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Lam et al. (2018) respond to a commentary of their paper entitled ‘Large-Scale Cognitive GWAS Meta-
Analysis Reveals Tissue-Specific Neural Expression and Potential Nootropic Drug Targets’ Lam et al. (2017).
While Lam et al. (2018) have now provided the recommended quality control metrics for their paper, prob-
lems remain. Specifically, Lam et al. (2018) do not dispute that the results of their multi-trait analysis of
genome-wide association study (MTAG) analysis has produced a phenotype with a genetic correlation of
one with three measures of education, but do claim the associations found are specific to the trait of cogni-
tive ability. In this brief paper, it is empirically demonstrated that the phenotype derived by Lam et al. (2017)
is more genetically similar to education than cognitive ability. In addition, it is shown that of the genome-
wide significant loci identified by Lam et al. (2017) are loci that are associated with education rather than
with cognitive ability.
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Lam et al. (2018) assert that their use of multi-trait analysis
of genome-wide association study (GWAS) (MTAG; Turley
et al., 2018) resulted in the generation of associations that
were specific to the trait of cognitive ability. They offer four
pieces of supporting evidence based on the genetic corre-
lations derived using linkage disequilibrium score (LDSC)
regression (Bulik-Sullivan et al., 2015) found in Table S14
of Lam et al. (2018).

First, Lam et al. (2018) state that ‘our Table S14 demon-
strates the set of genetic correlations for theMTAGdata dif-
fer from those of educational attainment (from the Okbay
et al. (2016) data set) in many cases by an absolute value
(for rg) of 0.10 or greater’. This characterization of the ge-
netic correlations in Table S14 of Lam et al. (2017) differing
between the MTAG phenotype and education is mislead-
ing. This can be shown empirically by first extracting the
genetic correlations from Table S14 from Lam et al. (2017).
Next, in order to have confidence in the accuracy of the
point estimates of the genetic correlations, we extract ge-
netic correlations that were significant for at least one of the
cognitive phenotypes (Education, theMTAGphenotype, or
a GWAS composed of solely cognitive measures labeled as

cognitive ability). This leaves 61 traits that show a nomi-
nally significant genetic correlation with one of the cogni-
tive traits used by Lam et al. (2017). Next, we test for signif-
icant differences between the genetic correlations derived
using education and these 61 traits, with the genetic corre-
lations derived using the MTAG phenotype and the same
61 traits.

The results of this analysis can be seen in Figure 1, and
show the only six instances out of 61 traits where there
was a significantly different genetic correlation between the
MTAGphenotype and education. Crucially, in each of these
six instances, the genetic correlations produced using the
MTAGphenotype are also significantly different from those
produced using cognitive ability. This indicates that inmost
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FIGURE 1
(Colour online) An empirical comparison between the genetic correlations produced using the three cognitive phenotypes from Lam
et al. (2017). First, genetic correlations were selected when there was at least one nominally significant genetic correlation with any one
of the three cognitive phenotypes used in Lam et al. Second, we show that for those traits, there were only six instances where the MTAG
phenotype was significantly different from the education phenotype. However, in each of these six instances, the MTAG phenotype was
also significantly different from the cognitive ability phenotype. Each point represents a genetic correlation between one of the three
cognitive phenotypes (red = cognitive ability, dark blue = education, and light blue = the MTAG phenotype described as trait specific
to cognitive ability by Lam et al. (2017)) and the traits presented on the y-axis. The dotted red line indicates a genetic correlation of
zero. Error bars represent ±1 standard error as derived using LDSC regression.

instances there are no differences between education and
the MTAG phenotype; however, in the instances where the
MTAG phenotype deviates from education, it is also sig-
nificantly different from cognitive ability. Thus, the con-
clusion of Lam et al. (2018) that their MTAG phenotype
is more similar to cognitive ability, because there are in-
stances where the point estimates between education and
the MTAG phenotype differ, is empirically falsified.

Second, in their response, Lam et al. (2018) draw special
attention to the genetic correlations between childhood
IQ and their MTAG phenotype, writing that it is ‘vir-
tually identical’ to that produced using cognitive ability

and childhood IQ, and that there is a ‘notably smaller’
genetic correlation between education and childhood
IQ. Infant head circumference is also mentioned as pro-
ducing a genetic correlation with a point estimate that
is greater when using the MTAG phenotype rather than
using either education or cognitive ability. While in their
rebuttal, Lam et al. (2018) provide point estimates for
these genetic correlations, no measure is given for their
standard error, and no estimate is given for the magnitude
of the difference between these genetic correlations. These
standard errors can again be found in Table S14 of Lam
et al. (2017) and, when examined, show that the genetic
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correlations derived using childhood IQ and each of the
three cognitive phenotypes used by Lam et al. (2017) show
no significant difference between the education-childhood
IQ and the MTAG phenotype-childhood IQ genetic cor-
relations (p = .19), the MTAG phenotype-childhood
IQ and cognitive ability-childhood IQ genetic correla-
tions (p = .90), nor between the education-childhood IQ
and cognitive ability-childhood IQ genetic correlations
(p = .14). This same trend is again seen when examining
infant head circumference. In that case, the following
results are found when comparing the same three pairs of
genetic correlations: education and the MTAG phenotype
(p = .65), the MTAG phenotype and cognitive ability
(p = .78), and education and cognitive ability (p = .90).
This indicates that far from being counter examples to the
arguments put forward by Hill (2018), these phenotypes,
selected by Lam et al. (2018) as exemplars indicating the
success of their MTAG approach, show no evidence for
their claim that their MTAG phenotype is more similar to
cognitive ability than education.

The third piece of evidence Lam et al. (2018) use to show
that theirMTAGanalysis ismore similar to cognitive ability
than to education, is to claim the magnitude of the genetic
correlations with education were reported inaccurately by
Hill (2018). In their rebuttal, Lam et al. (2018) write that
‘Hill (2018) elides the fact that the calculation method em-
ployed by LD score regression is known to sometimes pro-
duce values for rg >1, if the variables are so highly simi-
lar as to be self-same (Walters, 2016)’. However, Hill (2018)
states in his Table 1, Figure 1, and in the publically available
scripts used by Hill (2018) to perform his analyses that ge-
netic correlations of greater than 1 are being treated as 1. In
addition, the same reference (Walters, 2016) is used in the
rebuttal by Lam et al. (2018) to state this is a known issue
of LDSC regression, as is used by Hill (2018) to justify the
decision to report genetic correlations of greater than 1 as 1.
The relevant text from Walters (2016) on how to interpret
genetic correlations of greater than 1 is included verbatim
here: ‘Thus, far our interpretation has been that as long as
artifacts or instability have been ruled out then this result
indicates rg approx. = 1’.

It should be noted that if one derives a genetic correlation
using LDSC regression using the same data set correlated
against itself, a genetic correlation of exactly 1 is produced.
Genetic correlations of greater than one appear when two
highly similar measures of the same phenotype (e.g., years
of education vs. college degree coded as a binary variable)
are used. Importantly, as shown in the rebuttal by Lam et al.
(2018), a genetic correlation derived using the MTAG phe-
notype and the GWAS derived only using cognitive tests
used in the construction of the MTAG phenotype did not
produce this effect. Furthermore, by following the advice of
Walters (2016) in reporting genetic correlations of greater
than 1 as 1, we avoid the issue of a variable being more
similar to a second variable than it is with itself. Together,

this shows that the MTAG phenotype derived by Lam et al.
(2017) does indeed show no significant difference in the ge-
netic correlations derived with three measures of education
compared with genetic correlations between aGWAS of ed-
ucation and the same threemeasures of education as shown
in Hill (2018), Figure 1.

It should be noted that the magnitude of the genetic cor-
relations between the MTAG phenotype and three mea-
sures of education are 0.98 (SE = 0.03), 0.97 (SE = 0.02),
and 0.97 (SE= 0.03), none of which are significantly differ-
ent to 1. Figure 1 of Hill (2018) also shows that there was a
significant difference between the genetic correlations de-
rived using the MTAG phenotype and those derived us-
ing cognitive ability, showing that the genetic architecture
of these two traits differ significantly with how they over-
lap with four measures of education (College completion
p = 2.29 × 10−7, Years of schooling p = 8.14 × 10−8, Years
of schooling 2013 p= 9.15× 10−8, Years of schooling 2016
p = 2.70 × 10−25). Neither the fact that the MTAG pheno-
type shows a genetic correlation near 1 with three measures
of education (just the genetic correlations between educa-
tion and different measures of education were contested)
nor the significantly different genetic correlations between
the MTAG phenotype and cognitive ability are disputed
in the rebuttal by Lam et al. (2018). Again, then, it appears
that the Lam et al. (2017)MTAG phenotype is more similar
to education than to cognitive ability.

Fourth, Lam et al. (2018) also believe that the results
of their genetic correlations with schizophrenia and bipo-
lar disorder highlight a biologically meaningful set of
relationships rather than being the result of their MTAG
phenotype having a genetic correlation at unity with edu-
cation as shown in Figure 1 of Hill (2018). Lam et al. (2018)
also state that the ‘overall pattern of genetic correlations’
between the three cognitive phenotypes used in Lam et al.
(2017) — education, the MTAG-intelligence phenotype,
and a GWAS composed solely of tests of cognitive ability
— is ‘highly similar’. However, attention was called to the
results of bipolar disorder and of schizophrenia by Hill
(2018) precisely because genetic correlations between edu-
cation with bipolar disorder and schizophrenia are positive
(Bulik-Sullivan et al., 2015; Hill et al., 2015; Okbay et al.,
2016), whereas for cognitive ability they are negative for
schizophrenia and near zero for bipolar disorder (Hage-
naars et al., 2016; Hill et al., 2015). This separation provides
the ability to examine whether the associations produced
by Lam et al. (2017) are indeed trait-specific to cognitive
ability as claimed, or are in fact closer to education as
shown by Hill (2018).

This too can be investigated by using the data provided
by Lam et al. (2017); again, following the extraction of ge-
netic correlations that were nominally significant with at
least one of the cognitive traits found in Lam et al. (2017),
we are left with genetic correlations between education,
cognitive ability, and theMTAG derived phenotype, and 61
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FIGURE 2
(Colour online) Genetic correlations from Lam et al. (2017) where at least one of the cognitive traits showed a nominally significant
genetic correlation with the traits presented on the y-axis. Each point represents a genetic correlation between one of the three cognitive
phenotypes (red = cognitive ability, dark blue = education, and light blue = the MTAG phenotype described as trait specific to cognitive
ability by Lam et al. (2017)) and the traits presented on the y-axis. The dotted red line indicates a genetic correlation of zero. Error bars
represent ±1 standard error as derived using LDSC regression.

traits (Figure 2). As can be seen in Figure 2, there is more
similarity between the point estimates of the education and
the MTAG phenotype than there is between the point esti-
mates of a GWAS composed solely of tests of cognitive abil-
ity and the MTAG phenotype.

Next, from these 61 traits, we extract instances of
where the genetic correlations are significantly differ-
ent between education and cognitive ability (Figure 3).
This leaves 27 traits. As can be seen in Figure 3, the
point estimates of these genetic correlations are more
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FIGURE 3
(Colour online) A subset of the traits showed in Figure 2. This shows the 27 traits that are significantly different between education
and cognitive ability. Note that in every instance the point estimate of the genetic correlation for the MTAG phenotype is closer to the
point estimate of education than it is to cognitive ability. Each point represents a genetic correlation between one of the three cognitive
phenotypes (red = cognitive ability, dark blue = education, and light blue = the MTAG phenotype described as trait specific to cognitive
ability by Lam et al. (2017)) and the traits presented on the y-axis. The dotted red line indicates a genetic correlation of zero. Error bars
represent ±1 standard error as derived using LDSC regression.

similar between education and the MTAG phenotype
than between the MTAG phenotype and cognitive
ability.

We then test to determine whether there is a significant
difference between the genetic correlations derived using
education and those derived using the MTAG phenotype.
In Figure 4, we see these results show that 21 out of these
27 traits show no evidence of the MTAG phenotype being
significantly different from education and, as stated above,
each of the six phenotypes that was significantly different
from education was also significantly different from cog-
nitive ability (Figure 1). Of note are the three phenotypes
highlighted in red, showing that the MTAG phenotype has

a genetic correlation of 1 with each of these three measures
of education.

The above series of analyses invalidates the claims of Lam
et al. (2017) that their MTAG phenotype is trait specific to
cognitive ability and separate from education. As shown,
in instances where the genetic correlations produced using
education and cognitive ability differ (Figure 3) the MTAG
phenotype shows no significant differences between those
derived using education in 21 out of 27 cases. Where such
differences are evident, the MTAG phenotype produces ge-
netic correlations that are also significantly different from
those produced using cognitive ability (Figure 1). Thus,
contrary to the claims of Lam et al. (2017), that theirMTAG
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FIGURE 4
(Colour online) A subset of the traits showed in Figure 3. This shows the 21 traits that show no significant difference between education
and theMTAG phenotype. Note that in every instance where a significant difference was found betweenMTAG phenotype and education,
a significant difference was also found between the MTAG phenotype and cognitive ability as shown in Figure 1. Each point represents a
genetic correlation between one of the three cognitive phenotypes (red = cognitive ability, dark blue = education, and light blue = the
MTAG phenotype described as trait specific to cognitive ability by Lam et al. (2017)) and the traits presented on the y-axis. The dotted
red line indicates a genetic correlation of zero. Error bars represent ±1 standard error as derived using LDSC regression. The red box
highlights the genetic correlations with three measures of education and shows that the MTAG phenotype has a genetic correlation of
1 with each of them.

phenotype is trait-specific to cognitive ability, it is empiri-
cally shown here that their MTAG phenotype is more simi-
lar to education and significantly different from established
measures of cognitive ability. Lam et al. (2018) also state
‘our leave-one-out analyses (Figure 3 in Lam et al. ((2017))
demonstrate that prediction of held-out samples, pheno-
typed for cognitive ability, are better for MTAG than for ei-
ther GWASCOG or GWASEDU alone. This finding supports
our interpretation that MTAG is boosting polygenic signal
for cognition, and does not support the conclusion of Hill
(2018) that theMTAGpolygenic signal is ‘indistinguishable
from that of education’’. The phrase ‘indistinguishable from

that of education’ is attributed to Hill (2018) but it is not
found in the manuscript of Hill (2018). However, the point
raised, that a polygenic risk score derived using the MTAG
phenotype explains more variance in cognitive ability than
a polygenic risk score derived using education does, is dis-
cussed below.

Polygenic risk score analysis involves deriving an indi-
vidual level predictor using the summary GWAS data from
one sample, and the phenotypic and genotypic data from
a second, independent, data set. This can be done within
the same trait, such as by using the summary GWAS statis-
tics from one data set on education to predict phenotypic
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levels of education in an independent data set. Alternatively,
cross-trait polygenic risk scores can be used, whereby using
the summary GWAS data on, for example, cognitive ability
is used to predict phenotypic variance for education. Im-
portantly, cross-trait polygenic risk scores can only predict
phenotypic variance in instances where there is a non-zero
genetic correlation between the two traits. However, un-
like genetic correlations, polygenic risk scores do not in-
dicate the degree to which genetic effects are shared, only
that there is a non-zero shared genetic effect across the two
traits. In order to empirically quantify the proportion of ge-
netic effects that are shared across traits, genetic correla-
tions are needed. As shown above, by using genetic corre-
lations, the MTAG phenotype more closely resembles edu-
cation than cognitive ability.

It should be noted that Lam et al. (2018) have now in-
cluded the maxFDR rate, as suggested by the authors of
MTAG (Turley et al., 2018). The maxFDR was 0.0068, in-
dicating that between 0 and 1 of these loci was a false
positive. Lam et al. (2018) also claim that ‘the top results
(genome-wide significant loci) emerging fromMTAG show
notable differences from those emerging from GWASEDU,
but are almost a complete superset of those emerging from
GWASCOG’. Larger data sets are now available to test this
assertion. Using publically GWAS data from 766,345 indi-
viduals who provided information on whether or not they
had a college or university level degree (Lee et al, 2018) and
the largest publically available data set on cognitive ability
(n = 168,033) that does not also include measures of edu-
cation (Davies et al., 2018), we examine the claims of Lam
et al. (2018). First, we extract the 82 independent lead SNPs
found in Lam et al.’s (2017) Table S1. We find that of the
82 genome-wide significant SNPs reported by Lam et al.
(2017), 81 are present in the (Lee et al., 2018) education data
set where 65 are genome-wide significant. For the cogni-
tive ability data set of Davies et al. (2018), we find that 82 of
the genome wide SNPs from Lam et al. (2017) are present.
However, only 29 of these are genome-wide significant for
cognitive ability. This result demonstrates that the genome-
wide significant SNPs of the MTAG phenotype derived by
Lamet al. (2017) showa greater overlapwith education than
with cognitive ability. Table S1 shows the association statis-
tics for each of the 82 genome-wide significant lead SNPs
from Lam et al. (2017) as well as the association statistics
for the same SNP for education (Lee et al., 2018), and for
cognitive ability (Davies et al., 2018).

As shown above, the phenotype derived by Lam et al.
(2017) using MTAG shows a genetic correlation of 1 with
three measures of education (Figure 1 of Hill (2018) and
Figure 4 in the current paper), an issue that is not contested
in the response by Lam et al. (2018). Furthermore, where
the pattern of genetic correlations differs between education
and cognitive ability (27 traits), the pattern of genetic corre-
lations derived using their MTAG phenotype shows no sig-
nificant differences with those derived using education (21

traits). Where such differences are found between the ge-
netic correlations produced using education and theMTAG
phenotype, the MTAG phenotype produces genetic corre-
lations that are significantly different from those produced
using cognitive ability (six traits). Finally, well-powered
GWAS are showing that the loci identified by Lam et al.
(2017) have more in common with education than with
cognitive ability. For these empirical reasons, it is difficult
to understand the position of Lam et al. (2017), who claim
this phenotype, derived usingMTAG, has produced associ-
ations that are specific to the trait of cognitive ability; rather,
it seemsmuchmore likely that these associations havemore
relevance to education than to cognitive ability.
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