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Opposing associations 
between sedentary time 
and decision‑making competence 
in young adults revealed 
by functional connectivity 
in the dorsal attention network
Dominika M. Pindus1,2*, Christopher E. Zwilling2, Jennifer S. Jarrett4, Tanveer Talukdar2, 
Hillary Schwarb2,3, Evan Anderson2,4, Neal J. Cohen2,3,4, Aron K. Barbey2,4, 
Arthur F. Kramer2,5 & Charles H. Hillman5,6

How daily physical activity and sedentary time relate to human judgement and functional connectivity 
(FC) patterns that support them remains underexplored. We investigated the relationships between 
accelerometer-measured moderate-to-vigorous physical activity (MVPA) and sedentary time to 
decision-making competence (DMC) in young adults using a comprehensive Adult-Decision Making 
Competence battery. We applied graph theory measures of global and local efficiency to test the 
mediating effects of FC in cognitively salient brain networks (fronto-parietal; dorsal attention, DAN; 
ventral attention; and default mode), assessed from the resting-state fMRI. Sedentary time was 
related to lower susceptibility to a framing bias. However, once global and local efficiency of the 
DAN were considered we observed (1) higher susceptibility to framing with more sedentary time, 
mediated through lower local and global efficiency in the DAN, and (2) lower susceptibility to framing 
with more sedentary time. MVPA was not related to DMC or graph theory measures. These results 
suggest that remaining sedentary may reduce neurofunctional readiness for top-down control and 
decrease engagement of deliberate thought, required to ignore irrelevant aspects of a problem. The 
positive effect suggests that the relationship between sedentary time and DMC may be moderated by 
unmeasured factors such as the type of sedentary behavior.

Physical inactivity and excessive sedentary time are associated with an increased risk of cognitive decline due to 
increased cardiometabolic risk1. However, in working age adults the relevance of physically inactive and sedentary 
lifestyles to higher order cognition such as reasoning and decision-making remains poorly understood. Aerobic 
exercise interventions are effective at improving cognitive control (a set of cognitive processes that schedule, 
control and maintain goal directed behavior) across the lifespan2–4. Recent evidence extends these positive effects 
to decision-making competence (DMC)5. DMC involves evaluating the probabilities (i.e. belief assessments) 
and desirability (i.e. value assessment) of different choices, and integrating this information while recogniz-
ing the limits of one’s own knowledge6. Each aspect is evaluated through specific components (tests) reflecting 
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individual’s capacity to overcome common cognitive biases in decision-making and thus higher DMC. Using 
a randomized controlled trial, we recently evidenced the efficacy of a high intensity fitness training interven-
tion in improving several aspects of DMC that rely on cognitive control (e.g., meta-cognitive and integrational 
aspects), in young healthy adults5.

However, the generalizability of the findings from aerobic exercise interventions remains limited because 
almost a half of young adults in the USA are physically inactive (i.e., defined as accumulating < 150 min of 
moderate or < 75 min of vigorous physical activity per week or less than the equivalent combination of the two 
intensities)7,8. Furthermore, individual differences in sedentary time have not been controlled for in these stud-
ies, while poorer general cognitive functioning was observed with higher sedentary time among older adults, 
regardless of moderate-to-vigorous physical activity (MVPA)9. Sedentary behavior is a distinct from physical 
inactivity behavior10. It is defined as the time spent in a sitting or reclined position with energy expenditure not 
exceeding 1.5 metabolic equivalents10 (one metabolic equivalent is the rate of energy expenditure while sitting 
at rest expressed as oxygen uptake of 3.5 mL kg−1 min−1 in adults11). How daily MVPA (comprising incidental 
and structured physical activities) and sedentary time contribute to complex cognitive abilities such as DMC 
in young, working age adults remains to be determined. The associations between sedentary time, DMC and 
functional connectivity are expected to be independent of engagement in MVPA because an individual can be 
concurrently physically active (i.e., by adhering to physical activity recommendations12) and highly sedentary 
(e.g., by engaging in ≥ 8 h of sedentary time per day13). In confirmation, prior research has shown adverse asso-
ciations between objectively measured sedentary time14, self-reported TV viewing, passive commuting9 and 
general cognitive ability after controlling for MVPA.

Seminal meta-analytical findings suggest more pronounced effects of physical activity on tasks that engage 
cognitive control15, a robust correlate of higher DMC16,17. Indeed, adults with higher levels of daily MVPA demon-
strate enhanced cognitive control18,19. The benefits of daily MVPA could thus extend to DMC, specifically to these 
aspects that to a greater extent rely on cognitive control such as resistance to framing (the ability to overcome 
the effects of positive or negative valence frames), following complex decision rules when weighing options and 
ability to recognize limits of one’s knowledge20. Greater engagement in sedentary behaviors (e.g., more time spent 
watching TV or engaging in sedentary commuting) has been related to poorer fluid intelligence14 and cognitive 
control9 in epidemiological and longitudinal studies. Higher sedentary time may therefore adversely affect DMC 
by downregulating cognitive control in favor of automatic information processing and increasing susceptibility 
to well-known cognitive biases (such as a framing bias) in decision-making21.

Research in network neuroscience reveals that complex cognitive abilities (such as cognitive control22, 
intelligence22,23 and DMC24) rely on co-activation of distributed brain regions (i.e., fronto-parietal regions) that 
support flexible modulation of cognitive control and goal-directed behavior25,26. These co-activation patterns 
can be measured at rest using resting state functional magnetic resonance imaging (fMRI). Resting state fMRI is 
used to identify correlations between BOLD signal fluctuations in brain regions supporting higher order cogni-
tion, thought to represent individual differences in the ability to engage cognitive control27. Increased cognitive 
control25,28–30, higher intelligence23 and DMC24 have been associated with increased resting state functional 
connectivity (FC) in four intrinsic connectivity brain networks: fronto-parietal network (FPN; comprising dor-
solateral prefrontal and dorsal frontal cortices, inferior parietal lobule, intraparietal sulcus, precuneus and middle 
cingulate cortex) which initiates and adjusts control; dorsal attention network (DAN; comprising frontal eye 
field, and parts of intraparietal cortex) which directs top-down control of attention; ventral attention network 
(VAN; including temporo-parietal junction and ventral frontal cortex) which re-orients attention to relevant and 
salient aspects of the environment29; and default mode network (DMN; comprising ventral medial prefrontal and 
posterior cingulate cortices31) with better performance observed on working memory32 and inhibitory control 
tasks33 with stronger resting state FC in DMN.

Greater plasticity of resting state FC patterns in these networks34,35 may render them amenable to physical 
activity interventions36, individual differences in aerobic fitness37 and daily physical activity38 in older adults. In 
younger adults, greater resting state FC in brain regions sensitive to individual differences in aerobic fitness cor-
related with higher resting state FC in FPN, DAN, VAN and DMN37. In turn, stronger resting state FC in FPN and 
VAN was associated with better DMC24. Thus, increased resting state FC in cognitively salient brain networks may 
mediate the association between a physically active lifestyle and higher DMC. However, aerobic fitness is only a 
proxy for a physically active lifestyle and shows only moderate correlations with objectively measured MVPA39 
(in part due to its large genetic component40). How a sedentary lifestyle may affect resting state FC patterns in 
cognitively salient networks among young adults remains largely underexplored.

Beyond the resting state FC patterns, graph theory measures assess the efficiency of information processing 
within and across intrinsic connectivity brain networks. In graph theory, the brain is viewed as a complex network 
comprising edges and vertices. Biologically plausible metrics are used to estimate the efficiency of information 
processing within specific and functionally distinct brain regions (measures of network segregation), and parallel 
information processing using measures of system integration. Local efficiency (a measure of system segregation), 
a proxy for information exchange within specialized brain modules (i.e., brain regions), measures how densely 
connected the nodes are within a module41,42. Global efficiency (a measure of network integration) represents 
the shortest functional connections between distant brain regions and serves as a proxy for parallel information 
processing in the brain41–43.

Local efficiency in cognitively salient networks (FPN, DAN, VAN and DMN) is a sensitive marker of func-
tional integrity44 and cognitive reserve45. More aerobically fit46, and more physically active older adults47 show 
greater local efficiency in these networks. Aerobic fitness also benefits global efficiency in older adults46,48. 
Whether the benefits of aerobic fitness (a physical state) for local and global efficiency in cognitively salient 
brain networks extend to physical activity behavior remains largely underexplored. One study reported no 
association between physical activity and global efficiency across cognitively salient brain networks in older 
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adults47. However, the use of physical activity questionnaires may have occluded the underlying associations due 
to inaccuracies inherent in self-reported physical activity49. Global and local efficiency in cognitively salient brain 
networks are good candidates for mediators of the relationship between daily MVPA, daily sedentary time and 
DMC due to strong associations of global efficiency to general intelligence23, and positive relationship between 
local efficiency, cognitive control and memory45.

This study had two aims: first, to assess the relationships between objectively measured MVPA, sedentary 
time and DMC in young adults; and second, to test the mediating effects of FC in the FPN, DAN, VAN and 
DMN on these relationships. In relation to aim 1, we hypothesized that young adults who engaged in more daily 
MVPA would show better DMC. We expected that the relationships between MVPA and DMC would be inde-
pendent of sedentary time because (1) aerobic exercise interventions yield no clinically meaningful changes in 
daily sedentary time50,51, thus their positive effects on cognitive functions could not be explained by concurrent 
decrements in sedentary time; and (2) because high volume of sedentary time has been related to increased 
cardiometabolic52,53 and cardiovascular risk even after controlling for MVPA54,55.

Based on the emergent evidence of poorer cognitive control with greater engagement in sedentary behaviors56, 
we hypothesized that more sedentary young adults would show poorer DMC. We predicted that these associa-
tions would persist after controlling for MVPA based on the findings that sedentary time-related increases in 
cardiovascular and metabolic health risks are largely independent of MVPA13. In relation to aim 2, we predicted 
that more daily MVPA would be related to greater global and local efficiency in cognitively salient brain networks 
(FPN, DAN, VAN and DMN), while more sedentary time would be related to lower global and local efficiency in 
these networks. Next, we predicted that the relationships between MVPA, sedentary time and performance on 
DMC tests would be mediated through the associations of these physical behaviors with FC in cognitively salient 
brain networks. Lastly, we predicted that these mediating effects would hold once the differences in sedentary 
time and MVPA were statistically controlled.

Results
Sample characteristics are presented in Table 1. MVPA was negatively and moderately related to sedentary time 
(ρ = − 0.35, p < 0.001), which justified mutual adjustments for sedentary time and MVPA in the regression models. 
MVPA was positively but weakly related to fat free peak oxygen uptake (FFVO2peak; ρ = 0.23, p = 0.001), while 
sedentary time was not related to FFVO2peak (p = 0.39).

Moderate‑to‑vigorous physical activity, sedentary time and decision—making compe‑
tence.  All subsequent p values reported in the text have been adjusted for False Discovery Rate, (FDR)57; 
uncorrected results are presented in Supplemental Table S1. MVPA was not related to performance on any of 
the DMC tests measured with  adult decision-making competence (A-DMC) battery (ps ≥ 0.08). In contrast, 
sedentary time was positively related to resistance to framing (i.e., indicating a positive relationship between 
sedentary time and cognitive performance) in unadjusted as well as adjusted for MVPA models (ps = 0.02; path c, 
Fig. 1a–c), but not to other A-DMC tests (ps > 0.10). Note that negative betas in Fig. 1 indicate a positive relation-
ship between sedentary time and resistance to framing because scores on resistance to framing were negatively 
skewed and required transformations to adhere to normality (i.e., scores were first reflected by subtracting each 
score from the highest score plus 1 and then transformed). Consequently, higher transformed scores indicate 
lower resistance to framing and thus poorer cognitive performance. To avoid confusion, we provide a conceptual 
interpretation of statistical results in the text such that negative betas are interpreted as a positive relationship 
between sedentary time and resistance to framing (i.e., indicating better cognitive performance with higher 
sedentary time), and positive betas are interpreted as a negative relationship (i.e., indicating poorer cognitive 
performance with higher sedentary time). We next assessed mediating effects models. First, the relationships 
between MVPA, sedentary time and hypothesized mediators (local and global efficiency in FPN, DAN, VAN 
and DMN) were explored.

Step 1: Sedentary time, moderate‑to‑vigorous physical activity  and graph theory meas‑
ures.  Tables 2 and 3 summarize the results of the regression models predicting global and local efficiency 
of brain networks from MVPA and sedentary time (***Supplemental Tables S2, S3 present models with uncor-
rected for FDR values). MVPA was not related to either global (ps ≥ 0.17) or local (ps ≥ 0.10) efficiency across 
all brain networks irrespective of adjustment for sedentary time. In contrast, more time spent sedentary (unad-
justed for MVPA) was related to lower global efficiency [F(8, 192) = 2.65, p = 0.01] and lower local efficiency [F(8, 
192) = 2.08, p = 0.04] in the DAN. Adjusting for MVPA did not offset the decrease in global efficiency of the DAN 
associated with more time spent sedentary [F(8, 192) = 2.32, p = 0.02] but it did offset the decrease in local effi-
ciency (p = 0.16). These results suggest that sedentary time may be a more sensitive behavioral marker of global 
and local efficiency in the DAN compared to MVPA in young adults.

Step 2: Graph theory measures and decision‑making competence.  To satisfy the second condi-
tion of the mediation58, we tested if global and local efficiency in the DAN (i.e., the hypothesized mediators; path 
b, Fig. 1a–c) were related to performance on A-DMC battery (outcomes) when adjusting for sedentary time (a 
hypothesized predictor). Global efficiency of the DAN was related to higher resistance to framing [△R2 = 0.03, 
β = − 0.19, SE = 0.07, b = − 0.19, p = 0.02, F(9, 191) = 5.17, p < 0.001], as did local efficiency [△R2 = 0.03, β = − 0.19, 
SE = 0.07, b = − 0.19, p = 0.02, F(9, 191) = 5.23, p < 0.001]. Note that negative betas indicate a positive relationship. 
Neither global nor local efficiency in the DAN were related to the remaining A-DMC tests (ps ≥ 0.22). Next, we 
formally tested the mediating effects of global and local efficiency in the DAN on the relationship between sed-
entary time and resistance to framing.
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Steps 3: Sedentary time and decision‑making competence—mediating effects.  In contrast, 
mediating effects models revealed two opposing statistical effects of sedentary time on resistance to framing: 
(1) an indirect effect, where sedentary time was negatively related to resistance to framing through its effect on 
global (a*b: β = 0.00011, 95% bootstrap CI [0.00002, 0.00024]) and local efficiency of the DAN (a*b: β = 0.00009, 
95% bootstrap CI [0.00001, 0.00021]; Fig. 1a,c), and (2) a positive direct effect of sedentary time on resistance to 
framing, controlling for global (c′: β = − 0.00051, 95% CI [− 0.00085, − 0.00018], Fig. 1a) and local efficiency of 
the DAN (c′: β = − 0.00049, 95% CI [− 0.00082, − 0.00016], Fig. 1c). We remind the reader that positive betas in 
the indirect effects indicate a negative relationship between sedentary time and resistance to framing through 
global (and local) efficiency of the DAN, while negative betas in the direct effects of sedentary time on resistance 
to framing indicate a negative relationship. Controlling for MVPA suppressed the negative indirect effect of the 
local (95% CI [-0.00002, 0.00018]; Fig. 1d) but not global efficiency in the DAN (95% CI [0.00001, 0.00023]; 

Table 1.   Sample characteristics (N = 201). BMI body mass index; overweight was defined based on BMI ≥ 25 
and < 30, obesity was defined as BMI ≥ 30133; FFVO2peak peak oxygen uptake adjusted for fat free mass, 
MVPA moderate-to-vigorous physical activity, DAN dorsal attention network, VAN ventral attention network, 
FPN frontoparietal network, DMN default mode network, A-DMC Adult-Decision Making Competence 
Battery. a Number and percent are included for categorical variables; median values are presented for the 
number of valid days; bincludes 1 participant with vocational school; cincludes 11 participants with an 
associate’s degree; d11.

Demographics M (SD)a

Age (years) 24.2 (5.3)

Sex (n, (%) females) 104 (52)

Education (n, (%))

High schoolb 102 (51)

Bachelor’s degree or higherc 99 (49)

Intelligence quotient

Shipley vocabulary 112.2 (8.8)

Figure series (n correct; max. 30) 2.4 (1.2)

BMI (kg m−2) 24.2 (3.9)

Overweight or obese (n, (%)) 69 (34)

FFVO2peak (mL kg−1 min−1) 57.1 (7.3)

VO2peak percentile

Low fit (< 35%-tiled; n(%)) 70 (35)

Accelerometry

Valid days of accelerometer wear [Med (IQR)] 6.0 (2.0)

Accelerometer wear time (min/day) 865.9 (119.4)

Sedentary time (min/day) 603.6 (119.2)

MVPA (min/day) 41.3 (24.8)

Meeting physical activity guidelines (n, %) 159 (79)

Local efficiency (range 0–1)

FPN 0.35 (0.03)

DAN 0.35 (0.03)

VAN 0.38 (0.04)

DMN 0.32 (0.02)

Global efficiency (range 0–1)

FPN 0.28 (0.04)

DAN 0.30 (0.04)

VAN 0.32 (0.04)

DMN 0.26 (0.03)

A-DMC

A-DMC index (z score) 0.08 (0.52)

Over/underconfidence (range 0–1) 0.92 (0.06)

Applying decision rules (range 0–1) 0.84 (0.15)

Consistency in risk perception (range 0–1) 0.75 (0.11)

Recognizing social norms (range −1 to 1) 0.48 (0.21)

Resistance to framing (range 0–5) 4.20 (0.43)

Resistance to sunk cost (range 0–6) 4.36 (0.69)
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Fig. 1b). The positive direct effect of sedentary time on resistance to framing after controlling for MVPA also 
remained statistically significant (FDR-corrected ps = 0.02, Fig. 1b).

Taken together, these results suggest that sedentary time acted on resistance to framing through two opposing 
pathways: one through decreased global and local efficiency in the DAN, leading to a lower resistance to framing, 
and a second one that promoted enhanced resistance to framing, potentially due to other mediators which were 
unmeasured in this study. Greater engagement in MVPA attenuated the negative mediating effect of decreased 
local but not global efficiency in the DAN on the relationship between sedentary time and resistance to framing. 
The negative indirect effects carried via global and local efficiency in the DAN attenuated but did not suppress 
the total positive effect of sedentary time on resistance to framing.

Discussion
Little is known about how daily physical activity and sedentary time relate to applied aspects of higher order 
cognition such as DMC, and what mechanisms may underpin this relationship. Here, we assessed the relationship 
between objectively measured daily MVPA and sedentary time to DMC in young healthy adults using the most 
comprehensive battery of tests to capture each of its core domains6. Contrary to our hypothesis, we found that 

Figure 1.   Direct and mediated effects of sedentary time on the ability to resist framing bias: (a) sedentary time 
unadjusted for moderate-to-vigorous physical activity (MVPA) and a mediating effect of global efficiency of 
the dorsal attention network (DAN); (b) sedentary time adjusted for MVPA and a mediating effect of global 
efficiency of the DAN; (c) sedentary time unadjusted for MVPA and local efficiency of the DAN; (d) sedentary 
time adjusted for MVPA and a mediating effect of local efficiency of the DAN; standardized total effects 
illustrate the reduction of the total positive effect of sedentary time (path c) on the ability to resist framing due 
to a negative indirect effect (paths a*b) carried by the decrease in the global and local efficiency in the DAN 
with increasing sedentary time (path a). The directionality of the effects in relation to resistance to framing is 
reversed: negative betas denote positive associations (paths c, c′, b) because values for resistance to framing are 
reflected and transformed (using Tukey power transformations). Blue: a direct effect of a predictor (X) on the 
outcome (Y), adjusting for the mediator (M); red: an indirect effect of X on Y via M; magenta: the total effect of 
X on Y.
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more time spent sedentary was related to higher ability to resist a common cognitive bias in decision-making, 
a framing bias. However, when FC in cognitively salient brain networks was considered, more sedentary young 
adults showed lower efficiency of information processing selectively within the DAN (i.e., lower local efficiency) 
and across the DAN and the remaining brain networks (i.e., lower global efficiency), suggesting lower readiness 
for top-down control29,30. We next probed a hypothesized mechanism underlying the relationship between sed-
entary time and DMC by formally testing the mediating effect of global and local efficiency in the DAN on this 
relationship. Mediation analyses revealed two directionally opposing associations. Firstly, when lower global and 
local efficiency in the DAN (associated with more sedentary time) were considered, more sedentary young adults 
were less able to resist framing (because of higher resistance to framing with higher global and local efficiency 
in the DAN). Engaging in more daily MVPA was protective against poorer ability to resist framing due to lower 
local efficiency but not due to global efficiency in the DAN. However, the mediating effects of global and local 
efficiency in the DAN did not fully explain the relationship between sedentary time and resistance to framing. 
Specifically, more sedentary young adults were better able to resist framing even after considering the decrease 
in resistance to framing with lower FC in the DAN. This relationship was independent of individual differences 
in daily MVPA. Lastly, in contrast to sedentary time, daily MVPA was not related to either DMC or global and 
local efficiency in any of the cognitively salient brain networks.

Contrary to our hypothesis we found that sedentary time was positively related to a specific aspect of DMC, 
the ability to resist framing bias, before (i.e., the total effect, path c Fig. 2) and after controlling for global and 
local efficiency in the DAN (i.e., a direct effect, path c′ in Fig. 2). Although this result may seem counterintuitive 
at first, epidemiological evidence suggests that the type of sedentary behaviors may moderate the relationship 
between sedentary time and higher order cognitive functions14,59–61. Specifically, computer use has been related 
to better cognitive control (task switching and working memory)14,59–61, while TV viewing has been related to 
poorer cognitive control and fluid intelligence14,59. Resistance to framing requires deliberate thought to attend to 
normatively relevant aspects of the problem and ignore irrelevant ones6, and therefore relies on cognitive control 
(working memory)20. While accelerometers do not measure the type of sedentary behaviors, epidemiological 
data suggest that leisure time computer use is three times higher among adults with post-secondary education62. 
Almost half of our participants (49%) had an associate’s or a bachelor’s degree, thus we speculate that they likely 
engaged in more computer use than TV viewing, which may have driven our positive findings14,56. As to the type 
of computer use, internet browsing accounts for the greatest propotion of computer use in young adults63 and 
can help optimize neural activation in dorsolateral prefrontal cortex64. In turn, dorsolateral prefrontal cortext 
supports the integration of cost and benefit analyses65, which is integral to resistance to framing66.

Table 2.   Global efficiency of intrinsic connectivity networks regressed on daily moderate-to-vigorous physical 
activity and sedentary time. Global efficiency in intrinsic functional brain networks was transformed using 
Tukey power transformations. All physical behavior variables were adjusted for accelerometer wear time. 
Bolded values indicate significant associations at p < 0.05 after FDR correction. Model: Global efficiency of a 
brain network = age + sex + education + BMI + IQ + FFVO2peak + MVPA/Sedentary time. MVPA moderate-to-
vigorous physical activity, DAN dorsal attention network, VAN ventral attention network, FPN frontoparietal 
network, DMN default mode network.

DAN VAN FPN DMN

Sedentary time

∆R2 0.0488 0.0207 0.0095 0.0035

β − 0.0006 − 0.0003 − 0.0002 − 0.0002

(SE) 0.0002 0.0002 0.0001 0.0002

b − 0.2266 − 0.1476 − 0.0999 − 0.0605

Sedentary time adjusted for MVPA

∆R2 0.0375 0.0287 0.0107 0.0073

β − 0.0005 − 0.0004 − 0.0002 − 0.0002

(SE) 0.0002 0.0002 0.0002 0.0002

b − 0.1963 − 0.1720 − 0.1047 − 0.0864

MVPA

∆R2 0.0114 0.0017 0.0000 0.0032

β 0.0008 − 0.0003 0.0000 − 0.0004

(SE) 0.0005 0.0005 0.0004 0.0005

b 0.1108 − 0.0424 0.0015 − 0.0587

MVPA adjusted for sedentary time

∆R2 0.0007 0.0103 0.0014 0.0071

β 0.0002 − 0.0007 − 0.0002 − 0.0006

(SE) 0.0005 0.0005 0.0004 0.0005

b 0.0260 − 0.1038 − 0.0384 − 0.0861
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Table 3.   Local efficiency of intrinsic connectivity networks regressed on daily moderate-to-vigorous 
physical activity and sedentary time. Local efficiency in frontoparietal networks was transformed 
using Tukey power transformations. Data for all other intrinsic connectivity brain networks was 
untransformed. All physical behavior variables were adjusted for accelerometer wear time. Bolded values 
indicate significant associations at p < 0.05 after FDR correction. Model: Global efficiency of a brain 
network = age + sex + education + BMI + IQ + FFVO2peak + MVPA/Sedentary time. MVPA moderate-to-
vigorous physical activity, DAN dorsal attention network, VAN ventral attention network, FPN frontoparietal 
network, DMN default mode network.

DAN VAN FPN DMN

Sedentary time

∆R2 0.0329 0.0004 0.0002 0.0015

β − 0.0001 − 0.0000 − 0.0000 0.0000

(SE) 0.0000 0.0000 0.0001 0.0000

b − 0.1861 − 0.0194 − 0.0127 0.0392

Sedentary time adjusted for MVPA

∆R2 0.0158 0.0029 0.0003 0.0005

β − 0.0001 − 0.0000 − 0.0000 0.0000

(SE) 0.0000 0.0000 0.0002 0.0000

b − 0.1276 − 0.0546 − 0.0166 0.0226

MVPA

∆R2 0.0296† 0.0074 0.0001 0.0022

β 0.0003 − 0.0001 − 0.0000 − 0.0001

(SE) 0.0001 0.0001 0.0004 0.0001

b 0.1783 − 0.0890 − 0.0084 − 0.0489

MVPA adjusted for sedentary time

∆R2 0.0123 0.0098 0.0002 0.0012

β 0.0002 − 0.0002 − 0.0001 − 0.0000

(SE) 0.0001 0.0001 0.0004 0.0001

b 0.1134 − 0.1016 − 0.0140 − 0.0358

Figure 2.   A graphical summary of the directionality of mediating and direct effects of sedentary time on 
resistance to framing through global and local efficiency of the dorsal attention network (DAN). Blue: a direct 
effect of a predictor (X) on the outcome (Y), adjusting for the mediator (M); red: an indirect effect of X on Y via 
M; magenta: the total effect of X on Y.
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To explore a potential mechanism of the relationship between sedentary time and DMC, we tested the mediat-
ing effects of global and local efficiency in cognitively salient brain networks (FPN, DAN, VAN and DMN), which 
have been related to DMC24, intelligence22,23 and cognitive control67,68. Contrary to the total effect of sedentary 
time on resistance to framing (i.e., before accounting for FC in the DAN), our mediation analyses revealed a 
negative association between sedentary time and resistance to framing carried through lower global and local 
efficiency, specifically in the DAN. This result aligns with previous research linking individual differences in 
resistance to framing to cortical surface area of the dorsal anterior cingulate cortex17, a region implicated in 
cognitive control69. The negative association between sedentary time and resistance to framing carried through 
decreased global and local efficiency in the DAN may reflect experience-dependent readiness of the DAN to 
engage top-down control. Global efficiency of the DAN is maximized during high network coupling (i.e., the 
periods when temporal correlations in FC among the network nodes are strong)70. High network coupling within 
the DAN during rest is thought to represent experience-dependent patterns of connectivity71,72, largely consist-
ent with FC patterns during cognitive effort71,73. For example, lower local efficiency at rest within several nodes 
of the DAN has been related to poorer performance on a task of visual attention73. Thus, lower global and local 
efficiency of the DAN may render individuals more susceptible to a framing bias by potentially allowing for top-
down processes to be initiated too late to stop or override automatic (and consistent with the frame) response.

The significance of this relatively small decrease in resistance to framing with decreased global efficiency 
of the DAN can be understood in view of the physiologically meaningful changes in sedentary time and age-
related decline in resistance to framing74. Sedentary time was expressed in minutes per day, while a meaningful 
change in sedentary time requires displacing higher volumes of sedentary time. For example, substituting two 
hours of sedentary time with light physical activity attenuated metabolic risk among young adults by 0.09 SD75. 
Accordingly, we found that a 2-h increase in sedentary time (mediated through lower global efficiency in the 
DAN: a*b = 0.04 or 0.08 SD, a positive beta value indicates a negative relationship) would correspond to twice 
the rate of the decrease in resistance framing over five years due to aging (b =− 0.02)74. The rate of the decrease in 
global efficiency in the DAN associated with two more hours of daily sedentary time (0.017 units or 4% relative 
to a maximum in unadjusted and adjusted for MVPA models) in our study is equivalent to age-related decrease 
in global efficiency of the brain network from young adulthood (19–30 years) to middle age (51–60 years)76. 
Taken together, our results suggest that decreasing sedentary time by at least two hours (i.e., the time spent daily 
watching TV by 84% of Americans62), may protect from suboptimal global (and local) efficiency in the DAN 
and susceptibility to the framing bias. While small on an individual level, this effect is likely to result in a large 
number of affected individuals in the population77 due to high prevalence of sedentary lifestyles among adults in 
the USA who spend on average 8 h/day sedentary78. Given the ubiquitous role of resistance to framing in daily 
decision making including career choices79, medical decisions80 and financial planning81,82 and dependence of 
general cognitive ability on global efficiency of the brain network23,45, future research should test the effects of 
reducing sedentary time on functional connectivity of cognitively salient brain networks and susceptibility of 
decision-makers to common cognitive biases across adult lifespan.

One potential mechanism that may help explain the negative mediated effect of sedentary time on resistance 
to framing through global efficiency in the DAN is decreased insulin sensitivity due to high volumes of sitting83,84. 
Greater volume of sedentary time can increase the risk of insulin resistance85, while engaging in prolonged sitting 
(e.g., >  20 min) acutely increases post-prandial insulin response86, which may translate to an acute decrease in 
insulin sensitivity87. Peripheral insulin sensitivity can affect the transfer of peripheral insulin to the brain88,89, and 
thus contribute to suboptimal global and local efficiency in the brain networks that rely on frontal lobe (which is 
sensitive to variation in cerebral insulin90,91) including the DAN. Adults with low insulin sensitivity have shown 
decreased task-related activity in hub regions of the DAN (including parietal and temporal cortices)92,93, and 
difficulty shifting connectivity patterns from reward to cognitive control based networks94, while attenuated 
cerebral glucose metabolism in these regions has been related to poor cognitive control92.

In contrast to sedentary time, daily MVPA was not related to FC of cognitively salient brain networks or to 
DMC. Too small variance in daily MVPA in our sample of healthy and physically active young adults may have 
contributed to these null findings. Few participants in our sample were physically inactive as 79% met the aerobic 
component of current physical activity recommendations12 and 40% were classified as “highly active” (≥ 300 min 
of moderate and vigorous per week). Prior research found similar null association between accelerometer-meas-
ured MVPA and FC in the DAN in a group of relatively highly active older adults (daily MVPA: Med = 33 min/
day)95. Consistent with curvilinear dose–response relationships of MVPA with several health outcomes related 
to cognitive control (e.g. mental health96, glycated hemoglobin97), stronger relationship between physical activity 
and FC in brain networks and DMC could be expected at a lower end of MVPA continuum, which was not cap-
tured in our study. Alternatively, neurocognitive gains may require structured aerobic exercise or high intensity 
fitness training, consistent with positive effects of aerobic exercise interventions on DMN and frontal-executive 
network36, and high intensity fitness training on DMC5.

Limitations.  Our results need to be considered in view of study limitations. We did not capture the modal-
ity of sedentary behaviors that young adults engaged in. Thus, we were unable to identify specific sedentary 
behaviors which may have driven the positive relationship between sedentary time and resistance to framing. 
Therefore, future studies should include sensitive measures of the modality of sedentary behavior that could be 
temporally paired with accelerometry data, such as a 24-h recall98. Next, while hip-worn accelerometers pro-
vide objective measurement of physical movement, their accuracy to assess posture is limited99,100. Thus, some 
misclassification of sedentary time for light physical activity (LPA, and vice versa) was to be expected101. How-
ever, it is unlikely that misclassification of sedentary time for LPA by accelerometers has affected our conclu-
sions because LPA was negatively related to global efficiency of the DAN and resistance to framing in post-hoc 
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exploratory analyses (***Supplemental Tables S4, S5; results uncorrected for FDR). Next, our sample included 
young, well-educated and, on average, physically active adults, which may limit generalizability of our findings. 
To increase generalizability, we controlled for age, sex, education, IQ and FFVO2peak (estimated using a gold 
standard maximal exercise test) in all our analyses because these factors have been related to DMC in previous 
research. We also mutually controlled for MVPA and sedentary time in our models. Lastly, the observational 
design precludes causal inferences, and randomized controlled trials specifically designed to test the effects of 
decreasing sitting time on FC in cognitively salient intrinsic connectivity brain networks and on higher order 
cognitive functions are needed to establish causality.

Conclusions
Investigations linking lifestyle behaviors to cognitive functions aim to identify behavioral targets that help opti-
mize mental functioning of the population. Our study reveals how reducing sedentary time may help decrease 
susceptibility to a framing bias by optimizing functional connectivity patterns that underpin top-down attentional 
control. Framing bias prompts a decision maker to accept greater risks to avoid losses across contexts including 
career seeking and financial planning. As such, we show that sedentary lifestyle may subtly affect a broad range 
of human behaviors. A net positive association between sedentary time and resistance to framing suggests that 
young and well-educated adults in our study may have primarily engaged in cognitively enhancing sedentary 
behaviors which decreased their susceptibility to a framing bias. By revealing the complexity of the relationship 
between sedentary time and resistance to framing, our results emphasize the need to consider the modality of 
sedentary behaviors and their neurofunctional correlates in future studies. Thus, our study paves the way for 
future research into the role of sedentariness in decision-making competence and its neurofunctional signatures.

Methods
Population.  Baseline data from adults participating in the INSIGHT trial (ClinicalTrials.gov: NCT02780739)5 
were included in the study. The study adhered to the Code of Ethics of the World Medical Association102, and the 
University of Illinois IRB approved the study protocol; all participants provided informed consent. As described 
previously5, we included adults: (1) aged 18–44 years; (2) fluent in speaking English; (3) with normal or cor-
rected-to-normal vision and hearing; free from: (4) medications affecting central nervous system; (5) psycho-
logical, neurological, or endocrine disease; or (6) history of concussion within the past two years; or (7) learning 
disorders, (8) if a smoker, < 10 cigarettes per day; (9) with a body mass index (BMI) < 35; and (10) no contraindi-
cations to exercise as per revised Physical Activity Readiness Questionnaire103. After exclusions based on insuf-
ficient accelerometer wear (i.e. < 4 days; n = 98)104, missing data on fMRI (n = 93), fat free VO2peak (FFVO2peak; 
n = 1), missing or low scores (< 85) on Shipley-2 intelligence test105 (n = 34), missing education (n = 2), 201 partic-
ipants (Mage = 24.2, SD = 5.3 years, age range [18.0, 43.9]; 47% out of the original sample N = 429) were included.

Accelerometry.  Physical activity and sedentary time were measured using a triaxial wGT3X-BT acceler-
ometer (ActiGraph LLC., Pensacola, FL, USA), a small device (3.3 × 4.6 × 1.5 cm; 19 g) with a dynamic range 
of ± 8 g. Sampling frequency was set to 100 Hz. Accelerometers were worn on an elastic belt at the right anterior 
axillary line for 7 consecutive days during waking hours except for water-based activities. Non-wear time (60 
consecutive minutes of 0 counts106,107) was excluded from the analyses. Only participants with ≥ 4 days of ≥ 10 h 
of wear time were included104,108. Acceleration signal was converted into vertical axis counts over 60 s epochs and 
time (min/day) spent sedentary (< 100 CPM109) and in MVPA (≥ 2,020 CPM110) was calculated using ActiLife 
software (version 6.13.3; ActiGraph LLC., Pensacola, FL, USA).

fMRI data acquisition and processing.  All images were acquired using Siemens Magnetom 3 T Trio 
scanner using a 32-channel head coil and processed exactly as previously described24,37. High resolution struc-
tural images were acquired using multi-echo T1-weighted magnetization prepared gradient echo (0.9 mm iso-
tropic resolution, TR = 1900 ms, TI = 900 ms, TE = 2.32 ms, with GRAPPA and an acceleration factor of 2)111. 
Functional images were acquired during resting state using accelerated gradient-echo echoplanar imaging 
(EPI) sequence: TR = 2000 ms, TE = 30 ms, FOV = 240 mm, 90° flip angle, 10 min acquisition, or 300 volumes, 
1.9 × 1.9 × 2.0  mm voxel size and 56 slices with 10% slice gap. Participants lay still with their eyes open and 
fixated on a white crosshair presented on a black background of an LCD monitor viewed through a head coil-
mounted mirror24,112. fMRI images were processed using FSL tools (FMRIB Software Library version 5.0; avail-
able at: https​://fsl.fmrib​.ox.ac.uk/fsl/fslwi​ki/)113,114. T1-weighted MPRAGE was extracted with brain extraction 
tool (BET)115 followed by the delineation of grey matter, white mater and cerebrospinal fluid voxels using a FAST 
segmentation116. Pre-processing of rs-fMRI data (using FSL FEAT tool113,114) included slice timing and motion 
correction, spatial smoothing (3 mm FWHM kernel), nuisance signal regression via GLM analysis, temporal 
band pass filtering (0.009–0.1 Hz), linear registration of functional images to structural images, and non-linear 
registration of structural images to MNI 152 template using 2 mm isotropic voxel resolution.

Subjects were excluded from analysis with absolute head displacement greater than 0.5 mm per TR (as 
estimated by FSL’s MCFLIRT) for at least a third of the frames within a 10-min sequence. Remaining subjects 
displayed an absolute head displacement of on average 0.29 mm per scan (min: 0.06 mm, max: 2.49 mm). Affine 
registration across TRs was performed using MCFLIRT with default options. To account for partial volume 
effects and signal intensity changes due to linear motion and drift, an extended set of 12 motion parameters (six 
standard rotation and translation parameters at TR = 0 and TR = − 1, estimated with FEAT preprocessing) were 
included as explanatory variables (EV) for each TR in the nuisance regressor GLM analysis. Next, non-linear 
(> 12 dof) outliers in signal intensity due to head motion were identified using DVARS, with a boxplot cutoff 
threshold of 75th percentile plus IQR × 1.5117. For each outlier TR, an EV was added to the GLM analysis to 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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partial out signal intensity in the TR. Lastly, mean white matter and cerebrospinal fluid signals averaged across 
all voxels were also included as the nuisance variables in the GLM analysis. Fully pre-processed rs-fMRI data 
were defined as residuals from the GLM models subsequently transformed to normalized MNI 152 space and 
resampled to 4 mm isotropic voxel resolution.

Graph theory measures.  Methods used to derive graph theory metrics followed exactly those previously 
described and any differences are clearly stated118,119. Weighted connectivity matrices for each brain network 
were computed across all subjects. Craddock’s 800 parcellated brain atlas120 was used to extract the mean time 
series signal from subjects’ BOLD fMRI signal at each parcel/region121; 662 regions common across subjects 
were identified. First a brain mask that included voxels with non-zero standard deviation values was generated 
for each subject. The masks were combined into a group mask, which represented voxels common to all sub-
jects. The group mask was finally used on the Craddock’s 800 parcellated atlas, which resulted in 662 regions 
intersecting with group mask. For each subject a connectivity matrix consisting of 662 × 662 pairwise correla-
tions between the average BOLD times series signals was computed and normalized using Fisher’s Z-transfor-
mation. Fisher Z-transformed correlations were then multiplied by their standard deviation (approximated as 
σ = 1/√(n − 3); n is number of samples comprising the BOLD signal), yielding standardized Z scores. Statistically 
significant positive correlations (p < 0.05) were identified and retained based on Bonferroni-corrected Z-thresh-
olds for each subject’s FC matrix122. Negative and non-significant correlations where dropped37. Next, the thres-
holded Z scores were rescaled to represent connection weights ranging from 0 to 1. In contrast to binary graphs, 
where an arbitrary threshold is used to define a connection such that all connections with less than a specific 
correlation value (an absolute threshold) are set to 0 and all other connections are set to 1, in weighted graphs 
connection weights (i.e., rescaled statistically significant Z scores) is preserved, thus circumventing the need for 
thresholding123. Subject-wise weighted connectivity matrices were next derived for each of the 7 brain network 
maps, namely, visual, somatosensory, limbic, default mode, dorsal attention, ventral attention and frontoparietal 
(brain masks available at: https​://surfe​r.nmr.mgh.harva​rd.edu/fsl-wiki/Corti​calPa​rcell​ation​Yeo20​11)37. Adja-
cency matrices for each of the 7 brain networks are included as supplementary data D1.

Graph theoretic measures of global and local efficiency were derived for FPN, DAN, VAN and DMN based 
on their weighted connectivity matrices. Measure of global efficiency was calculated as the inverse of the average 
shortest paths of nodes belonging to a brain network41,43:

Ewglob is the weighted global efficiency, N is the set of all the nodes in the brain network, dwij  is the shortest weighted 
path length between nodes i and j43. Global efficiency provides a measure of how effectively information is inte-
grated across the entire network43.

Local efficiency measures how interconnected neighboring nodes are to each other and was expressed as the 
inverse of the average shortest path connecting all neighbors of a given node43:

where wij is the connection weight between i and j; djh (Ni) is the shortest path length between j and h that is 
limited to neighbors of i and kwi  is the weighted degree, i.e., the number of links connected to node i43. Local 
efficiency was computed for each node within a brain network and divided by its total number of nodes. High 
local efficiency reflects the efficiency of information transfer within a module (here: a specific brain network).

Adult‑decision making competence battery (A‑DMC).  To account for the multidimensional char-
acter of DMC6,17, we administered the most comprehensive battery of decision-making processes, which con-
sisted of: (1) belief assessment that included consistency in risk perception (whether decision-making choices 
violate rules of probabilistic reasoning) and ability to recognize social norms (accurately judging normative 
beliefs of age-matched peers); (2) value assessment, comprising the ability to overcome sunk cost (considering 
future options not prior investments) and resist normatively irrelevant problem frames (resistance to framing), 
expressed as 5 minus mean absolute difference between related frames (e.g., gain and loss) of the same problem; 
(3) information integration, which measured the application of complex rules (applying decision rules); (4) 
metacognitive ability to identify the limitations of one’s knowledge (over/underconfidence)6. Scoring included: 
percentages of responses that adhered to the probability theory (on a 0–1 scale; consistency in risk perception); 
rank-order correlation (varying from − 1 to + 1) between the proportion of respondents judging several undesir-
able behaviors as “sometimes OK”, and decision-maker’s estimate of this proportion (recognizing social norms); 
the number of times when previous investments were correctly discounted (on a 1–6 point scale; resistance to 
sunk cost); the mean difference between scores on problems framed as a gain and a loss (0–5 point scale; resist-
ance to framing); percent of problems solved by correctly applying rules (ranging from 0 to 1; applying decision 
rules); and the absolute difference between decision-maker’s confidence in their response accuracy to ques-
tions of general knowledge and the percentage of correct responses (higher scores represent better performance; 
over/underconfidence)6. Unweighted average of z-scores across six tasks were used as an index of overall DMC 
(A-DMC index)6. A-DMC battery has acceptable reliability and internal consistency6.
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Covariates.  All analyses were adjusted for accelerometer wear time124. Remaining covariates were chosen 
based on their associations with FC and DMC, and included: age125,126, sex127, education (≤ High School or > High 
School)6, body mass index (BMI; kg m−2)128, IQ6, and aerobic fitness5,37. Height and weight were measured using 
a stadiometer (model 240; Seca, Hamburg, Germany) and a digital scale (WB-300 Plus; Tanita Tokyo, Japan). 
Fluid and crystallized intelligence were measured using Figure Series (Z scores representing the number of cor-
rect items)129 and Shipley-2 Vocabulary Scale (standard scores)105, respectively. Aerobic fitness was assessed with 
graded maximal exercise test on a treadmill11 using indirect computerized calorimetry (Parvo Medics TrueOne 
2400) and a modified Balke protocol130. FFVO2peak was defined based on the test meeting ≥ 1 of the follow-
ing criteria11: (1) a plateau in VO2 or failure to increase VO2 by 150 mL min−1 with increased workload11; (2) 
heart rate > 85% of predicted maximum130; (3) a rating of perceived exertion > 17131; or (4) a peak RER ≥ 1.10 
(mL kg−1 min−1 relative to fat free mass)132. Fat free mass was measured using dual X-ray absorptiometry (DXA; 
Hologic QDR 4500A, software version 13.4.2, Bedford, MA, USA).

Statistical analyses.  Global efficiency (FPN, DAN, VAN and DMN) and local efficiency (FPN) were posi-
tively skewed and transformed using Tukey power transformations. All A-DMC test scores (except for Z score) 
were negatively skewed, thus reflected and transformed using Tukey power transformations. All other variables 
were normally distributed. Associations between MVPA, sedentary time, FC in FPN, DAN, VAN, DMN, and 
A-DMC tests were inspected using multiple linear regression models. We first assessed the total effect of MVPA/
sedentary time on A-DMC tests (path c), adjusting for age, sex, BMI, education, IQ and FFVO2peak (Model 1), 
and additionally adjusting for sedentary time or MVPA in Model 2. The total effect does not account for global or 
local efficiency of brain networks. Next, we tested mediating effects models. In step 1, global and local efficiency 
in each brain network were regressed on MVPA and sedentary time (path a, Fig. 3). Models 1 and 2 were con-
ducted for each network. In step 2, performance on each of the A-DMC tests was regressed on global and local 
efficiency in brain networks which were significantly related to MVPA or sedentary time in step 1, using models 
1 and 2 (path b, Fig. 3). In step 3, we formally tested the mediating effects of global and local efficiency of brain 
networks that were significantly related to MVPA or sedentary time and A-DMC tests. Mediating (indirect) 
effect was defined as a statistically significant interaction term between paths a and b (a*b)58. PROCESS macro 
(https​://proce​ssmac​ro.org) was used to compute bootstrap confidence intervals for the indirect effect (10,000 
samples)58. Direct effect was estimated by regressing A-DMC scores on MVPA/sedentary time, controlling for 
the covariates specified in Models 1 and 2, as well as global or local efficiency in a respective brain networks 
(path c′). Significance was set to α = 0.05. All p values reported in the text have been corrected for multiple 
comparisons using FDR57. Significance for indirect effects is defined as 95% bootstrap confidence intervals not 
containing a zero. Statistical analyses were conducted using IBM SPSS Statistical software (v. 25.0, IBM Corp., 
Armonk, NY, USA).

Figure 3.   Mediated effects of global and local efficiency of intrinsic brain networks on the relationship between 
sedentary time and set shifting. Blue represents a direct effect of a predictor (X) on the outcome (Y), adjusting 
for a mediator (M); red represents an indirect effect of X on Y via M, which is a product of paths a and b; 
magenta represents the total effect of X on Y which is the sum of the indirect effect (red) and the direct effects 
(blue).

https://processmacro.org
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