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ABSTRACT Extensive use of agrochemicals is emerging as a serious environmental
issue coming at the cost of the pollution of soil and water resources. Bioremediation
techniques such as biostimulation are promising strategies used to remove pollutants
from agricultural soils by supporting the indigenous microbial degraders. Though con-
sidered cost-effective and eco-friendly, the success rate of these strategies typically
varies, and consequently, they are rarely integrated into commercial agricultural prac-
tices. In the current study, we applied metabolic-based community-modeling approaches
for promoting realistic in terra solutions by simulation-based prioritization of alternative
supplements as potential biostimulants, considering a collection of indigenous bacteria.
Efficacy of biostimulants as enhancers of the indigenous degrader Paenarthrobacter was
ranked through simulation and validated in pot experiments. A two-dimensional simula-
tion matrix predicting the effect of different biostimulants on additional potential indige-
nous degraders (Pseudomonas, Clostridium, and Geobacter) was crossed with experimental
observations. The overall ability of the models to predict the compounds that act as
taxa-selective stimulants indicates that computational algorithms can guide the manipula-
tion of the soil microbiome in situ and provides an additional step toward the educated
design of biostimulation strategies.

IMPORTANCE Providing the food requirements of a growing population comes at
the cost of intensive use of agrochemicals, including pesticides. Native microbial
soil communities are considered key players in the degradation of such exogenous
substances. Manipulating microbial activity toward an optimized outcome in effi-
cient biodegradation processes conveys a promise of maintaining intensive yet
sustainable agriculture. Efficient strategies for harnessing the native microbiome
require the development of approaches for processing big genomic data. Here, we
pursued metabolic modeling for promoting realistic in terra solutions by simula-
tion-based prioritization of alternative supplements as potential biostimulants, con-
sidering a collection of indigenous bacteria. Our genomic-based predictions point
at strategies for optimizing biodegradation by the native community. Developing a
systematic, data-guided understanding of metabolite-driven targeted enhancement
of selected microorganisms lays the foundation for the design of ecologically
sound methods for optimizing microbiome functioning.
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Providing the food requirements of a growing population comes at the cost of an inten-
sive use of agrochemicals, including pesticides, and leads to persistent residues that

consistently exert negative effects on the ecosystem (1–3). To date, soil contamination
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caused by pesticides and herbicides is considered among the top 10 environmental haz-
ards, with limited solutions that support green and cost-effective soil detoxification proc-
esses. Eco-friendly solutions for the decontamination of cultivated soils are a major goal of
agricultural research (4–6). Native microbial soil communities are viewed as key players in
the degradation of exogenous substances (7, 8). The soil microbial community includes
microorganisms that participate either directly or indirectly in degradation processes and
that drive the fluxes of energy and mass conversion through various interactions (9).
Manipulation of microbial activity toward an optimized outcome in terms of efficient bio-
degradation processes conveys a promise of maintaining intensive yet sustainable agricul-
ture (10, 11).

Backed by the need to develop sustainable strategies for the cleanup of agricultural
soil, bioremediation solutions (use of living organisms for removing contaminants from the
environment) are increasingly sought (12–14). The two fundamental strategies in bioreme-
diation, bioaugmentation (addition of cultured microorganisms to improve the degrada-
tion process in the environment) and biostimulation (modifying the environment to
support the growth of degraders), have been shown successful in accelerating the removal
of specific synthetic chemicals (pesticides, herbicides, etc.) in agricultural soils (15–17).
Biostimulants such as organic and inorganic compounds, biochar, and crop residues have
been tested in several studies for their effects on the rapid removal of contaminants (18–
20). In some studies, carbohydrates were identified as biostimulants that promoted indige-
nous soil degraders to enhance the degradation rate (21).

Although these strategies are considered cost-effective and eco-friendly, their success
rate typically varies, and consequently, they are rarely integrated into commercial agricul-
tural practices (12). Environmental genomics conveys the promise of revolutionizing biore-
mediation processes. Traditionally, biostimulation practices are developed based on an
exhaustive process of trial and error, screening a limited number of possible solutions. This
can be overcome by implementing algorithms for processing genomic “big data” that will
provide a new toolkit for a better understanding of complex biological systems (22–25). In
recent years, metabolic modeling has been increasingly used for exploring and improving
selected metabolic performances of microbial species (26, 27). Modeling is based on in sil-
ico representation of genomic data obtained from field samples, supporting the conduct-
ance of multiple simulations leading to organism- and community-level phenotyping and
the subsequent development of metabolic engineering strategies for biostimulation (28–
31). Simulations can be designed to screen for the stimulation potential of metabolites for
particular catabolic pathways, microbial species, and combinations of both. For a specific
degradation process, exploiting the exhaustive power of computational modeling plat-
forms allows a fast screening and prioritization of thousands of bioremediation solutions.

In a recent series of research works, we provided pioneering evidence that genomic-
based algorithms can serve in the development of biostimulation approaches of several
herbicides, including atrazine (32–35). Atrazine is a widely used herbicide for maize, sor-
ghum, and sugarcane as a control against broadleaf weeds (32, 36). Extensive use of atra-
zine and its persistence in the environment led to its detection in various environmental
samples (37). Although it is an effective agrochemical in increasing crop productivity, its
persistence results in pollution of soil, surface water, and groundwater (38). To enhance
the rate of degradation of atrazine in contaminated soils, the combination of sequencing
technologies and metabolic modeling was shown efficient for designing strategies that
will optimize its degradation by indigenous soil bacteria under in vitro conditions (32, 33,
34). Here, we pursued metabolic modeling for promoting realistic in terra solutions by sim-
ulation-based prioritization of alternative supplements as potential biostimulants, consider-
ing a collection of indigenous bacteria. A two-dimensional simulation matrix was created
to explore the potential impact of different carbon sources as biostimulants of different
native degraders. The effects of different biostimulants on the performances of the micro-
bial community and the relative abundance levels of individual species were validated in
pot experiments.
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RESULTS
Ranking potential biostimulants for an indigenous degrader of the herbicide

atrazine. In a previous study, an Arthrobacter species (NCBI accession MG554188) was
identified as an efficient degrader of atrazine in soil taken from a commercial field in
Newe-Ya’ar, Israel (32). The native species is highly similar (98% identity) to the well-
studied atrazine degrader Paenarthrobacter aurescens TC1 (34, 39, 40). Despite clear
evidence for atrazine degradation activity in general and in the specific soil in particu-
lar, the relative abundance of the Arthrobacter species was unaffected by application of
atrazine at conventional rates in commercial agricultural practices (32). The nonsignifi-
cant change in the abundance of a key degrader could be related to a weak impact of
a single factor (atrazine) in a complex multivariate system, such as soil with multiple
physical and chemical properties. The use of organic supplements as enhancers of atra-
zine degradation in both in vitro and in terra systems (32, 41) indicates that atrazine
degradation can be optimized beyond the response achieved by the inductive effect
of atrazine per se. In order to generate a maximal stimulation effect, we aimed to con-
struct a simulation system that allowed us to predict the outcomes of different addi-
tives on the rate of degradation in a community with multiple degraders.

To this end, we applied dynamic simulations for testing the relative efficacies of all
exchange metabolites (total of 109) of the metabolic model of P. aurescens TC1 as
potential biostimulants of atrazine degradation (see Table S1 in the supplemental ma-
terial). As expected from various laboratory and field studies (21, 32), carbohydrates
including glucose were found to have a strong impact on the atrazine degradation.
Though glucose is indeed an efficient enhancer of degradation, the simulation points
to disaccharides as the most efficient stimulants (see Fig. S1). The stimulation activity
of the top biostimulants trehalose and maltose (C12), in comparison to glucose (C6), the
carbon-rich compound octadecanoate (OCDCA) (C18) and two amino acids that are
weak enhancers of degradation in comparison to sugars (Fig. 1; see also Fig. S1). The
amino acids include serine, an efficient biostimulant among amino acids, and histidine,
whose simulative effect depends on the presence of atrazine (and is more significant
in its absence) (34). OCDCA, despite being a carbon-rich compound, is predicted to be
a nonefficient enhancer, indicating that the number of carbons by itself is insufficient
for predicting simulation efficiency (Fig. 1A, B, and C). To verify that the efficiency of
the disaccharides in comparison to glucose did not solely reflect their higher carbon
content, simulations were carried while normalizing input fluxes according to carbon
content (Fig. 1, bottom) rather than molar values (Fig. 1, top). In accordance with previ-
ous studies, the comparison indicated that the simulations reflected a complexity that
goes beyond carbon content and cannot be predicted based solely on biochemical
characteristic (34). Simulations were also carried out with normalized nitrogen content
and these resulted in overall conserved predictions (see Fig. S3).

Atrazine degradation in soil was evaluated in pot experiments, using an atrazine-
sensitive weed for the bioassay (32). The potential enhancement effect of each of the
stimulants was tested under four and two concentrations for the carbon sources and
amino acids, respectively (Fig. 2A). A dose-sensitive effect was detected only for glu-
cose, with trehalose and maltose reaching similar efficiencies with 2.5 g or 15 g per kg
of soil. Based on the calibration results, biostimulants were compared considering the
optimal minimal dose. Ranking of stimulant efficiency showed an overall agreement
between model-based predictions and observations in pot experiments (Fig. 2B).
Trehalose and maltose provided at a low dose (2.5 g per kg of soil) resulted in signifi-
cantly higher recovery (P , 0.05) in comparison to glucose (at 15 g per kg of soil) and
the other compounds tested. An exception was OCDCA, which had a similar biodegra-
dation enhancement efficiency as glucose despite being predicted by the simulation
to act as a poor enhancer.

Impact of biostimulants on bacterial community structure. The effect of biosti-
mulants on the bacterial community structure was evaluated based on 16S rRNA gene
amplicon sequences obtained from treated (with atrazine, supplements, and their re-
spective combinations) and nontreated soil. Atrazine by itself did not induce a
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significant change in the diversity of soil bacteria, though it induced a significant differ-
ence in community structure (see Fig. S4), in correspondence with a previous report
(32). Notably, each of the supplements and all combinations of atrazine and supple-
ments induced a significant change in community structure with the exception of histi-
dine (see Table S2). At the phylum level, Proteobacteria was the most abundant phylum
(40 to 80%) across all treatments, with the highest relative abundance (.80%) in sam-
ples without any supplement (with or without atrazine) (see Fig. S5). Whereas no signif-
icant change was found at the phylum level between the control and atrazine, many of
the supplements induced a clear shift in microbial composition that could be viewed
across the phylogenetic tree (see Fig. S6). Firmicutes were supported by maltose, glu-
cose, OCDCA, and histidine; Deltaproteobacteria were supported by maltose and glu-
cose; and Actinobacteria were supported by trehalose and histidine. Most supplements
suppressed Gammaproteobacteria species, with the exception of specific Pseudomonas
species.

Specific bacterial genera that were significantly affected by the biostimulants are listed
in Table 1. As expected by simulations, growth of Arthrobacter was most strongly sup-
ported by trehalose and maltose, showing a significant increase in relative abundance.
None of the other supplements that were predicted to have a weaker supportive effect on
P. aurescens TC1 supported a significant increase in the relative abundance of Arthrobacter.
Hence, the expediting of atrazine degradation by the optimal additives trehalose and malt-
ose can be related to the significant increase in the relative abundance of Arthrobacter,

FIG 1 Simulations of metabolic performances of P. aurescens TC1 in minimal media supplemented with different potential biostimulants, in terms of
growth (A), atrazine degradation (in millimoles per gram [dry weight]) (B), and consumption of degradation (in millimoles per gram [dry weight]) (C). The
top and bottom series of panels represent supplementation with a standard amount of stimulant (50 mmol/g [dry weight]; top) or with fluxes normalized
according to molecular carbon content (bottom). In the carbon-normalized simulations, the initial amount of maltose, trehalose, glucose, OCDCA, histidine,
or serine was 25, 25, 50, 16, 50, or 100 mmol/g (dry weight), respectively. Time (SR) graphs show results of a times series with simulation rounds
representing cycle-limited quantities of nutrient uptake from the environment (see Materials and Methods).
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which is not induced by atrazine per se (a weak enhancer of Arthrobacter growth) and is
associated with a slower rate of degradation (Fig. 2).

Construction of a simulation matrix considering combinations of potential
degraders and their stimulants. Though the Arthrobacter-associated supplements malt-
ose and trehalose were confirmed as the most efficient enhancers of degradation, other
supplements (not associated with Arthrobacter) induced improved degradation in compari-
son to no-additive, control samples (Fig. 2B). Screening of the differentially abundant spe-
cies induced in Newe-Ya’ar soil by these supplements pointed to several branches across
the phylogenetic tree (Fig. 3). Assuming that the indigenous community contains several
potential degraders of atrazine (either full or partial) that can be supported by different
supplements, we aimed at constructing a two-dimensional simulation array, screening for
the effect of potential biostimulants on a collection of potential indigenous degraders.
Abundance data (Table 1) crossed with literature surveys led to the selection of three
potential degraders representing taxonomic diversity: the Proteobacteria genera Pseudo-
monas and Geobacter (Gammaproteobacteria and Deltaproteobacteria, respectively) and the
Firmicutes genus Clostridium (Fig. 3). Pseudomonas is a group well studied for its atrazine
degradation activity, with a well-characterized six-gene pathway (42). Geobacter is widely
known for its hydrocarbon degradation ability (43) and has also been suggested to partici-
pate in atrazine degradation (44). Clostridium is known as a potential degrader of atrazine
(45) and has been reported to harbor genes associated with the atrazine degradation path-
way (46). The abundance of these four bacterial genera in the native soil 16S bacterial com-
munity was as follows: Arthrobacter (7%) . Pseudomonas (0.5%) . Clostridium (0.2%) .
Geobacter (0.02%) (see Fig. S6).

Genomes for model construction were selected based on taxonomic proximities of
sequenced species with the most abundant operational taxonomic units (OTUs) in the

FIG 2 Pot experiments testing the effects of different supplements on atrazine persistence in soil. The level of atrazine was estimated according to the
fresh weight of an atrazine-sensitive reporter plant. (A) Calibration experiment. Higher and lower doses of amino acids were as follows: histidine, 50 and
5 mg; serine, 104 and 10.4 mg per kg of soil. (B) Comparison between the predicted (gray bars) and observed (colored bars) biomass values in a follow-up
experiment where each compound was provided in the minimal concentration that induced maximal effect (based on the calibration experiment). Coloring
of the observed values is indicative of the selected dose of the metabolites, as indicated for the calibration experiment. Observed values are the recovery
(percentage) of plant biomass, which was inversely proportional to the atrazine amount in the soil. Based on calibration experiments, trehalose and
maltose were applied at a low dose (2.5 g per kg of soil), whereas other metabolites were applied at their respective high dose. Error bars represent
standard errors.
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respective genera (see Fig. S2). Each of the selected genomes was found to include at
least a single gene in pathways involved in atrazine degradation (Table 2). The selected
Pseudomonas species exhibited 96% identity in the 16S rRNA gene to the Pseudomonas
species P. stutzeri and P. putida (see Fig. S2), both reported as atrazine degraders (47, 48).
Although atrazine degradation by Geobacter has not been reported, the genome of
Geobacter (NC_011146) is known to harbor an amidohydrolase homologous with 55%
identity to the ATZ/TRZ family chlorohydrolase (EHP89240), indicating a possible contri-
bution to degradation. Model construction followed the procedure outlined in Xu et al.
(32). Simulations compared the effect of each of the stimulants on an in silico consortium
composed of the four potential degraders. Considering the community as a whole, the
pattern of the simulations pointed to Arthrobacter as the main degrader, consistent with
simulations of Arthrobacter alone, and pointed to trehalose and maltose as the optimal
biostimulants (see Fig. S7), as inferred by the experimental observations. The simulation
matrix in Fig. 4 points to the different relative effects of the biostimulants on the growth
of each of the species within the consortium. Consistent with the 16S rRNA amplicon
sequencing in the pot experiments, Arthrobacter is best supported by trehalose and
maltose. The observations did not support the predictions for the support in trehalose in
Pseudomonas (Fig. 4, false positive). The calculated precision and accuracy of the simula-
tion matrix were 0.66 and 0.75, indicating an overall correspondence between predic-
tions and observations regarding the influence of different biostimulants on different
genera. The predicted and observed growth of the selected genera are shown in
Table S3.

DISCUSSION

As with many of the nutrimental fluxes in soil, biodegradation processes are often
regulated by microbial communities. The activities of those complex assemblages can

TABLE 1 Differentially abundant bacterial genera in atrazine-treated samples versus samples treated with atrazine and supplementa

Genera differentially abundant after supplementation with:

Maltose Trehalose Glucose OCDCA Serine Histidine
Adhaeribacter Afifella Anaeromyxobacter Tepidibacter NA Pontibacter
Agromyces Agromyces Arenimonas* Pseudomonas
Anaeromycbacter Arthrobacter Caloramator Tepidibacter
Anaerovorax Bradyrhizobium Cellvibrio*
Arenimonas* Crocinitomix Clostridium
Arthrobacter Flavisolibacter Coprococcus
Azoarcus Geodermatophilus Desulfosporosinus
Bacillus Labrys Geobacter
Balneimonas Nitrospira Parasegitibacter
Bradyrhizobium Phycicoccus Steroidobacter
Cellvibrio* Rhodoplanes Symbiobacterium
Clostridium Rubellimicrobium
Dechloromonas Sinorhizobium
Geobacter
Geodermatophilus
Geosporobacter
Kaistobacter*
Kribella
Labrys
Lysobacter*
Massilia
Nitrospira
Oxobacter
Parasegitibacter
Pontibacter
Rubrobacter
aGenera whose relative abundance was reduced in the samples with supplement are indicated with an asterisk; other genera shown were significantly higher in abundance
in the supplemented samples. Potential atrazine degraders according to a literature survey are shown in boldface. Differential abundance was determined using STAMP
software and required a P value of,0.05 in a Welch test (following Benjamini-Hochberg FDR correction for multiple testing).
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be manipulated, considering both their functioning (e.g., metabolic potential) and
structure (relative abundance of critical taxa). Several studies have investigated the
degradation performances of various degraders in vitro. However, it is difficult to get a
full view of the degradation process in soil due to the interference of multiple addi-
tional biological components. “Omics” technologies have expanded the toolbox used
for exploring the taxonomic and functional shifts in microbial communities and have
been applied to explore the impact of aromatic pollutants and biostimulants (49). In
particular, modeling approaches have been used to predict microbial community
responses to environmental stimuli and for the optimization of targeted processes in
situ (50). Such methods are cost-effective and reduce the time and efforts required for
exploring complex systems such as soil, as well as bypass the inability of isolating the
large majority of the native species (51).

Here, the model community was composed of four species predicted to be directly
involved in degradation, each at a different rate. The application of biostimulants is
known to alter the structure of a microbial community and subsequently lead to a
change in the degradation rate of the targeted compound (52). The present study
aimed at designing a biostimulation strategy that could enhance the biodegradation
of the herbicide atrazine by targeting direct and indirect degrader taxa. Simulations
were carried on two dimensions: screening for potential biostimulants versus the
response of selected model species. Selected biostimulants were then validated in
pot experiments. Among the screened biostimulants, trehalose and maltose were

FIG 3 Effects of biostimulants on community structure. (Top) Differentially abundant bacterial groups in atrazine-treated samples supplemented
with a biostimulant additive versus atrazine-only samples (“none”). Colors of the tree indicate higher abundance in the corresponding group, with
significantly more microbial groups in the supplemented (blue) or not supplemented (brown) samples, as determined by a Wilcoxon test
(P , 0.05) through its implementation in metacoder; these data were used for constructing the heat trees. (Bottom) List of differentially abundant
bacterial genera. Differentially increased genera are indicated with an asterisk; other genera in the table were differentially decreased. Potential
atrazine degraders according to a literature survey are shown in bold font. Differential abundance was determined using STAMP software.
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predicted and validated as the most significant enhancers of degradation, selectively
targeting Arthrobacter species, the main degrader of atrazine in naive soil (i.e., with
no prior exposure to atrazine). Nitrogenous biostimulants induced a weaker recovery
in comparison to organic carbon-based biostimulants, in agreement with previous
observations carried out with naive soils (53) . The overall abilities of the models to
predict the compounds that act as taxa-selective stimulants indicate that computa-
tional algorithms can guide the manipulation of the soil microbiome.

In the current study, Arthrobacter was the only degrader supported by trehalose and
maltose. Maltose supported several degraders, Arthrobacter, Geobacter, and Clostridium,
with Arthrobacter the key degrader. Other compounds did not induce a significant increase
in the relative abundance of Arthrobacter. In correspondence with previous studies, the
addition of glucose reduced the growth of Arthrobacter in soil (21), although it might sup-
port alternative degraders. Here, Clostridium and Geobacter were among these other
potential degraders, as also suggested in simulations. It has been reported that under
some conditions, the biostimulants influence the resultant number of electrons (redox con-
ditions) in the system associated with higher degradation rates (54, 55). Here, the contribu-
tion of glucose for the enhancement of atrazine degradation (though weaker than the
direct biostimulants for Arthrobacter) can be associated with the growth of Geobacter,
based on domination of the concept of bioelectrochemistry (44). An interlinked growth of
Clostridium and Geobacter (also recognized as metal-reducing bacteria) was also reported
in the biochar-amended soils described by Qiao et al. (56).

A key limitation of the current study is the construction of the metabolic models based on
genomes that were retrieved from public repositories based on the identification of their tax-
onomy, as inferred from 16S amplicon sequencing of the respective samples. Such an
approach might impose biases toward a limited collection of cultivated species that are not
present in the native sample. Genome recovery, or genome-resolved metagenomics and of-
ten referred to as metagenome-assembled genomes, is an alternative approach that allows
the construction of native genomes directly out of a metagenome. Such an approach is fun-
damentally superior over 16S-based genome computation, because the genomes are derived
directly from the sample, without referring to a database, and allow an authentic look at the
metabolic activities in native communities (57). Further improvement of model predictions
might be gained from going beyond genomic and metagenomic data and considering addi-
tional multiomics data, i.e., metatranscriptomics, metaproteomics, and/or metabolomics (31).

TABLE 2 Homologous proteins and genes present in genomes selected for model constructiona

Genes encoding enzymes
that take part in atrazine
degradation NCBI accession no. Organism source of query proteins

Pseudomonas
(NZ_CP026674.1)

Clostridium
(NC_016791.1)

Geobacter
(NC_011146.1)

% identity QC % identity QC % identity QC
Atrazine ring
trzN ABM10554.1 Paenarthrobacter aurescens TC1 33 97 25 97 23
atzB ABM10408.1 37 89 25 92 32
atzC AAS20048.1 28 96 40 14
atzA AAK50270.1 Pseudomonas sp. ADP 28 97 30 93 25
atzB P95442.1 38 90 25 94 32
atzC O52063.1 28 96 40 14

Isopropylamine
ipuA CAC81333.1 Pseudomonas sp. KIE171 25 91 24 90 25 89
ipuB CAC81334.1 52 64 50 65 47 75
ipuC CAC81335.1 33 99 98 28 28 97
ipuD CAC81336.1 24 97
ipuE CAC81337.1 32 85
ipuF CAC81338.1 31 57 26 64 30 49
ipuG CAC81339.1 31 98
ipuH CAC81340.1 57 96 48 94 34 94
ipuI CAC81341.1 28 87 27 83 24 85

aThe known reactions were previously reported in Ofaim et al. (34). QC is the percent query coverage. Values in bold and underlined shared.30% homology and had
.80% query coverage.
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The integration of these additional layers of information into the model will further constrain
the solution space and direct simulations toward feasible solutions. Mainly, such data will pro-
vide the currently missing information on the actual gene expression and protein activity that
is not covered by the genomic information per se. Whereas the correspondence between pre-
dictions and observations is likely to be improved by the availability of data derived from the
parallel profiling of samples with several multiomics technologies, other critical issues are cur-
rently unaddressed by most metabolic modeling approaches, including these used here,
imposing challenges for future research. Key factors not encountered by the models included
soil conditions that are not directly translated into nutritional content, such as pH and temper-
ature, and nonmetabolic interactions such as quorum-sensing formation and toxin-mediated
inhibition. Finally, scaling of the scope of simulations to communities and ecosystems poses
numerous conceptual and technical uncertainties (31). Considering their scopes and limita-
tions, the metabolic models can be viewed as tools for generating testable predictions
through the contextualization of big data. Overall, the aim of the project was the develop-
ment of a computational pipeline for the generation of model-based predictions for potential
additives that will stimulate the degradation of atrazine by native soil communities and test
these predictions in pot experiments, representing realistic conditions in a commercial field.
Though currently limited to four genera, the construction of the simulation system provided a
platform for expanding the simulation to additional species. These approaches can be easily
adapted for the study of additional herbicides or other environmental pollutants as well. The
work provides a pioneering application of metabolic modeling for the design of biostimula-
tion strategies in soil and, more generally, in designing microbial community function in a
complex environment. In particular, the pot experiments demonstrate that computational
simulations can successfully rank the efficiency of different additives as potential biostimulants
and relate between compounds and specific soil bacteria. Hence, this is a significant step for-
ward in deciphering the black box of microbial function in a complex environment. Moreover,
we have clearly demonstrated that processes in soil (i.e., herbicide degradation) are not opti-
mized by themselves and are affected by the environmental conditions; hence, there is a
promising potential for strategies that will allow harnessing the full potential of indigenous
communities.

MATERIALS ANDMETHODS
Simulations to study the effects of supplements on atrazine degradation by P. aurescens TC1.

Simulations were based on an existing model of P. aurescens TC1 (34) and were carried using flux

FIG 4 Construction of a simulation matrix testing the effect of biostimulants on potential native
degraders. The matrix is the presentation of the relative growth of the species under the influence of
biostimulants in a consortium of the four potential degraders (round 3). Values were normalized
according to the fold change in each species in comparison to growth with no supplement. Triangles
and circles represent positive and negative predictions, respectively, defined by at least a 2-fold increase
in growth in comparison to the no-supplement group; green and red represent true and false
observations, respectively, inferred from the significance of the increase in relative abundance (Table 1).
Accuracy was calculated based on true positives (TP), true negatives (TN), false positives (FP), and false
negatives (FN) as follows: (TP 1 TN)/(TP 1 TN 1 FP 1 FN) = 0.75. Precision was calculated as follows:
TP/(FP 1 TP). Values for simulation outcomes and abundance in pot experiments are provided in
Table S3 in the supplemental material.
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balance analysis (FBA), following protocols described by Dhakar et al. (33) and Ofaim et al. (36). As
described by Dhakar et al. (33), the objective function was defined as growth through the maximization
of the biomass reaction under different conditions. Flux variability analyses (FVA) (58) were carried to
account for the possible flow of fluxes involved in secretion and uptake of metabolites. All simulations
were carried out under defined conditions that follow experimentally verified viable conditions in mini-
mal media with atrazine (34) and 109 exchange metabolites (one at a time) representing alternative car-
bon and nitrogen sources or other supplements (see Fig. S1 in the supplemental material). For each of
the metabolite-supplemented media, dynamic modeling was used to predict the profile of biomass
increase and atrazine degradation across time, as described previously (32–34). Briefly, the model works
under the following assumptions: (i) a finite starting dose of medium components is available; (ii) a max-
imal amount of uptake that a single cell can acquire from the medium at a given time point is defined
(the lower bound of the exchange reaction value); the maximal uptake was set to a ratio of #1 unit of
each metabolite available in the medium per unit of biomass. (iii) After each time tick, the biomass
amount was updated according to the flux amount of the biomass reaction in the model at this time
tick. (iv) New substrate concentrations in each time point are determined by the predicted substrate
concentration from the previous step augmented with any additional substrates secreted or consumed
in the current iteration. The biomass production rate serves as a proxy for the size of the population in
the simulated environment, and substrate uptake and secretion are mainly affected by the population
size. Simulations were carried until reaching a state where additional time cycles did not lead to an
increase in biomass.

All model simulations were done on an Intel i7 quad-core server with 128 GB of memory, running
Linux. The development programming language of our simulators was Java, and our linear program-
ming software was IBM CPLEX.

Determining atrazine degradation in soil by using a bioassay plant reporter. The simulated effect
of selected biostimulants on microbial community was validated in pot experiments following the experimen-
tal procedure described by Xu et al. (32), using a bioassay atrazine-sensitive plant as a reporter for the rates of
the herbicide in soil. Here, wheat (cv. Jordan) was used as the reporter plant, based on a demonstrated dose-
dependent sensitivity of shoot development performance (biomass and height) to atrazine concentration in
soil; growth performances are hence indicative of atrazine levels in soil. The bioassay experiments estimated
atrazine degradation following soil amendment treatments in pots with soil from a non-herbicide-treated field.
The soil amendments included combinations of atrazine and metabolites that are potential biostimulants.
Experiments were carried out in replicates of five pots (0.5 liters), with 10 seeds sown in each. The soil was
mixed with supplements by using a cement machine (Shatal; 150 liters), delivered into pots and sprayed with
atrazine (1,000 g [active ingredient]/ha) on the soil surface. Atrazine herbicide (Atranex) was purchased from
Adama Agan, Israel. Herbicides were applied using a motorized laboratory sprayer as described by Eizenberg
et al. (59). The amounts of carbon-based biostimulants (maltose, trehalose, glucose, or OCDCA) applied at four
concentrations were based on their carbon content (1, 2, 4, and 6 g of carbon/kg of soil), based on the meth-
ods of Xu et al. (32). Glucose monohydrate ($99.5%) was purchased from Yishui Dadi Corn Development Co.,
Wujiawa, China. Maltose monohydrate ($92%) was purchased from Thermo Fisher Scientific, UK. Trehalose
dehydrate ($98.0%) was purchased from TCI Tokyo Japan. Amino acids ($98%) were purchased from Sigma-
Aldrich. The amino acid biostimulants (histidine, serine glutamate, and leucine) were applied at two concentra-
tions (14 and 1.4 mg of nitrogen/kg of soil), based on methods of Ofaim et al. (34). Leucine and glutamate
were excluded from the study due to their inconsistent effects (data not shown).

Following calibration experiments, the experiment was repeated with the minimal concentration
that supported maximal recovery, as determined for each compound in the calibration experiment. For
each treatment, pots not treated with atrazine served as controls, in addition to no-atrazine–no-supple-
ment pots and atrazine–no-supplement pots. Pots were irrigated as needed by sprinklers. The experi-
ment was carried out in the net house during July to August (average maximum temperature 28°C to
32°C). The soils were collected 15 days after recording the effects of atrazine for all of the pots, and sam-
ples were frozen (280°C) for further bacterial community analysis.

All experiments were arranged in a completely randomized design. One-way analysis of variance
(ANOVA) computed the impact of herbicide phytotoxicity. Means were compared by a Tukey-Kramer
honestly significant difference test (a, 0.05) using JMP software (version 7; SAS).

DNA extraction, sequencing of 16S rRNA, and structure analysis of bacterial community. Soil
DNA was extracted by using a DNeasy Powerlyzer Powersoil kit (Qiagen) following the manufacturer’s
instructions. The quality and quantity of the community DNA were checked through use of a Nanodrop
apparatus (Thermo Scientific). The PCR system (Biometra) contained a total volume of 25 mL 2� PCR
mixture and using Taq polymerase (Bio Ready mix; Bio-Lab), 5 mM primer (each), and 20 ng of DNA tem-
plate. The PCR conditions were as follows: initial denaturation at 95°C for 3 min; 28 cycles of denatura-
tion at 95°C for 30 s, primer annealing at 55°C for 30 s, and extension at 72°C for 45 s; followed by a final
extension period of 10 min at 72°C. The amplicon sequencing was performed at the University of Illinois
at Chicago Sequencing Core using MiSeq (Illumina). V3-V4 regions were amplified using the standard
primer set 341F and 806R (32).

Quality control of the reads was carried out using the Quantitative Insights into Microbial Ecology
platform (Qiime, version 2019.04) (60), with the plug-ins demux (https://github.com/qiime2/q2-demux)
and dada2 (61). A total of 21,94,738 raw reads were reduced to 11,96,116 reads after the quality control,
merging, and filtration steps (including denoising and chimera removal). The paired-end reads were
combined based on overlapped regions, and the two 250-bp paired-end sequences were merged to
obtain a single read (approximately 430 bp, mean length).

Taxonomic assignment of the resulting OTUs was done with q2_feature_classifier (62) using the
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Greengenes database (release 13_8) for 16S rRNA gene sequencing at 99% identity (63). Qiime2-gener-
ated files were converted to Phyloseq object element using the qiime2R package, and further analyses
were done in Phyloseq (64). The feature table was pruned to remove the low-abundance OTUs (only
sequences that appeared .5 times in at least half of the samples were included), and normal distribu-
tion was inferred using the Shapiro-Wilk test (P , 0.05). Differential abundance of OTUs was determined
according to a Kruskal-Wallis rank sum test.

Summing up the OTUs into a higher-level taxonomy was conducted with STAMP (65) and its imple-
mented Welch test (P, 0.05, following a Benjamini-Hochberg false-discovery rate adjustment) was used
to determine differential abundance levels. Heat trees were constructed using metacoder (66).

Reconstruction of metabolic network models for species representing selected genera and con-
ducting community modeling. Genome-scale metabolic models (GSMMs) were constructed for Pseudomonas,
Clostridium, and Geobacter species. Genome sequences representing the respective genera in the native soil com-
munity were selected based on a BLAST search of the most highly abundant OTU in each of the selected genera
versus public depositories of fully sequenced genomes. In cases where highly scored hits were retrieved for sev-
eral species, the closest species for which a genome sequence was available were selected based on phyloge-
netic relatedness as inferred from a 16S rRNA-based phylogenetic tree (see Fig. S2). Representative OTUs and the
respective genome sequences selected for constructing the metabolic networks models are listed in Table 3.
The construction followed the protocol described by Xu et al. (32). Briefly, Model SEED was used for constructing
the initial draft metabolic models from the genome sequence data (67). Annotations were done through RAST
(68). After preparing a working draft model (that is, a biomass flux of.0 when all exchange reactions are open),
each of the models was manually curated according to literature and other available resources, such as KEGG
(69), UniProt (70), JGI (http://www.jgi.doe.gov/), and BiGG (71), to ensure that it captured the biochemical and
physiological knowledge available. Steps in manual curation included updating of the draft model with new reac-
tions retrieved from the additional annotation platforms, conversion of all reactions according to the KBASE (72)
rxn conventions, validation of reaction stoichiometry and reversibility, and identification and elimination of futile
loops. Finally, growth simulations were carried out in a minimal medium, in an iterative process ensuring that the
reconstructed metabolic models were able to produce all biomass components in minimal mineral medium
(MMM; K1, Mn21, CO2, Zn21, SO4

22, Cu21, Ca21, HPO4
22, Mg21, Fe21, Cl2) supplemented with alternative C and

N sources, in accordance with species physiology. The final GSMMwere consistent with experimental knowledge
on the nutrients required for culturing each species (73–75).

Simulations were carried out using FBA following the same setting described above for the P. aures-
cens TC1 model. Community modeling was carried as described by Xu et al. (32) by joining together all
species reconstructions. Briefly, our algorithm of community dynamic modeling uses dynamic FBA
(dFBA) for simulating the growth of multiple species in a given medium across time (76, 77). The model
is updated after each time tick. The amount of biomass of each species is changed after each time tick,
based on the biomass reaction flux of the given species in that time tick; at each time point, we opti-
mized the biomass flux for each species using the standard FBA optimization. Following each time tick,
media uptake bounds and species biomass were updated to reflect secretions and uptakes of medium
metabolites and biomass fluxes. The new concentrations were then used as a starting point for the next
iteration. Simulations assumed equal initial biomass for each species to gain a qualitative view of the
effect of each potential biostimulant. A detailed description of the algorithm is available in data file S6
via Figshare (https://figshare.com/s/a7b20190119c745c1fa1).

Models are available as Systems Biology Markup Language (SBML) files (78) in supplementary data
files S1 to S4 available via Figshare. The SBML file can be used with tools such as MATLAB or other
SBML-compliant software. Simulation definitions, running conditions, and simulation outcomes applied
for predicting the effect of supplements on atrazine degradation by Paenarthrobacter aurescens TC1
(Fig. 1) are provided in supplementary data file S5 via Figshare. Simulation conditions, model definitions,
running algorithm, and simulation outcomes applied for predicting the effect of supplements on

TABLE 3 General features of the metabolic GSMM constructed for species representing highly abundant species in atrazine-treated soils

Feature P. aurescens TC1
Pseudomonas sp. SWI44
chromosome Clostridium sp. BNL1100

Geobacter bemidjiensis
bem

Accession no. NC_008711 NZ_CP026674 NC_016791 NC_011146
Taxonomy ID 290340 2083053 755731 404380
Identity with OTUa 98% 100% 93.1% 97.6%
Genome size (Mb) 5.23 5.92 4.61 4.62
No. of proteins 4,627 5,294 3,832 3,976

GSMM
No. of proteins 960 977 592 669
Total no. of reactions 2,322 2,185 1,581 1,612
No. of biochemical reactions 2,047 1,580 1,076 1,185
No. of transport reactions 155 497 423 371
No. of exchange reactions 120 108 82 56
No. of metabolites 2,409 2,307 1,698 1,781

aSimilarity between 16S rRNA of the OTU and the corresponding sequence in the genome.
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atrazine degradation by Paenarthrobacter aurescens TC1, Pseudomonas, Clostridium, and Geobacter
(Fig. 4) are provided in supplementary data file S6 via Figshare.
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