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Abstract

Mitochondria are essential eukaryotic organelles often forming
intricate networks. The overall network morphology is determined
by mitochondrial fusion and fission. Among the multiple mecha-
nisms that appear to regulate mitochondrial fission, the ER and
actin have recently been shown to play an important role by medi-
ating mitochondrial constriction and promoting the action of a key
fission factor, the dynamin-like protein Drp1. Here, we report that
the cytoskeletal component septin 2 is involved in Drp1-dependent
mitochondrial fission in mammalian cells. Septin 2 localizes to a
subset of mitochondrial constrictions and directly binds Drp1, as
shown by immunoprecipitation of the endogenous proteins and by
pulldown assays with recombinant proteins. Depletion of septin 2
reduces Drp1 recruitment to mitochondria and results in hyper-
fused mitochondria and delayed FCCP-induced fission. Strikingly,
septin depletion also affects mitochondrial morphology in
Caenorhabditis elegans, strongly suggesting that the role of septins
in mitochondrial dynamics is evolutionarily conserved.
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Introduction

Mitochondria are highly dynamic eukaryotic organelles, which form

an interconnected and dynamic network. Mitochondrial morphology

and function are tightly interrelated. The dynamic behavior of mito-

chondria relies partly on their movement along cytoskeletal tracks,

including microtubules, intermediate filaments, and actin (reviewed

in [1]). In addition, mitochondrial network dynamics is determined

by mitochondrial fusion and fission, to which the cytoskeleton also

contributes. The molecular basis of mitochondrial dynamics is

intensely studied from both the medical and the fundamental

cell biology standpoints, as defects in this process can lead to

mitochondrial dysfunction and to pathology [2–5]. The canonical

mitochondrial fission mechanism involves the dynamin-like protein

Drp1, which is recruited from the cytosol to mitochondria, where it

oligomerizes to form spirals that constrict the mitochondrion [6].

Drp1 recruitment and oligomerization are highly regulated at the

molecular level through posttranslational modifications of Drp1

(reviewed in [7]) and through the presence of several Drp1 recep-

tors on the mitochondrial outer membrane [8–14]. Drp1-mediated

fission is facilitated by ER tubules that wrap around mitochondria

and constrict them. An ER-localized formin, inverted formin 2

(INF2) [15], and a mitochondria-localized Spire1 isoform (Spire1C)

[16] cooperate to induce localized actin polymerization at the

constriction sites [16]. In addition to this, several actin-binding

proteins have been reported to participate in mitochondrial fission

[17,18]. The motor protein myosin 2 (Myo2), proposed to provide

actin with the necessary contractile force for mitochondrial fission

(“mitokinesis” [18]), is known to not only interact with actin, but

also with septins [19]. Septins are conserved eukaryotic GTP-

binding proteins that are considered components of the cytoskeleton

as they can form non-polar filaments (reviewed in [20,21]). Septins

are highly expressed in interphase cells [22], suggesting that they

play a role beyond their well-established contribution to cytokinesis

[23,24]. Indeed, recent studies indicate that septins are involved in a

number of different cellular processes, such as ciliogenesis [25,26],

axon guidance [27], and phagocytosis, [28] and serve to restrict

bacterial actin-based motility [29] and protein diffusion at the cell

cortex [30], at the yeast bud neck [31], and at the ER [32]. Knockout
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of any of the 13 mammalian septins leads to highly diverse pheno-

types, further indicating that different septins may perform different

functions [21]. Mammalian septins are subdivided into 4 groups

(septin 2, septin 3, septin 6, septin 7) and form heteropolymeric

complexes with the ubiquitous septin 2 (Sept2) at the heart of the

complexes [20]. Septins display a complex localization pattern:

Long fibers occur under the nucleus and along actin stress fibers,

while both long and short fibers are found throughout the cell, accu-

mulating at the cell periphery in association with actin (reviewed in

[20]). Furthermore, ringlike structures decorate the cytosol and

subcortical regions [33].

In contrast to actin filaments and microtubules, septins are not

known to interact extensively with mitochondria. To our knowl-

edge, a single report indicated that septins colocalize with mitochon-

dria in the ciliate Tetrahymena thermophila and septin depletion/

overexpression grossly disrupted mitochondrial morphology in this

organism [34]. Nevertheless, the mechanism through which ciliate

septins act in mitochondrial dynamics has remained elusive.

Concerning mammalian septins, knockout of the differentially

expressed septin 4 (Sept4) in mice has been shown to result in

sperm defects, including aberrant annulus and mitochondrial archi-

tecture [35]. Two Sept4 splice isoforms have furthermore been

found to localize to mitochondria and participate in apoptosis and

neuronal development, respectively [36,37]. To date, it is unclear

whether any of the ubiquitously expressed septins is involved in

mitochondrial dynamics of metazoan cells.

Here, we show that in mammalian cells Sept2 directly interacts

with the mitochondrial fission protein Drp1 and is required for effi-

cient localization of Drp1 at mitochondria, thus introducing septins

as new players in mitochondrial dynamics.

Results

Sept2 depletion induces mitochondrial elongation

We assessed the role of septins in mitochondrial dynamics by silenc-

ing three members of the family (i.e., Sept2, Sept7, and Sept9) and

analyzing mitochondrial morphology through indirect immunofluo-

rescence (Fig 1A). Mitochondria were significantly elongated in

Sept2- and Sept7-silenced cells compared to control cells, respectively,

by 1.8-fold and 1.4-fold. In contrast, mitochondrial length did not

significantly increase in Sept9-depleted cells (Fig 1B). Previous stud-

ies have shown that depletion of Sept7 codepletes Sept2 [33,38,39],

which could explain why depletion of either Sept2 or Sept7 causes an

increase in mitochondrial length. We therefore assessed the levels of

Sept2 upon Sept2, Sept7, and Sept9 depletion. In our hands, the

depletion efficiency of Sept2 reached almost 90%, while that of Sept7

reached 80% and resulted in a concomitant 65% decrease in Sept2

levels, in agreement with previous reports [33,38,39]. In contrast our

very efficient Sept9 depletion (97%) did not significantly co-down-

regulate Sept2 (Fig EV1A–D). These findings are consistent with our

observation that the depletion of Sept2 and Sept7, but not that of

Sept9, affects mitochondrial length.

Given the strong mitochondrial phenotype obtained upon Sept2

depletion, we decided to focus our attention on Sept2 and its possi-

ble involvement in mitochondrial dynamics. To ensure that the

observed mitochondrial elongation in Sept2-depleted cells is not due

to an off-target effect, we confirmed the phenotype with different

Sept2-targeting siRNA sequences (Fig EV1E and F) and in different

cell types (HeLa, Fig 1A; and U2OS, Fig 2D). Furthermore, the mito-

chondrial elongation phenotype of Sept2-silenced cells could be

rescued through overexpression of siRNA-resistant Sept2 (Fig 1C

and D). Interestingly, Sept7 overexpression could also rescue the

mitochondrial elongation phenotype induced by Sept2 siRNA, albeit

less efficiently compared to the Sept2 siRNA-resistant construct, that

is, 54% rescue upon Sept7 overexpression compared to 70% rescue

for the overexpression of siRNA-resistant Sept2 (Fig 1D). These

results further suggest that both proteins play a role in mitochon-

drial dynamics (see Discussion).

We next asked whether increasing the amount of Sept2 would

induce mitochondrial fission. Similar to Drp1 overexpression [40],

overexpression of HA-tagged Sept2 did not substantially induce

mitochondrial fragmentation (our unpublished results), consistent

with the notion that mitochondrial fission is a well-controlled multi-

factorial process, with multiple rate-limiting factors.

Since septins have been implicated in ER polarization in yeast

[32], we sought to determine whether Sept2 depletion would affect

the morphology of the ER or of other organelles, such as the Golgi

apparatus and peroxisomes. The ER and Golgi morphology was not

visibly altered in Sept2-depleted cells (Fig 1E). Similar mean areas

were detected for the Golgi and the ER–mitochondria overlap in

Figure 1. Sept2 depletion affects mitochondrial morphology.

A Mitochondrial morphology in HeLa cells depleted of Sept2, Sept7, and Sept9. Mitochondria were labeled with Mitotracker (green). Scale bar: 10 lm. The inset
represents a fourfold enlargement.

B Quantification of mean mitochondrial length in mock-treated cells and in cells depleted of Sept2, Sept7, and Sept9. Mean � SEM, n > 250 individual mitochondria
from three independent experiments. **P < 0.01, ***P < 0.005, ns: P > 0.05.

C Mitochondrial morphology in mock-treated cells or HeLa cells depleted of Sept2 and then transfected with empty vector, siRNA-resistant HA-tagged Sept2 (Sept2-
rescue) or Sept7 (Sept7-rescue). Mitochondria were labeled with Mitotracker (shown in green), asterisks mark transfected cells. Scale bar: 10 lm, insets are fourfold
enlargements.

D Quantification of mean mitochondrial length in mock-treated cells, in cells depleted of Sept2 or in cells depleted of Sept2 and transfected with siRNA-resistant Sept2
(Sept2-rescue) or Sept7 (Sept7-rescue). Mean � SEM, n > 200 individual mitochondria from two independent experiments. ***P < 0.005.

E Mock-treated or Sept2-depleted U2OS cells stained for Sept2 (green) and the Golgi apparatus (GM130, red), the ER (Sec61b-GFP, displayed in red) or peroxisomes
(PMP70, red). Scale bar: 10 lm, insets are enlarged twofold.

F Quantification of the mean Golgi area (mean � SEM, n = 40 cells, three independent experiments).
G Quantification showing the percentage of ER traversing well-resolved mitochondrial tubules (mean � SEM, n = 15 cells from three independent experiments).
H Quantification of average peroxisome counts per cell (mean � SEM, n = 40 cells from three independent experiments).

Source data are available online for this figure.
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Figure 2. Mitochondrial dynamics in Sept2-depleted cells.

A Live cell imaging of mock-treated or Sept2-depleted U2OS cells analyzed with the mito-PA-GFP mitochondrial fusion assay. Mito-PA-GFP is photoactivated in the
indicated ROI and the decrease in fluorescence is followed in the same ROI, correcting for cell movement Scale bar: 10 lm.

B Quantification of mitochondrial fusion rates in mock-treated or Sept2-depleted cells expressed as a means of three independent experiments � SEM.
C Quantification of fission rates in mock-treated and Sept2-depleted cells. Red lines indicate the mean of n = 116 fission events for Sept2 siRNA, n = 83 fission events

for mock, from two independent experiments. ***P < 0.005.
D Live cell imaging of U2OS cells stably transfected with a GFP targeted to the mitochondrial outer membrane (OM-GFP), showing delayed FCCP-induced mitochondrial

fission in Sept2-depleted cells compared to mock-treated cells. White arrowheads point at fission examples, yellow arrowheads to looping. Scale bar: 20 lm, insets
are enlarged fourfold.

E Quantification of mitochondrial elongation (long/short axis) in mock-treated and FCCP-treated U2OS cells showing increased elongation in Sept2-depleted cells
compared to mock-treated cells, mean of four independent experiments � SEM.

Source data are available online for this figure.
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mock- and siRNA-treated cells (Fig 1F and G). Moreover, live cell

imaging showed that the ER marked mitochondrial fission sites to

the same extent in control and in Sept2 siRNA-treated cells

(Fig EV1G). Likewise, the number and size of peroxisomes were not

significantly changed in Sept2-depleted cells compared to mock-

treated cells (Fig 1E and H), suggesting that although mitochondria

and peroxisomes share components of the fission machinery

[13,41], Sept2 acts specifically in mitochondrial dynamics.

Sept2 does not affect fusion but controls mitochondrial fission

The mitochondrial hyperfusion phenotype could result from an

increase in fusion activity or a decrease in fission. We thus tested

whether Sept2 depletion would affect global levels of the key mito-

chondrial dynamics proteins Mfn1/2 and Drp1. Total levels of Mfn1/

2 and Drp1 were not affected by Sept2 siRNA (Fig EV2A and B). Live

cell imaging revealed that Sept2-depleted cells displayed an increase

in mitochondrial motility (Fig EV2C and D), which may allow more

frequent encounters between mitochondria and thus higher fusion

rates [15]. We therefore tested whether Sept2 stimulates mitochon-

drial fusion activity. To measure the mitochondrial fusion rate, we

employed an established assay, in which mitochondrial photoactivat-

able GFP (mito-PA-GFP) is activated in a small region of interest, and

its decay in fluorescence is followed over time to estimate the number

of mitochondrial fusion events (i.e., the fusion rate), from which the

fluorescence decay depends [42]. Using this assay, we could not

detect any significant increase in mitochondrial fusion when compar-

ing Sept2-silenced cells with mock-treated cells (Fig 2A and B).

Given that Sept2 depletion resulted in elongated mitochondria

without increasing mitochondrial fusion, we analyzed whether Sept2

functionally contributes to mitochondrial fission by measuring fission

rates in mock-treated and Sept2-depleted cells. Sept2-depleted cells

display decreased fission rates (mean 14.8 � 5.7) compared to mock-

treated cells (21.97 � 10.8; Fig 2C). Sept2-depleted cells also differed

with respect to FCCP-induced mitochondrial fission and looping [43],

which appeared delayed in Sept2-depleted cells compared to cells

treated with control siRNA (Fig 2D and E). Given that FCCP-induced

mitochondrial fission is Drp1-dependent [44–49], this suggests that

Sept2 may play a role in Drp1-dependent mitochondrial fission.

Sept2 localizes at mitochondrial fission sites

We reasoned that given the effect of Sept2 depletion on mitochon-

drial morphology and its implication in FCCP-induced mitochondrial

fission, a fraction of Sept2 would localize at mitochondria to regu-

late mitochondrial dynamics. We thus inspected the localization of

endogenous Sept2 by confocal microscopy and found Sept2 struc-

tures at mitochondria in HeLa (Fig 3A and B) and U2OS cells

(Fig 3C). In addition, we detected Sept2 in a crude mitochondrial

fraction (Fig EV3A). 3D image reconstruction showed that endoge-

nous Sept2 localizes above and around constricted mitochondria

(Fig 3B, white arrowheads). Notably, we also found constrictions

that were not marked by Sept2 (Fig 3B, yellow arrowhead). This

might be due to: (i) a transient association of Sept2 to mitochondrial

fission sites; (ii) participation of Sept2 to only a subset of fission

events, similar to what has been suggested for Myo2 and

INF2 [15,18]; or (iii) that other mechanisms ensure mitochondrial

constriction in parallel. To achieve a clearer view of Sept2 structures

at mitochondria we turned to super-resolution imaging, using two

complementary super-resolution approaches: Bioaxial’s conical

diffraction (CoDiM) based super-resolution method (Fig 3C) [50]

and structured illumination microscopy (SIM) (Fig EV3B). Where

mitochondria were not obscured by strong cytosolic Sept2 staining,

we detected Sept2 on 36% of constriction sites (n = 209 constriction

sites), with short Sept2 structures often traversing the mitochondria in

a perpendicular way (Fig 3C).

We then monitored the dynamics of Sept2-YFP localization on

mitochondria and in agreement with immunofluorescence analysis

found Sept2 associated with mitochondria at prospective fission

sites. We detected both discrete Sept2 puncta as well as Sept2-

enriched halos on prospective mitochondrial fission sites (Fig 3D).

Collectively, these results indicate that Sept2 localizes to mitochon-

dria and is involved in mitochondrial fission.

Sept2 interacts directly with Drp1

We then sought to determine how Sept2 would act on mitochondrial

fission. Given that Drp1-dependent mitochondrial fission is delayed

in Sept2-depleted cells (Fig 2D and E), we hypothesized that Sept2

might interact with Drp1. Consistent with this hypothesis, immuno-

precipitation of endogenous Sept2 resulted in co-precipitation of

endogenous Drp1 from cell lysates of several different human cell

types (HeLa, HEK293, and U2OS), indicating in vivo association of

Drp1 and Sept2 (Figs 4A and EV3C and D). In contrast, actin or the

mitochondrial outer membrane protein Tom20 did not co-precipitate

in HeLa cells (Fig 4A), nor did INF2 in U2OS cells (Fig EV3D). To

further verify the specificity of the Sept2–Drp1 interaction, we

immunoprecipitated an unrelated cytosolic protein (PI4KIIa) and did

not recover any Drp1 (Fig EV3E). The interaction between Sept2 and

Drp1 is likely to be direct because recombinant Sept2 interacted with

Drp1 in GST pulldown experiments (Fig 4B). Immunofluorescence

and live cell imaging confirmed that Sept2 and Drp1 can be found

together at mitochondria (Fig 4C) and at mitochondrial fission sites

(Fig 4D). We noticed that the two proteins do not colocalize at all

prospective fission sites, suggesting that either the Sept2–Drp1

complex forms very transiently, or that Sept2 is below the detection

level at these sites, or that Drp1 is recruited to mitochondria through

several independent pathways. To investigate whether the Drp1–

Sept2 interaction occurred preferentially in the cytoplasm or on mito-

chondria, we treated cells with CCCP to increase Drp1 localization to

mitochondria. Treatment with CCCP caused a twofold increase in

Drp1 binding to Sept2, suggesting that formation of the Sept2–Drp1

complex is stimulated at mitochondria (Fig 4E and F). We next asked

whether the interaction between Sept2 and Drp1 was sensitive to the

activation state of Drp1. We thus treated cells with Mdivi-1, which

inhibits self-assembly and GTPase activity of Drp1, resulting in

increased interconnectivity of the mitochondrial network [51]

(Fig EV4F) without depolymerizing Sept2 filaments (our unpublished

results), and then performed Sept2 immunoprecipitation. Mdivi-1

treatment decreased the association between Sept2 and Drp1 by

almost 50% in intact cells (Fig 4G and H), and partially decreased the

Sept2–Drp1 interaction in an in vitro pulldown assay (Fig EV3G).

Together, these data establish that Sept2 directly interacts with

Drp1 in vivo and in vitro and suggest that the activation state of

Drp1, its assembly, or the molecular environment on the mitochon-

drial outer membrane may stabilize the Sept2–Drp1 complex.
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Mitochondrial localization of Drp1 depends on Sept2

Since Sept2 interacts with Drp1, we analyzed the effect of Sept2

depletion on the mitochondrial localization of Drp1 complexes.

Immunofluorescence analysis showed that the amount of mitochon-

dria-associated Drp1 significantly decreased in Sept2-silenced cells

(67% � 15.1) compared to mock-treated cells (Fig 5A and B). In

concomitance, the average distance between Drp1 clusters increased

by a factor of 1.6 in Sept2-silenced cells (Fig 5C), indicating a

decrease in Drp1 cluster density along mitochondria. In addition,

Western blotting analysis of mitochondria isolated from cells treated

with control siRNA or with Sept2 siRNA confirmed a decrease in the

amount of mitochondria-associated Drp1 (Fig 5D). These data

suggest that Sept2 acts upstream of Drp1, similar to what has been

recently shown for INF2 and Myo2 [15,18]. In agreement with this

finding, Drp1 depletion did not affect Sept2 levels or subcellular

distribution, as assessed by immunofluorescence (our unpublished

results). Altogether, our observations revealed that Sept2 partici-

pates to the localization of Drp1 complexes on mitochondria.

Mitochondria-associated actomyosin is not perturbed upon
Sept2 depletion

Actin and myosin 2 (Myo2) have been recently proposed to act

together in mitochondrial preconstriction, favoring Drp1 accumulation

in order to accomplish fission [18]. Myo2 had also been shown
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Source data are available online for this figure.
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Source data are available online for this figure.
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previously to directly bind Sept2 [19]. This binding was required

for phosphorylation-dependent activation of Myo2, which played

an important role in stress fiber maintenance and during cyto-

kinesis [19]. However, whether the Sept2–Myo2 interaction can

also occur at mitochondria and/or have a functional role in

mitochondrial dynamics is unknown to date. Therefore, we explored

whether Sept2 depletion would alter Myo2 localization at mitochon-

dria or decrease its activation. We neither detected changes in

total Myo2A or Myo2B levels (Fig EV4A and B) nor a decrease in the

levels of phosphorylated regulatory myosin light chain (P-MLC

and PP-MLC; Fig EV4C–F), which determines the actin-binding

properties of Myo2 in Sept2-silenced cells [52]. We also failed to

detect a significant change in mitochondria-associated P-MLC by

immunolocalization (Fig 6A and B). We thus concluded that the

mitochondrial elongation observed in Sept2-depleted cells is not due

to perturbation of Myo2 levels or activity.

Notably, P-MLC has been shown to localize to mitochondria in

an actin-dependent manner [18]. The lack of P-MLC redistribution

in Sept2-depleted cells suggests that the interaction of actin with

mitochondria is not perturbed in this context. In agreement with this

observation, we found that Sept2 depletion did not interfere with

the induction of actin recruitment to mitochondria upon FCCP

treatment [17] (Fig 6C). In addition, we examined whether Sept2

depletion would affect the mitochondrial localization of the actin-

binding proteins Arp3, cofilin, and cortactin, which were recently

shown to regulate mitochondrial morphology [17]. Immunofluores-

cence and cell fractionation experiments showed that the mitochon-

drial association between Arp3, cofilin, and cortactin was not

affected in Sept2-depleted cells (Fig 6D and E).

We next tested whether the interaction between Sept2 and Drp1

requires actin polymerization by treating cells with cytochalasin D

prior to immunoprecipitation and found that the Sept2–Drp1 interac-

tion was not affected (Fig 6F). Together, these results indicate that

Sept2 is not involved in the recruitment of actin and Myo2 at mito-

chondria and that the interaction between Sept2 and Drp1 is inde-

pendent of actin dynamics.
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Source data are available online for this figure.
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Septin contribution to mitochondrial dynamics is conserved
in C. elegans

To understand whether the septin contribution to mitochondrial

dynamics is conserved among metazoa, we turned to C. elegans,

which possesses only two septins, UNC-59 and UNC-61. We

inspected mitochondrial morphology in body wall muscle cells, a

well-established model to assess mitochondrial dynamics pheno-

types [53–55]. Knockdown of either UNC-59 or UNC-61 or both

by siRNA dramatically affected mitochondrial morphology,

causing an increase in mitochondrial branching and length

(Figs 7A and B, and EV5A and B) that is reminiscent of fission

protein knockdown [54–56]. We then assessed whether combin-

ing the depletion of septins with the depletion of Drp1 would

result in a further increase in mitochondrial length, which would

indicate that the two proteins act on mitochondria through dif-

ferent pathways. We chose to focus on UNC-61, whose depletion

results in a stronger mitochondrial phenotype compared to UNC-

59, and co-silenced it with DRP-1. The strong mitochondrial

phenotype of DRP-1(RNAi) worms was not exacerbated when

UNC-61 was co-silenced, suggesting that the phenotypes induced

by DRP-1 and UNC-61 knockdown are not additive (Fig 7C).

These data are consistent with the phenotype observed in

mammalian cells and suggest that the function of septins in mito-

chondrial dynamics is conserved in C. elegans.

Discussion

Mitochondrial fission is a highly regulated process, and recent

progress has highlighted novel roles for several cellular components

in this process, such as the ER, actin, and multiple actin-binding

proteins [15–18,43,57]. Here, we add a new player to this complex

picture and report on the role of septins, a component of the

cytoskeleton, in mitochondrial dynamics. We describe that septin

expression is important for mitochondrial morphology in human

cell lines and in the nematode C. elegans. In human cells, depletion

of three ubiquitously expressed septins (Sept2, Sept7, and Sept9)

showed that both Sept2 and Sept7 are important for mitochondrial

fission, as their depletion induces significant mitochondrial elonga-

tion. In line with previous results [33,38,39], we found that that

depletion of Sept7 partially codepletes Sept2. The remaining Sept2

may account for the decreased penetrance of the mitochondrial

phenotype in Sept7-silenced cells compared to Sept2-silenced cells.

Furthermore, the small levels of Sept2 remaining after Sept2 siRNA

may serve as seeds that allow Sept7 to partially rescue the mito-

chondrial phenotype when overexpressed in Sept2-silenced cells.

In contrast, Sept9 depletion did not induce mitochondrial elonga-

tion, but appeared to increase mitochondrial interconnectivity,

similar to nocodazole treatment [43,58]. We speculate that the dif-

ferences between Sept2/7 and Sept9 may be related to the position

of Sept9 in the septin heterocomplex [59] or to the presence of

Sept2-containing complexes in Sept9-depleted cells that still act on

mitochondria. Such Sept2-containing complexes were previously

shown to form short filaments in Sept9-depleted cells [59]. In

agreement with this, we did not detect Sept2 codepletion in Sept9-

silenced cells.

In our hands, Sept2 presented the most dramatic mitochondrial

phenotype, raising the question of how Sept2 mechanistically

impacts mitochondrial dynamics. We propose that Sept2 plays a role

in Drp1-dependent mitochondrial fission. This notion is supported

by several observations: First, mitochondrial association of Drp1 is

impaired in Sept2-depleted cells. Second, FCCP-induced mitochon-

drial fission, which is Drp1-dependent, is delayed in Sept2-depleted

cells. Lastly, Sept2 interacts directly with Drp1. An indirect confir-

mation of our results is the recent finding that Sept5 and Sept11

bind dynamin in neuronal cells [60]. The high homology of

dynamin and Drp1 suggests that their interaction with septins may

be ancestral. The interaction between Sept2 and Drp1 appears to

require Drp1 assembly or activation, as it is sensitive to Mdivi-1,

which has been shown to inhibit the Drp1 assembly-dependent

GTPase activity [51]. In our hands, the effect of Mdivi-1 was

stronger in vivo than in vitro, indicating that the molecular environ-

ment on the mitochondrial outer membrane may stabilize the

Sept2–Drp1 complex.

In contrast, Sept2-mediated GTP hydrolysis may be dispensable

for this interaction, as overexpression of a GTPase-deficient point

mutant (Sept2-T78G) did not affect mitochondrial morphology (our

unpublished results), consistent with the very low rate of GTP

hydrolysis that has been observed by others in septin heterooligo-

mers [61,62] and which appears to be due to the low solvent acces-

sibility of the nucleotide-binding pocket [63].

We propose alternative but not mutually exclusive scenarios that

could account for the role of Sept2 in Drp1-dependent mitochondrial

fission. Sept2 could promote Drp1 recruitment by contributing to

mitochondrial constriction. Alternatively, Sept2 might stabilize

productive fission complexes or act as a scaffold that promotes Drp1

recruitment or retention on mitochondria, as has been proposed for

Figure 6. Sept2 does not affect mitochondrial Myo2 localization and does not require actin dynamics for interacting with Drp1.

A Immunofluorescence analysis of P-MLC (green) recruitment to mitochondria (red, Tom20) in mock-treated and Sept2-depleted HeLa cells. Insets show twofold
enlargements. Scale bar: 10 lm.

B Colocalization of P-MLC with mitochondria was assessed with Icy software and showed no difference between mock-treated and Sept2-depleted cells (mean � SEM).
C Mock-treated or Sept2-depleted Drp1�/� MEF cells were labeled with Mitotracker orange (red), treated for the indicated amount of time with 2 lM FCCP and stained

for actin with phalloidin (green). Insets are enlarged twofold. Scale bar: 10 lm.
D Immunofluorescence analysis of the actin-binding proteins Arp3 and cofilin (green) colocalized with cytochrome c (red), and cortactin (green) colocalized with Hsp60

(red) in mock-treated or Sept2-depleted Drp1�/� MEF cells. Scale bars: 10 lm.
E Cytosol and crude mitochondria fractions were prepared from mock-treated or Sept2-depleted Drp1�/� MEF cells and analyzed by Western blotting with the

indicated antibodies.
F HeLa cells were mock-treated or treated with cytochalasin D and subjected to Sept2 immunoprecipitation. Immunoprecipitates were analyzed by Western blot for

Drp1 and Sept2, showing that Drp1 co-immunoprecipitation with Sept2 is not affected by cytochalasin D treatment.

Source data are available online for this figure.
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actin [43,57]. Notably, despite the fact that septins can use actin as

an assembly template and partially colocalize with actin [33], we

suspect that Sept2 does not play a substantial role in actomyosin

driven mitochondrial fission [18]. In agreement with this hypothesis,

actin and INF2 were not detected in Sept2 immunoprecipitations and

cytochalasin D treatment had no effect on the Sept2–Drp1 interac-

tion, the latter suggesting that it does not require actin polymeriza-

tion. Furthermore, neither the total levels of Myo2A, Myo2B,

P-MLC or PP-MLC, nor the localization of P-MLC on mitochondria,

which relies on actin, are affected in Sept2-depleted cells. P-MLC

and PP-MLC were reported to decrease in previous Sept2-depletion

experiments [19], a variation that may be explained by differences

in the employed cell types (CHO-K1 versus HeLa and U2OS) or

silencing techniques (shRNA versus siRNA). Interestingly, Li et al

[17] reported increased Drp1 recruitment to mitochondria upon

depletion of the actin regulating proteins Arp3, cortactin, and

cofilin, while we observe a decreased localization of Drp1 to mito-

chondria in Sept2-depleted cells and no substantial difference in

mitochondrial localization of Arp3, cortactin, and cofilin. Consis-

tent with our findings, FCCP-induced recruitment of actin to mito-

chondria was also preserved in Sept2-depleted cells.

Our data support the view that multiple mechanisms regulate

mitochondrial fission. On the one hand, accumulating evidence

suggests the presence of Drp1-independent fission mechanisms

[48,64]. On the other hand Drp1 is regulated in a highly complex

manner, that is, through several Drp1 receptors on mitochondria,

through posttranslational regulation of Drp1 itself, and through the

regulated recruitment of Drp1 to mitochondria by its receptors Fis1,

Mid49/51, and Mff [11,12] [10,13,14,65,66]. The recruitment and

activity of Drp1 on mitochondria is furthermore regulated by cellu-

lar structures such the ER [67] and actin [15,18,43,57], as well as

septins, which appear to function in parallel to the ER and actin.

Hence, the mitochondrial fission process appears to be regulated in

complex and at least partially redundant ways. Such redundancy is

frequently observed in biological systems and is thought to contri-

bute to their robustness. Although not the only means to recruit

Drp1 to mitochondria, Sept2 has in contrast to the ER and actin the

unique ability to directly bind Drp1. This could allow Sept2 to act as

a scaffold that would promote functional interactions with other

proteins on mitochondria, similar to the function that septins have

already been shown to fulfill in other contexts such as cytokinesis

[19]. Our findings thus unveil a new facet of Drp1 regulation and

expand the role of the cytoskeleton in mitochondrial fission to

septin proteins.

Materials and Methods

Cell culture and transfection

HeLa and U2OS cells were obtained from ATCC and cultured under

standard conditions; media and additives were from Invitrogen.

U2OS-GFPSec61 stable cells were described previously [68], as

well as Drp1�/� cells [45]. All cells were tested for mycoplasma

(negative). siRNAs were transfected for 72 h at a final concentration

of 12 nM with Lipofectamine RNAiMAX according to the manufac-

turer’s instructions. Septin siRNA sequences and providers are

detailed in Appendix Table S1; siRNA#1 and siRNA#2 were employed

for Figs 1 and EV1A and B, while siRNA#1 is shown in subsequent

experiments. For rescue experiments, HeLa cells were transfected

with Sept2 siRNA (siRNA #1) for 48 h and then transfected for a

further 24 h (using FuGENE) with a Sept2-HA plasmid carrying

silent mutations in the siRNA seed region (Sept2-HA rescue; see

Appendix Table S2) or its GTPase-deficient derivative (carrying the

T78G mutation [63]) or Sept7-HA.

Reagents

Plasmids, chemicals, and recombinant proteins

Sept2-HA template for cloning of siRNA-resistant Sept2-HA was

provided by David Ribet. See Appendix Table S2 for construct and

primer information. PA-GFP and Sept2-YFP were described previ-

ously [42,69]. Orange and Deep Red Mitotracker, 100 nm Tetra-

Speck beads AlexaFluor-labeled phalloidin and secondary antibodies

were purchased from Invitrogen. Mdivi-1 was obtained from Enzo

Life Sciences, and all other chemicals were obtained from Sigma.

Complete mini EDTA-free protease inhibitor and PhosSTOP phos-

phatase inhibitor tablets were from Roche. Reduced glutathione was

obtained from Sigma, and glutathione sepharose beads and protein

A were from GE Healthcare. Recombinant purified GST and Drp1-

GST were prepared as described previously [70], and Sept2 was

obtained from Cusabio (CSB-EP617994HU).

Antibodies

Antibody sources are detailed in Appendix Table S3. All antibodies

were used according to the manufacturer’s instructions unless other-

wise stated.

Cell fractionation, immunoprecipitations, and pulldown

Crude mitochondrial extracts were obtained through cell fractiona-

tion according to [71]. Immunoprecipitation was performed as

described [29] with modifications. Briefly, HeLa cells were washed

twice in phosphate-buffered saline (PBS) and lysed for 30 min with

1 ml lysis buffer/10-cm dish (20 mM Tris, pH 8.0, 150 mM NaCl,

10% glycerol) supplemented with 1% Igepal, protease, and phos-

phatase inhibitors. Lysis and all subsequent steps were performed at

4°C. The lysate was clarified (13,000 g, 10 min), and the protein

concentration of the supernatant was determined by Bradford assay

(Pierce). One milligram of lysate was incubated overnight with 2 lg
of anti Sept2 antibody. A total of 30 ll of protein A–sepharose beads

was added for 1 h, and the immune complexes were retrieved by

centrifugation (500 g, 5 min). After four washes with lysis buffer,

bound protein was eluted from the beads by boiling for 10 min in

30 ll Laemmli buffer. The eluate was analyzed by gradient SDS–

PAGE (Bio-Rad) and subjected to Western blotting via wet transfer

to 0.45-lm nitrocellulose membrane (Millipore). A total of 10 lg
total lysate was loaded (corresponding to 1/100) for the input,

70–90% immunoprecipitated material to reveal interactors such as

Drp1, or 5% immunoprecipitated material to reveal immunoprecipi-

tated Sept2. Sept2 immunoprecipitations from drug-treated cells

were performed as above except that cells were either mock-treated

(DMSO or ethanol, respectively) or treated with either 50 lM
Mdivi-1 for 1 h (Mdivi-1 was also included in the lysis buffer) or

2 lM CCCP for 30 min in MEM without serum, or 2 lM cyto-

chalasin D for 30 min in MEM before cell lysis.
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GST pulldown

All steps were performed at 4°C. Equimolar concentrations of GST,

GST-Drp1 and Sept2 (500 nM) were incubated overnight in GST

incubation buffer (20 mM Tris, pH 8.0, 1 mM EDTA, 0.2% Igepal,

100 mM KCl). A total of 30 ll of protein A–sepharose beads was

added for 1 h; beads were then recovered by centrifugation (500 g,

5 min) and washed four times in GST incubation buffer. Bound

protein was eluted from glutathione Sepharose beads with GST

elution buffer (100 mM Tris, pH 8.0, 20 mM glutathione, 5 mM

dithiothreitol). Eluates were analyzed as described above. To test

the effect of Mdivi-1 on the Drp1–Sept2 interaction, Drp1-GST was

preincubated with Mdivi-1 for 30 min at RT before the addition of

recombinant Sept2, followed by the pulldown procedure described

above.

Imaging and image analysis

Immunofluorescence and live cell imaging were performed essen-

tially as described in [48,72]. For super-resolution microscopy,

cells were seeded onto high-precision coverslips (Marienfeld),

and after immunofluorescence, samples were mounted in Slow-

Fade Gold (Invitrogen) or Fluoromount G. Super-resolution struc-

tured illumination (SR-SIM), providing an expected resolution of

about 140 nm, was performed on a Zeiss LSM780 Elyra PS1 (Carl

Zeiss, Germany) using 63×/1.4 oil Plan Apo objective. Three

angles of the excitation grid with five phases each were acquired

for each channel and each z-plane. SIM images were processed

with ZEN software for brightness/contrast adjustment. Images

were aligned using 100 nm TetraSpeck beads embedded in the

sample. The confocal image in Fig EV3B was acquired using the

same equipment as the SR-SIM and the same pixel size to allow

comparison. Huygens professional software was used for decon-

volution and brightness/contrast in Fig EV3B. CoDIM imaging

was performed on a Bioaxial CoDiM 100 system equipped with

488, 561, and 640 lasers and decreases the resolution limit to

about 80–100 nm. Imaris 6.4.1 (Bitplane) was used for 3D recon-

structions.

Image analysis was performed with ImageJ unless otherwise

stated. For morphometric analysis on fixed cells, mitochondrial

length was assessed in well-resolved mitochondria only; fissions

were counted manually in live cell imaging experiments and

displayed according to [57]. To calculate the percentage of rescue,

the difference in mitochondrial length between Sept2-siRNA and

Sept2-rescue or Sept7-rescue is referred to the difference between

Sept2-depleted and mock-treated cells (set to 100%). To quantify

FCCP-induced mitochondrial fission and looping, mitochondrial

elongation (long/short axis) was measured with the open-source

software Icy [73] (protocol Mitochondria Elongation) after bina-

rization of mitochondria. The first timepoint (t0) was set to 100%,

and the following timepoints were normalized to t0. Mitochondrial

constrictions were determined through visual inspection of the

mitochondrial channel, and then, septin presence was assessed at

these sites. Total mitochondrial motility was determined in ImageJ

according to [74]. Peroxisomes were counted automatically with

ImageJ particle analyzer. The percentage of ER crossing mitochon-

dria was assessed after thresholding and binarization of the ER

and mitochondrial signal according to [67]. Similarly, mitochon-

drial Drp1 was obtained by combining total Drp1 signal with a

mitochondrial mask created after thresholding and binarization of

the mitochondrial signal. Colocalization of P-MLC was assessed

similarly and verified using the plug-in Colocalization Studio (Plug-

in ID: ICY-H9X6X2) [75] in Icy. Western blot quantification

involved densitometric analysis of single bands through ImageJ.

At least two Western blots from independent experiments were

quantified.

Statistical analysis

Results are expressed as means of at least two independent experi-

ments, and error bars represent the standard error of the mean. For

multiple comparisons, data were first analyzed by one-way ANOVA

on BiostaTGV (http://marne.u707.jussieu.fr/biostatgv/?module=tests),

followed by pairwise comparisons with unpaired two-tailed Student’s

t-test on Excel (Microsoft) or Prism (GraphPad). Significance is

indicated as P < 0.05 (*), P < 0.01 (**), and P < 0.005 (***), ns for

P > 0.05.

C. elegans work

Caenorhabditis elegans was cultured and maintained as described

previously [76] at 20°C. The worm line carrying pMyo3::Tom70::

GFP, rol-6 as extrachromosomal array was created previously [54].

RNAi was performed as described [77]. Plasmid L4440 containing

unc-59 (W09C5.2) or unc-61 (Y50E8A.4) was retrieved from the

Ahringer library [77] or the Vidal library [78], respectively. Both

clones were sequenced to confirm their identity. For the double

RNAi and the dilution controls, equal volumes of bacterial cultures

were mixed, concentrated by centrifugation, and spread on NGM

plates containing 1.5 mM IPTG and 25 lg/ml carbenicillin. dsRNA

production was induced at RT for 16–24 h and then stored at 4°C

for up to 2 weeks. TOM70::GFP worms were subjected to RNAi

from L3/L4 stage for 4–5 days at 20°C. Offspring were analyzed at

young adult stage. For live imaging, adult hermaphrodites were

mounted in M9 containing 1 mM levamisole (Sigma-Aldrich), using

Vaseline� at the edges of the coverslip to function as a spacer.

Worms and mounting medium were strictly kept at 20°C until use.

Images were taken at a Zeiss Axioplan 2 microscope equipped with

a Zeiss AxioCam MRm camera (Carl Zeiss, Germany) and a Plan

Neofluar 100×/NA1.30 oil objective.

Expanded View for this article is available online.
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