw • G ¼ 0 (45)

swdm ¼ 2 1
4t
2ðap21p22ðk1 þ k2Þðaf þ amÞ2Þ=�f2 (46)

EðdmÞ ¼ 1
4tðs2

Am þ s2
Af þ 2sADmÞ=�f (47)

EðG�
m 2GÞ ¼ 0: (48)

Interestingly, swdf ¼ swdm ¼ swd —the covariance between selec-
tion coefficients and the change in mean genetic value before and after
selection—is the same for offspring of male and female parents. Then
we find that the male and female sum of equation (20) components
are

Dmf ¼ tgð�f2 1
2tcÞ=�f2

Dmm ¼ Dmf (49)

where

c ¼ ap1p2ðk1 þ k2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
D þ sADf þ sADm

q
(50)

and

g ¼ 1
2ðs2

Af þ sADf þ s2
Am þ sADmÞ: (51)

Hence

Dmf ¼ Dmm ¼ Dm ¼ �G9
p9 2m:

For equation (21), the extra terms we need to define are bG9GS
for males and females, and swd •G:

bG9
f G
S ¼ ðsGG9

f
=s2

GÞS
¼ ðsGG�

f
þ sGdÞS=s2

G

¼ bG�
f G
Sþ sGdsGw=s

2
G

¼ 1
2 p1p2tðaf þ amÞðaf 2

1
2ap1p2tðk1 þ k2Þðaf þ amÞ=�fÞ=�f;

(52)

bG9
mG

S ¼ 1
2 p1p2tðaf þ amÞ

�
am 2 1

2ap1p2tðk1þ k2Þðaf þ amÞ=�f
�
=�f

(53)

and

swd • G ¼ swd 2sGwsGd=s
2
G

¼ 0
(54)

and as expected, the sum of equation (21) components for females
and males is

Dmf ¼ Dmm ¼ Dm:
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