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Abstract: Breast cancer is a complex, molecular disease, in which a number of cellular pathways 

involving cell growth and proliferation, such as the MAPK, RB/E2F, P13K/AKT/mTOR, and 

TP53 pathways, are altered. These pathways represent molecular mechanisms that are composed 

and regulated by various genes. The genes that are altered in terms of cell growth and proliferation 

include the oncogenes HER2, c-MYC, and RAS, the ER genes, and the genes for cell cyclin D1 

and E, and the tumor suppressor genes RB, TP53, and PTEN, and the breast cancer susceptibility 

genes BRCA1 and BRCA2. Although the nature of breast cancer is complex and has frustrated 

previous attempts at treatment or prevention, the elucidation of its molecular nature over the last 

several decades is now providing targets for effective therapies to treat the disease and hopefully 

one day to prevent it.

Keywords: breast cancer, oncogenes, targeted therapy, tumor suppressor genes

At the beginning of the twentieth century, a number of theories were proposed 

to account for carcinogenesis (Marcum 2002). Of these, Boveri’s somatic muta-

tion theory became the predominant guiding theory (Boveri 1914; Varmus and 

Weinberg 1993). The current manifestation of the theory states that cancer is the 

result of sporadic and/or inheritable genetic mutations in somatic or germinal cells, 

respectively (Edler and Kopp-Schneider 2005; Schulz 2006; Wunderlich 2006). 

These mutations affect a number of cellular pathways, including the MAPK, 

RB/E2F, P13K/AKT/mTOR, and TP53 pathways, which are responsible for cell 

growth and proliferation (Hanahan and Weinberg 2000; Vogelstein and Kinzler 

2004; Schulz 2006).

Malignant breast cancer is a complex, molecular disease in which alterations 

take place in the genes that govern cell growth and proliferation (Sledge and Miller 

2003; Ingvarsson 2004). The predominant form of breast cancer is sporadic in 

nature, in which oncogenes – which are initially mutated – lead to uncontrolled 

cell proliferation (Kenemans et al 2004). Other genetic mutations, especially in 

tumor suppressor genes (TSGs), are then thought to lead to malignancy. Hereditary 

or familial breast cancer, which represents only 5%–10% of breast cancer cases, 

is controlled by inheritable mutations to susceptibility genes, among other genes 

(Pavelic ´ and Gall-Trošelj 2001; Margolin and Lindblom 2006; Walsh and King 

2007).

The progression from normal to malignant breast tissue is not completely 

understood today but enough of the process is understood to develop therapies 

that target the molecular changes that occur during breast carcinogenesis (Osborne 

et al 2004; Schulz 2006). Traditional chemotherapy for treatment of cancer 

suffers from two major problems. First, it is non-specifi c in that the drugs used to 

treat patients cannot distinguish between tumor and normal cells. This inability to 
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distinguish between the two types of cells leads to a second 

problem – toxic side effects that are often more debilitating 

than the disease. A new approach to treatment – targeted 

therapy – attempts to resolve these problems by the rational 

design of drugs that specifi cally target cancer cells (Segota 

and Bukowski 2004; Seynaeve and Verweij 2004; Garrett 

2005; Pegram et al 2005; Sledge 2005; Sharkey and 

Goldenberg 2006).

Over the past decade, targeted therapy has offered 

particularly promising means to treat breast cancer 

(Bange et al 2001; Sledge 2001; Kaklamani and O’Regan 

2004; Osborne et al 2004; Gasparini et al 2005; Hobday 

and Perez 2005; Johnson and Seidman 2005; Tripathy 

2005; Muss 2006). In this review, a limited selection of 

the genes responsible for cell growth and proliferation, 

including oncogenes, TSGs, and susceptibility genes, 

are examined and discussed, especially with respect to 

targeted therapies. The paper concludes with a discussion 

of the challenges facing basic and clinical research to 

develop effective and safe treatment of a disease that is 

estimated to kill 40,460 women in 2007, in the USA alone 

(Jemal et al 2007).

Oncogenes
Oncogenes are the fi rst “cancer” genes to be well studied 

molecularly and represent alterations of proto-oncogenes 

that are involved in the normal regulation of cell growth and 

proliferation (Varmus and Weinberg 1993; Macdonald et al 

2004; Schulz 2006). Alteration of these genes results in what 

is termed gain-in-function, ie, cell growth and proliferation. 

These genes are responsible for sending the cell from a resting 

state into cell division. In other words, they are comparable 

to stepping on the accelerator of an automobile (Weinberg 

1998).

Oncogenes are dominant, since a single “hit” or 

alteration is required to activate them. For example, they 

may be amplifi ed or their protein products overexpressed 

and therefore more of the product is present; or, they may 

be mutated to enhance the function of the protein (Osborne 

et al 2004; Schulz 2006). They are responsible for sporadic 

cancers, which account for the majority of breast cancers 

(Macdonald et al 2004; Schulz 2006). Although oncogenes 

are involved in the initiation of cancer, they appear not to 

be as important in the latter stages (Harris 2005). There 

are a host of oncogenes involved in the development of 

breast cancer, with HER2, c-MYC, and RAS, being more 

intensely studied (Table 1). Besides these oncogenes, the 

genes for estrogen receptors (ERs), cyclin D1 and E, and 

cyclin-dependent kinases 2 and 4/6 are also important in 

breast cancer formation (Table 1).

HER2
The HER2 gene (human epithelial receptor 2, also known 

as c-neu or c-erbB2) belongs to the HER gene family, 

with epidermal growth factor receptor (EGFR) or HER1 

being the fi rst discovered (Ross and Fletcher 1998; Ross 

et al 2004a). The HER2 gene is located on chromosome 

17q12 (Kaptain et al 2001). The HER2 protein is a 185 

kDa transmembrane tyrosine kinase growth factor receptor 

and shares structural homology with the other HER 

family members, including an extracellular region, a 

transmembrane region, and a cytoplasmic region (Klapper 

et al 2000; Kaptain et al 2001; Jorissen et al 2003; Bazley 

and Gullick 2005). The extracellular region at the amino 

terminus is glycosylated and contains two ligand-binding 

domains and two cysteine-rich domains that are critical for 

receptor dimerization. The hydrophobic transmembrane 

region makes a single pass through the cell membrane. The 

cytoplasmic region contains the protein tyrosine kinase 

domain and six tyrosine residues at the carboxy terminus 

that are available for phosphorylation.

Around a dozen ligands, including EGF, neu or heregu-

lin, and TGFα, bind to the HER receptor family; however, 

there is no known ligand specifi c for HER2 or the receptor is 

unable to bind a ligand (Harris et al 2003; Ross et al 2004a; 

Bazley and Gullick 2005). Upon ligand binding the receptors 

form either homodimers or heterodimers and are activated 

by phosphorylating the cytoplasmic tyrosines. HER2 forms 

heterodimers, especially with HER1 and HER3, which is 

responsible for tumor formation (Holbro et al 2003; Chan 

et al 2006). The activated receptor dimers are involved via 

signal transduction in a variety of cellular pathways, such 

as MAPK and P13K/AKT/mTOR pathways (Bazley and 

Gullick 2005; Chan et al 2006). Functionally, the HER 

receptor family is involved in cell growth and proliferation, 

angiogenesis, altered cell-cell interactions, increased cell 

Table 1 Oncogenes

Gene Location Protein Function

HER2 17q12 185 kDa kinase Growth factor receptor
c-MYC 8q24 62 kDa nuclear Transcription factor
  phosphoprotein
HRAS 11p15.5 21 kDa GTPase Signal transduction
CCND1 11q13 34 kDa cyclin D1 Regulates CDK4/6
Cyclin E 19q12 50 kDa cyclin E Regulates CDK2
ERα 6q25.1 67 kDa protein Transcription
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motility, metastasis, and resistance to apoptosis (Osborne 

et al 2004; Sunpaweravong and Sunpaweravong 2005).

The HER2 gene is amplifi ed in 20%–30% of breast cancer 

cases or the HER2 protein is overexpressed in roughly the 

same percentage of cases, although there are cases in which 

the protein is overexpressed while the gene is not amplifi ed 

(Berns et al 1995; Kaptain et al 2001; Ross et al 2003; Hudis 

2007; Magnifi co et al 2007). HER2 overexpression is found 

almost exclusively in breast cancer of ductal origin rather 

than lobular origin (Klapper et al 2000; Ross et al 2004a). 

It is also associated with higher recurrence rates and lower 

response to chemotherapy or hormone therapy, with overall 

poor prognosis and survival (Kaptain et al 2001; Ross et al 

2004a). Moreover, 15% of breast cancer cases expressed 

lower levels of the HER2 protein than normal breast tissues 

and exhibited higher grade tumors than cases in which the 

protein is overexpressed (Tovey et al 2006). Overexpression 

of other members of the HER family is also observed in breast 

cancer cases, with HER1, HER3, and HER4 overexpressed 

in 16.4%, 17.5%, and 11.9% of the cases, respectively 

(Witton et al 2003). Interestingly overexpression of HER4 

conferred an increased survival rate, although the reason for 

this phenomenon is unclear and requires further evidence to 

support it.

Given its prominence in the activation of around a 

half dozen genetic pathways involved in cell growth and 

proliferation HER2 is a major focus of research in terms 

of targeted therapy, including monoclonal antibodies, 

kinase inhibitors, and antisense oligonucleotides (Osborne 

et al 2004; Ross et al 2004a; Hobday and Perez 2005). 

Trastuzumab is the most celebrated monoclonal for breast 

cancer treatment, fi rst tested in clinical trials in the mid 

to late 1990s (Baselga et al 2006; Piccart-Gebhart 2006; 

Hudis 2007; Nahta and Esteva 2007). It is a humanized 

monoclonal antibody, originally produced in mice, which 

recognizes the extracellular domain. It is particularly effec-

tive in patients who overexpress HER2, with response rates 

ranging from 12% to 34%, and is commonly used in con-

junction with chemotherapy or at least one cytotoxic drug 

except anthracycline (due to cardiomyopathy). Trastuzumab 

binds to HER2 and works through multiple mechanisms, 

including, for example, inhibition of heterodimer forma-

tion, potentiation of chemotherapy, and enhanced cell 

apoptosis.

Pertuzumab is another monoclonal antibody that inhibits 

the formation of heterodimers by recognizing an extracel-

lular region distinct from trastuzumab and is currently 

being tested clinically (Cox et al 2006; Meric-Bernstam 

and Hung 2006; Walshe et al 2006). It may be effective 

in combination therapy with agents such as trastuzumab. 

Lapatinib is a large-head group quinazoline, reversible 

inhibitor of the tyrosine kinase domain of HER1 and HER2 

(Burris 2004; Meric-Bernstam and Hung 2006). Preliminary 

data from clinical trials reveal that 8% of refractory meta-

static breast cancer patients have a complete response to 

the inhibitor (Moy and Goss 2006). Moreover, lapatinib is 

particularly effective in combination with either capecitabine 

or trastuzumab, eg, the average time to progression was 

8.4 months for the combination of lapatinib and capecitabine 

but only 4.4 months for capecitabine alone (Geyer et al 

2006; Konecny et al 2006). Antisense oligonucleotides to 

various HER2 domains also offer promise for breast cancer 

targeted therapy, by downregulating HER2 expression and 

by sensitizing breast cancer cells to chemotherapy (Yang 

et al 2002, 2003).

c-MYC
The c-MYC gene, the cellular homolog to the viral oncogene 

v-MYC, is located on chromosome 8q24 (Ryan and Birnie 

1996; Jamerson et al 2004). The c-MYC gene product is 

a nuclear phosphoprotein, with three isoforms: c-MYC1, 

c-MYC2, and c-MYCS (Henriksson and Luscher 1996; Liao 

and Dickson 2000; Pelengaris and Khan 2003; Jamerson 

et al 2004). The predominant isoform is c-MYC2, which is a 

62 kDa protein. Its amino terminus contains the MYC box I 

and box II elements responsible for transcriptional regulation, 

while its carboxy terminus contains basic, helix-loop-helix 

and leucine zipper motifs that are involved in DNA binding 

and in heterodimerization with the transcription factor MAX. 

The heterodimer MYC-MAX binds to the E box (CACGTG) 

regulatory element of growth-related genes thus inducing 

transcription. c-MYC1’s amino terminus is slightly extended, 

while c-MYCS’s amino terminus is truncated and missing 

MYC box I.

c-MYC is normally expressed only during cell division 

and accelerates the cell’s entry into the S phase of the cell 

cycle, especially through induction of cyclin E-CDK2 activity 

(Pelengaris and Khan 2003; Dang et al 2006). The c-MYC 

gene product functions as a nuclear transcription factor that 

is involved in the regulation of an extensive network of genes 

that represents around 15% of human genes. These genes 

are responsible for a variety of cellular processes, including 

proliferation, apoptosis, differentiation, and metabolism 

(Oster et al 2002; Pelengaris and Khan 2003; Jamerson 

et al 2004; Dang et al 2006). Interestingly, c-MYC not only 

stimulates cell proliferation but also cell apoptosis. To date, 
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this paradox is not fully understood or explained (Pelengaris 

and Khan 2003; Dang et al 2006). c-MYC also exhibits dual 

function, in terms of both transactivation and transrepression 

of transcription. Transactivation requires the presence of 

MYC box I, while transrepression MYC box II.

Meta-analysis of the published literature reveals that 

c-MYC is overexpressed three-fold or greater in 1%–94% 

of breast cancer cases, with an average of 15.5% (Liao and 

Dickson 2000). Although there is also considerable varia-

tion in the oncogene’s amplifi cation, from 4% to 52%, cases 

that contain amplifi ed MYC exhibit poor prognosis (Guerin 

et al 1988; Liao and Dickson 2000; Osborne et al 2004). The 

overexpression of c-MYC often precedes gene amplifi cation 

and may result from enhanced transcript or protein stability 

(Liao and Dickson 2000). Interestingly, amplifi cation of 

c-MYC is positively correlated with amplifi cation of HER2 

(Gaffey et al 1993; Liao and Dickson 2000). Although 

there is consensus concerning the role of c-MYC in breast 

carcinogenesis, most researchers agree that other genes are 

also required. For example, c-MYC-induced breast cancer 

is correlated with spontaneous KRAS2 mutation (D’Cruz 

et al 2001).

Use of antisense oligonucleotides to specifi c regions of 

c-MYC demonstrates that the expression of the oncogenic 

protein and proliferation of cells overexpressing the oncogene 

are signifi cantly reduced by 30% (Watson et al 1991; Carroll 

et al 2002). However, application of antisense technology 

has not been unproblematic. Recently, RNA interference 

technology has been developed to silence gene expression 

in mammalian cells (Sui et al 2002). Briefl y, dsRNAs are 

used to generate short interfering RNAs (siRNAs) that are 

incorporated into a nuclease complex that binds specifi cally 

to the targeted mRNA and cleaves it. Knockdown of c-MYC 

in a breast cancer cell line using a short hairpin transcript 

corresponding to c-MYC mRNA nt 1906–1926, resulted in 

an 80% reduction in c-MYC gene expression (Wang et al 

2005). Also, tumor generation in nude mice was inhibited for 

two months. Finally, use of a triplex-forming oligonucleotide 

to bind duplex DNA resulted in around 40% reduction of 

c-MYC expression in breast cancer cells (Christensen et al 

2006). These approaches are heralded to provide future 

benefi ts for targeting breast cancer therapeutically.

RAS
The RAS genes are located on three separate chromosomes 

(Giehl 2005). The fi rst is on chromosome 11p15.5 and 

transcribes HRAS kinase. The next gene is on chromosome 

12p12.1 is responsible for two splicing variants, KRAS4A 

and KRAS4B. The fi nal gene is on chromosome 1p13.2 and 

encodes for NRAS kinase. The RAS kinases are members of 

a superfamily of 21 kDa monomeric GTPases (Giehl 2005; 

Schulz 2006). The kinases contain three domains, with two 

highly conserved catalytic domains. The third is located 

at the carboxy terminus and is a cell membrane targeting 

domain that is highly variable, which is composed of a linker 

region that contains nuclear traffi cking signals and an anchor 

region that connects the protein to the cell membrane (Giehl 

2005). During posttranslational modifi cations, the anchor 

region undergoes prenylation of a CAAX motif (C stands 

for cysteine, A for an aliphatic amino acid, and X for any 

amino acid) and then palmitoylation of two cysteines for 

HRAS and one cysteine for NRAS and KRAS4A (Hancock 

2003; O’Regan and Khuri 2004; Giehl 2005). KRAS4A is 

not palmitoylated but contains six contiguous lysines. The 

modifi ed RAS kinases are then embedded in the cytoplasmic 

side of the plasma membrane.

The RAS kinases are activated through binding of growth 

factors to receptors, like the receptor tyrosine kinases (Giehl 

2005; Schulz 2006). Activation occurs with the exchange 

of GTP for GDP. The activated RAS protein then phos-

phorylates a number of secondary messengers involved in a 

variety of cellular pathways that function in cell apoptosis, 

differentiation, motility, and proliferation. One of the more 

important pathways is the RAF/MEK/ERK pathway, which 

is one of several MAPK pathways (Schulz 2006). RAS 

phosphorylates the RAF serine/threonine kinases, which 

in turn phosphorylate the MEK 1 and 2 kinases, which 

in turn phosphorylate ERK 1 and 2. Phosphorylated ERK 

translocates to the nucleus, where it interacts with various 

transcription factors involved in cell proliferation. Another 

important pathway is the P13K/AKT/mTOR pathway. RAS 

phosphorylates P13K, which in turn phosphorylates phos-

phatidyl inositol resulting in the production of PIP
3
. PIP

3
 is a 

second messenger that is involved in the activation of other 

downstream molecules, such as the kinase AKT and mTOR. 

Activation of this pathway results in cell survival through 

the inhibition of cell apoptosis.

Analysis of breast tumors demonstrates that RAS is only 

associated with less than 5% of breast cancer cases (Clark 

and Der 1995; Eckert et al 2004). Moreover, in those cases in 

which it participates the oncogene appears not to be mutated 

as is the case in other RAS tumors (Eckert et al 2004). Rather, 

RAS is hyperactive because of overexpression of EGF and/or 

HER2 (Stevenson et al 1999; von Lintig et al 2000; Eckert 

et al 2004). However, those cases that involve RAS exhibit 

poor prognosis (Field and Spandidos 1990). Analysis of 
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breast cancer cell lines, on the other hand, reveals RAS gene 

mutations (von Lintig et al 2000; Hollestelle et al 2007). 

Point mutations are observed in 7 of 40 cell lines, with the 

preponderance of mutations in KRAS (Hollestelle et al 2007). 

Recently, the effector pathway(s) for cell apoptosis in breast 

cancer may not be the RAF/MEK/ERK or the P13K/AKT/

mTOR pathways but another, such as the Ral or Rac path-

ways (Eckert et al 2004). A modifi ed breast cancer cell line in 

which HRAS and NRAS are constitutively expressed reveals 

that HRAS activation of the Rac-MKK3/6-p38 pathway may 

play a role in breast cancer metastasis (Shin et al 2005).

RAS offers several molecular targets for therapeutic 

intervention. The fi rst step in RAS activation involves the 

transfer of a prenyl group to RAS by farnesyl transferase. 

A number of inhibitors to the enzyme have been shown to 

inhibit its activity and thereby to inhibit the growth of a 

number of tumor lines (Head and Johnston 2004; O’Regan 

and Khuri 2004). The fi rst generation of inhibitors, such as 

L-744,832 and FTI-277, were successful and eventually led to 

a second generation of inhibitors, R115777 and SCH66336. 

In preclinical trials, R115777 inhibits by up to 85% the 

proliferation of breast cancer cell lines in vitro and growth 

of tumors in vivo (Wärnberg et al 2006). Phase II trials 

demonstrated limited clinical effi cacy of R115777 in treating 

cases of advanced breast cancer, with 10% of patients having 

a partial response (Johnston et al 2003). Recently clinical tri-

als are underway to examine the synergistic effects of farne-

syl transferase inhibitors with other drugs, such as tamoxifen 

or the taxanes (Head and Johnston 2004; Lebowitz et al 

2005). Similar trials are underway with SCH66336 (Basso 

et al 2005; Marcus et al 2005). Antisense oligonucleotides 

are also promising, especially when combined with other 

drugs (Adjei et al 2003).

Cyclins D1 and E
The cell cycle is composed of a variety of phases that result 

in cell growth and replication (Schafer 1998; Israels and 

Israels 2000). Cells in the quiescence G0 phase are shuttled 

into the G1 phase in which they prepare to enter the S phase 

of DNA replication. After the S phase, the cells enter the 

G2 phase prior to mitosis or the M phase, during which the 

cells undergo division. The cell cycle and its various phases 

are closely regulated in a dynamic fashion, by a variety of 

factors (Tyson et al 2002). The fi rst are the cyclin-dependent 

kinases (CDKs), which are the “engines” that power cell 

cycle events (Morgan 1997). They constitute a family 

of serine/threonine protein kinases, with around a dozen 

members of which around half are involved in the cell cycle. 

While the levels of CDKs do not oscillate during cell cycle 

events, cyclins, which bind and activate the CDKs, do and 

provide one level of regulation (Johnson and Walker 1999; 

Murray 2004). Another level of regulation involves CDK 

inhibitors (CKIs), of which there are a little over a half-dozen 

divided into two families, INK4 and Cip/Kip families (Soos 

et al 1998). CKIs are critical for inactivating CDK/cyclin 

holoenzymes. Interestingly, recent gene targeted studies on 

mouse development challenge the standard “CDK-centric” 

paradigm (Sherr and Roberts 2004; Malumbres 2005; Sán-

chez and Dynlacht 2005).

A key junction in the regulation of the cell cycle vis-à-vis 

carcinogenesis is the transition from the G1 to the S phase 

(Sherr 1996, 2000; Sandal 2002; Park and Lee 2003). Cyclins 

D1 and E, the G1 cyclins, are critical regulatory elements in 

the transition of the cell from the G1 phase to the S phase. 

Cyclin D1 is upregulated by growth factors, like EGF and 

estrogen, and binds to CDK4/6 and partially phosphorylates 

RB, which in turn releases E2F. E2F is a transcription factor 

that targets the cyclin E gene and upregulates it. The cyclin 

E gene product binds to CDK2 and forms the cyclinE-CDK2 

holoenzyme, which then completes the phosphorylation 

and inactivation of RB. RB is the “master switch” that is 

responsible for turning on or off the cell cycle (Sherr 1996, 

2000). Finally, the CKIs p21 and p27 also play an important 

regulatory role in the transition from G1 to S (Sherr and 

Roberts 1999). Cancer, including breast cancer, is then a 

result of deregulation of the genes involved in cell cycle 

control (Lodén et al 2002; Vermeulen et al 2003; Sutherland 

and Musgrove 2004; Caldon et al 2006).

The cyclin D1 gene, CCND1 (PRAD1), is located on 

chromosome 11q13 and is composed of fi ve exons (Fu 

et al 2004). It encodes for a 34 kDa protein that contains 

several domains (Arnold and Papanikolaou 2005). At the 

amino terminus is a RB binding domain. Cyclin D1 also 

contains a highly conserved cyclin box, which is composed 

of around 100 amino acids and is responsible for binding 

CDKs. A common polymorphism (A/G) is located at 870 nt 

and is associated with a slicing variant of cyclin D1, which 

contains intron 4 but in which exon 5 is deleted. Cyclin D1 

is overexpressed in greater than 50% of breast cancer cases 

but its gene is only amplifi ed in 13%–20% of breast cancer 

cases (Arnold and Papanikolaou 2005; Roy and Thompson 

2006). When cyclin D1 is overexpressed it shortens the 

time spent in G1 and allows more cells to enter the S phase, 

which relies on both CDK-dependent and CDK-independent 

mechanisms. Its overexpression is associated with an aggres-

sive form of breast cancer and poor prognosis. The cyclin D1 
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gene is co-amplifi ed with the HER2 and c-MYC genes and is 

associated with ER positivity. To date, there are no targeted 

therapies based on cyclin D1, although it is believed to hold 

great promise for future therapeutic intervention (Arnold and 

Papanikolaou 2005).

The cyclin E gene is located on chromosome 19q12 and 

encodes for a 50 kDa protein, along with almost a dozen 

splicing variants – some of which are incapable of activat-

ing CDK2 (Möröy and Geisen 2004). Cyclin E possesses 

the conserved cyclin box for CDK2 binding, as well as a 

CKI binding site. In addition it contains specifi c proteolytic 

sites at the amino terminus that are sensitive to elastase 

degradation, generating fi ve isoforms that exhibit greater 

holoenzyme activity than the native isoform (Akli and 

Keyomarsi 2003; Harwell et al 2004; Hunt and Keyomarsi 

2005). Interestingly, these elastase-generated isoforms are 

only found in cancer cells and not in normal cells. Although 

cyclin E is overexpressed in breast cancer, by as much as 

64-fold in some breast cancer cell lines, it is rarely amplifi ed 

and is not overexpressed when cyclin D1 is overexpressed 

(Lodén et al 2002; Hunt and Keyomarsi 2005). Cyclin E 

overexpression is associated with poorly differentiated 

tumors and ER negativity; however, it also reduces infi ltra-

tive growth of breast carcinoma (Berglund and Landberg 

2006). Its overexpression is also associated with genomic 

instability (Akli and Keyomarsi 2004; Möröy and Geisen 

2004). Cyclin E has yet to be developed in terms of targeted 

therapy, although preliminary studies with elatase inhibitors 

appear promising (Akli and Keyomarsi 2003; Hunt and 

Keyomarsi 2005).

Besides cyclins, CDKs have also been a target for 

therapeutic development (Senderowicz 2003; Vermeulen 

et al 2003; Osborne 2004; Collins and Garrett 2005). Two 

approaches are taken: a direct approach in which CDKs’ 

catalytic sites, especially the ATP-binding site, are targeted 

and an indirect approach in which the upstream pathways 

that govern CDKs are targeted. For the direct approach a 

number of small molecular weight inhibitors have been 

developed that are specifi c for particular CDKs, such as 

roscovitine, purvalanol, and nitrosopirimidines, which tar-

get CDK1, 2, and 5, and indolocarbazoles and PD0183812, 

which target CDK4, and fl avopiridol and UCN-01, which 

target CDKs nonspecifi cally. For example, roscovitine 

inhibits by 50%–70% the proliferation of human breast 

carcinoma cells (We ˛sierska-G dek et al 2003). A number 

of strategies have been developed for the indirect approach, 

including the overexpression of endogenous CKIs through 

gene therapy and small molecular weight molecules like 

lovastatin and rapamycin, the depletion of cyclins and CDKs 

through antisense oligonucleotides and small molecular 

weight molecules like tamoxifene and the retinoids, and the 

modulation of the proteasome mechanism like PS341. For 

example, lovastatin at 50 μM inhibits the proliferation of 

human breast cancer cell line MCF-7, by up to 90% (Seeger 

et al 2003). Overall, these approaches are in various stages 

of clinical trials and use, with varying degrees of effi cacy 

and safety.

Estrogen and its receptor
Estrogen is a generic term for a family of sex hormones 

that are critical for the mammalian estrous cycle (Messinis 

2006). There are three main classes of estrogens: estradiol 

(17β-estradiol), estrone, and estriol. Estrogen synthesis takes 

place predominantly in the ovaries in premenopausal women 

and to a lesser extent in extragonadal tissues, including 

breast tissue, which, along with other extragonadal tissue, 

is its source in postmenopausal women (Huang et al 2005; 

Jordan and Brodie 2007). It begins with the synthesis of 

C-19 androgens from cholesterol in ovarian theca interna cells. 

Upon entrance into ovarian granulosa cells the androgens 

are aromatized by an aromatase complex, consisting of 

cytochrome P450 hemoprotein and NADPH-cytochrome P450 

reductase – a fl avoprotein that is part of a larger cytochrome 

superfamily. Three hydroxylation steps are postulated in the 

synthesis of estradiol from testosterone and of estrone from 

androstenedione. Finally, estrogens appear to enhance their 

own synthesis through a feed-forward mechanism involving 

prostaglandin synthesis (Frasor et al 2003).

There are two types of estrogen receptors (ERs), which are 

the product of two separate genes (Kenemans et al 2004). The 

ERα gene is located on chromosome 6q25.1, while the ERβ 

gene is located on chromosome 14q22–24. Although there 

are two different ER genes, their products share considerable 

structural and functional homology (Kuiper et al 1996). Both 

ERs contain six structural domains (domains A-F) that com-

pose several functional domains (Herynk and Fuqua 2004). 

A transactivation domain is associated with amino terminus 

domains A and B, which bind various regulatory elements 

that modulate ER-mediated transcriptional activity. A DNA 

binding domain is associated with domain C, which contains 

two zinc fi nger motifs. This domain binds to the promoters of 

ER-targeted genes. The ER dimerization domain is divided 

between the C and E domains, along with an area at the 

carboxy terminus. The nuclear localization signal is located 

in domain D, which also contains the hinge region. Finally, 

domains E and F contain a ligand-binding domain and another 
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transactivation domain. Both ERs also exhibit a variety of 

splicing variants (Herynk and Fuqua 2004).

Estrogen is a potent mitogenic hormone that is critical 

not only in breast development but also in its carcinogenesis, 

although there is debate about its role in breast cancer initia-

tion (Foster et al 2001; Wren 2004; Russo and Russo 2006). 

The ERα isoform is the predominant agent of mitogenic activ-

ity in breast tissue and is overexpressed in the early stages of 

breast cancer (Hayashi et al 2003; Hewitt et al 2005). Around 

two-thirds of breast cancer tissue expresses higher ER levels 

than normal tissue (Ideka and Inoue 2004). Estrogen binds 

to ERα to form a stable receptor dimer that is then phos-

phorylated inducing a conformational change, which thereby 

exposes a DNA-binding domain and transcriptional activation 

domains (Butt et al 2005). The dimer binds to target genes 

involved in phosphorylation of RB, especially both c-MYC 

and cyclins D1 and E (Roy and Thompson 2006).

Growth factors, such as EGF, IGF-I, and TGFα, also 

bind ER and lead to mitogenic activity in breast cancer 

cells (Butt et al 2005). ER and HER2 pathways also share 

contact or “cross-talk” during breast tumorigenesis (Sledge 

and Miller 2003). The role of ERβ in the development of 

breast cancer is unclear, although the ratio of ERα to ERβ 

is important in breast carcinogenesis (Cullen et al 2001; 

Herynk and Fuqua 2004). Finally, breast cancer tissue can 

be either ER-positive or ER-negative, with the ER-positive 

tumors forming a unique molecular subgroup (Perou et al 

2000). ER-negative tumors are associated with an aggressive 

form of the disease and consequently with poor prognosis 

(Rochefort et al 2003).

Antihumoral therapy is composed of antiestrogens 

to counteract the effects of estrogens on breast tissue, 

especially as antagonists to ERs (Huang et al 2005; Gao and 

Liu 2007). Type I antiestrogens, also known as selective 

estrogen receptor modulators (SERMs), are non-steroidal 

inhibitors, including tamoxifen, toremifene, and raloxi-

fene. These antiestrogens are widely used because they do 

not bind ERs indiscriminately; rather, they are partially 

selective in their binding specifi city and thereby protec-

tive against estrogen-associated bone loss (Jordan 2007). 

Type II antiestrogens include antagonists that are steroidal 

derivatives of estrogen, eg, ICI 164,384 and ICI 182,780. 

The binding of both types of antiestrogens causes a confor-

mational change in ER’s carboxy terminus. Unfortunately 

many patients become resistant to antiestrogen therapy. The 

mechanism of resistance is not completely understood; but 

the standard protocol is to switch to an estrogen-deprivation 

therapy, such as aromatase inhibitors (Huang et al 2005).

The aromatase complex represents an attractive 

target for therapeutic development, since the synthesis of 

estrogen represents the fi nal step in its synthetic pathway. 

Consequently, estrogen synthesis can be specifically 

inhibited without compromising the synthesis of other sex 

hormones (Jordan and Brodie 2007). However, the role of 

estrogens in other tissues besides breast cancer tissue makes 

the use of these inhibitors problematic since they create a 

“no estrogen state” (Huang et al 2005; Jordan and Brodie 

2007). Aromatase inhibitors (AIs) represent a very successful 

targeted therapy for breast cancer in postmenopausal women 

(Altundag and Ibrahim 2006).

There are two types of AIs, which are currently in 

their third generation (Huang et al 2005; Altundag and 

Ibrahim 2006). Type I inhibitors, such as exemestane, 

mimic the binding of the androgen substrate and thereby 

bind covalently and irreversibly to aromatase. Type II 

inhibitors, such as letrozole, are non-steroidal in nature 

and bind irreversibly to aromatase’s catalytic site. Recent 

studies demonstrate that AIs are effective as or even more 

effective than tamoxifen and are being administered as 

the primary adjuvant therapy instead of using it after 

tamoxifen as previously done (Altundag and Ibrahim 

2006). For example, letrozole was better in clinical studies 

than tamoxifen with respect to time to treatment failure, 

9.4 months versus 6.0 months on average respectively 

(Mouridsen et al 2003).

Tumor suppressor genes
While in general oncogenes promote cell growth and prolif-

eration, tumor suppressor genes (TSGs) inhibit them (Varmus 

and Weinberg 1993; Macdonald et al 2004; Schulz 2006). 

Alteration of these genes results in what is termed loss-of-

function, ie, cell quiescence, which leads to cell growth and 

proliferation. These genes are responsible for stopping the 

cell from dividing during cell division, especially if DNA is 

damaged during its replication (Motoyama and Naka 2004). 

In other words, they represent stepping on the brake of an 

automobile (Weinberg 1998).

In stopping cell division, TSGs also maintain the 

integrity of the cell’s genome and therefore function as a 

competent automobile mechanic (Vogelstein and Kinzler 

2004). Because of their functions in stopping the cell from 

dividing or in ensuring the DNA is not damaged, TSGs are 

often called gatekeepers or caretakers, respectively (Kinzler 

and Vogelstein 1997; MacLeod 2000). As such, they are 

important in maintaining the genome’s stability and integrity 

(Sherr 2004).
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TSGs are recessive and require two “hits” in order to 

inactivate them (Knudson 1971). For example, they may be 

deleted physically or lost via recombination; or, they may be 

mutated or their promoter hypermethylated (Schulz 2006). 

TSGs are responsible for many hereditary cancers, such as 

the eye tumor retinoblastoma, although they are also neces-

sary for the development of sporadic cancers (Macdonald 

et al 2004; Schulz 2006). Because of their role in hereditary 

cancer, they are called susceptibility genes and act in a domi-

nant fashion (Macdonald et al 2004). There are several TSGs 

involved in the development of breast cancer, including RB, 

TP53, and PTEN, and the susceptibility genes BRCA1 and 

BRCA2 (Table 2). In general, treatment development based 

on TSGs presents a greater challenge than that based on 

oncogenes because TSGs represent loss-of-function rather 

than gain-of-function.

RB
The retinoblastoma (RB) gene is located on chromosome 

13q14 and is made up of 27 exons (Whyte 1995; Claudio 

et al 2002; Macdonald et al 2004; Du and Pogoriler 2006). 

The gene product, RB or p105, is a 105 kDa nuclear 

phosphoprotein, which contains no catalytic site and binds 

weakly and non-specifi cally to DNA. It contains well over 

a dozen possible phosphorylation sites, especially within 

the amino and carboxy termini. The RB protein shares 

conformational homology with RBL1 or p107, located 

on chromosome 20q11, and with RBL2 or p130, located 

on chromosome 16q12. This protein family is called the 

“pocket” proteins, since they contain a highly conserved 

pocket region for binding cellular proteins. RB protein 

contains an A domain (exons 11–17) and a B domain (exons 

20–23), separated by a short spacer (exons 18 and 19). The 

A/B domain makes up the small pocket region and, along 

with the carboxy terminus, makes up the large pocket 

region. These regions are responsible for binding various 

proteins and have at least two protein binding sites, one 

for E2F proteins (A/B domain interface) and another for 

proteins containing an LXCXE motif (B domain), which 

are functionally distinct from one another (Chau et al 2006). 

The spacer between the A and B domains for RBL1 and 

RBL2 binds cyclins A and E, while the PB spacer is too 

short to bind proteins.

The RB protein binds over 110 cellular proteins that 

can be divided into three classes (Morris and Dyson 

2001). The fi rst includes kinases, and their regulators, and 

phosphatases, the next class transcriptional regulators, and 

the fi nal class miscellaneous proteins that are involved in 

disparate functions such as cell cycle regulation and DNA 

replication. These proteins function to limit cell growth and 

proliferation, to amplify cell differentiation, and to restrain 

cell apoptosis (Morris and Dyson 2001; Zheng and Lee 

2001; Knudsen and Knudsen 2006). The most well studied 

protein that binds to the large pocket of RB belongs to 

the transcriptional regulator E2F family, which makes up 

the RB/E2F pathway (Dyson 1998; Macdonald et al 2004). 

The E2F family consists of eight family members, divided 

into four groups (Du and Pogoriler 2006). The fi rst consists 

of E2F1-3 and is called the “activating E2Fs,” since members 

of this class bind preferentially to RB and are responsible for 

promoting cell division. The second class consists of E2F4 

and 5 and is called “repressive E2Fs,” since its members 

bind preferentially to RBL1 and 2 and inhibit cell division. 

The E2F family binds to the two members of the DP family 

to form a heterodimer that then binds preferentially to RB 

family members.

RB or its pathway is altered in roughly 80% of human 

cancer cases, making it a very important factor in carci-

nogenesis (Schultz 2006). Loss of RB activity is present 

in about one-third of sporadic breast cancer cases and has 

a negative impact on patient outcome and response to 

treatment (Ross et al 2004b; Bosco et al 2007). RB loss 

in breast cancer occurs from chromosomal deletion, func-

tional inactivation through cyclins A or E overexpression, 

intragenic mutation, and transcriptional silencing such as 

promoter hypermethylation (Oesterreich and Fuqua 1999; 

Bièche and Lidereau 2000; Oliveira et al 2005). Interest-

ingly, 20% of breast cancer cases contain truncated muta-

tions of RB1CC1, an upstream regulator of RB expression 

(Chano et al 2002). Although RB alteration is important 

in breast cancer, studies with mammary epithelial cells 

revealed that alterations in other genes like TP53 are also 

required for tumor initiation and progression (Simin et al 

2004). To date, no targeted therapies for RB alterations 

have been developed, although reintroduction of RB into 

breast cancer cells resulted in growth suppression (Stoff-

Khalili et al 2006). And fi nally, RB modifi es the response 

of breast cancer cells to tamoxifen chemotherapy because 

Table 2 Tumor suppressor genes

Gene Location Protein Function

RB 13q14 105 kDa nuclear phosphoprotein Gatekeeper
TP53 17p13 53 kDa phosphoprotein Caretaker
PTEN 10q23.1 53 kDa phosphatase Gatekeeper
BRCA1 17q21 220 kDa nuclear phosphoprotein Caretaker
BRCA2 13q12 384 kDa nuclear phosphoprotein Caretaker
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of E2F deregulation, resulting in earlier recurrence (Bosco 

et al 2007).

TP53
The TP53 gene is located on chromosome 17p13 and spans 

20 kb (Macdonald et al 2004; Lacroix et al 2006; Schultz 

2006). It is composed of 11 exons, which encode for a 2.8 kb 

transcript. Its protein product, p53, is a 53 kDa phosphoprotein, 

although its calculated mass in around 44 kDa. It is generally 

found in the nucleus and has a rather short half-life of around 

20 minutes. p53 belongs to a protein family composed of two 

other proteins, p63 and p73, both of which share homology 

with p53 but have different functions. It is a transcriptional 

activator and exhibits a structure typical to other activators, 

with three domains. The amino terminal transactivation 

domain contains a relatively large number of acidic amino 

acids and proline-rich region, which is responsible for its 

apoptotic activity. The central core domain of p53 is highly 

conserved evolutionarily and is responsible for p53’s binding 

to promoters, during transcriptional activation. It is hydropho-

bic in nature and is folded into β sheets. The carboxy terminal 

domain contains many charged amino acids making it hydro-

philic in nature. It is responsible for forming p53 tetramers. It 

also contains three nuclear localization signals.

p53 is responsible for a variety of functions within the 

cell’s economy, including cell cycle arrest and promotion of 

apoptosis, DNA repair, cell differentiation, and inhibition of 

angiogenesis (Braithwaite et al 2005; Toledo and Wahl 2006; 

Vousden and Lane 2007). Its main function is to ensure that 

the cell’s genome remains intact before cell division occurs 

and because of this function it is often called the “Guard-

ian of the Genome” (Lane 1992). MDM2 (an ubiquitin 

ligase mouse double minute-2 homologue; called HDM2 

in humans) and MDM4, which bind to the amino terminus 

of p53, are responsible for inhibiting p53 and promoting its 

degradation (Haupt 2004). p53 also binds to genes such as 

BAX that are responsible for the apoptotic pathway, thereby 

shuttling the cell into programmed cell death. The p53 path-

way is generally activated by DNA damage, which results 

in phosphorylation of p53 by ATM or CHK2 at sites near 

MDM2 and MDM4 binding. MDM2 or MDM4 are released, 

and the CKI p21 then binds to p53 (Macdonald et al 2004). 

p21 is transactivated and arrests the cell cycle until the DNA 

is repaired. Mutations of p53 that disrupt this pathway result 

in cell division, even though its DNA is damaged. Such dam-

age can lead to carcinogenesis.

Alteration in TP53, usually in terms of missense muta-

tions is found in more than half of all cancers (Macdonald 

et al 2004; Braithwaite et al 2005). Around 20%–40% of 

breast cancers have a genetic or an epigenetic altered form 

of the TP53 gene, which is associated with poor prognosis 

(Gasco et al 2002; Børresen-Dale 2003; Macdonald et al 

2004). Usually, the genetic alteration is often a point muta-

tion that results in a malfunctioning, non-degradable protein 

that accumulates in tumor cells. Altered TP53 (exons 5–8) is 

generally associated with sporadic breast cancer; however, 

it may function as a susceptibility gene in patients suffering 

from Li-Fraumeni syndrome (Macdonald et al 2004; Lacroix 

et al 2006).

An increased rate of TP53 mutation is also associated 

with carriers of BRCA1 and BRCA2 germline mutations 

(Gasco et al 2002; Lacroix et al 2006). BRCA1 apparently 

stimulates transcription of TP53 since mutant forms of 

BRCA1 do not have the same activity levels. Apoptosis 

stimulating protein of p53 (ASPP) increases p53-dependent 

induction of apoptosis target genes, such as BAX (Gasco 

et al 2002). Finally, alteration of genes in the TP53 path-

way can also lead to breast cancer. For example, loss of the 

cell cycle checkpoint kinase CHK2 results in an inability 

to stabilize p53 (Osborne et al 2004). However, these 

mutations are much less common in breast cancer (Gasco 

et al 2002). Downregulation of this gene affords cells with 

damaged DNA a greater chance of surviving and dividing 

(Ingvarsson 2004).

TP53 and its regulation by MDM2 and MDM4, as 

well p53 itself, are targets for the development of rational 

cancer therapies (Braithwaite et al 2005; Bouchet et al 

2006; Lacroix et al 2006). The disruption of MDM2-p53 

and MDM4-p53 interactions is targeted through small 

molecular weight molecules, such as the nutlins, which 

are cis-imidazoline derivatives. Nutlins have yielded 

impressive results in xenografts by inhibiting tumor 

growth at high doses, with no obvious toxicity. Antisense 

oligonucleotides to the MDM2 gene have also been devel-

oped to downregulate the inhibitor, thereby increasing p53 

levels. In addition, MDM2 siRNA has been successfully 

used to inhibit p53-dependent breast cancer (Liu et al 

2004). Gene therapy to replace wild type TP53, using 

retroviruses and the adenovirus Ad5CMv-p53, has been 

developed to restore p53 functional levels. Finally, restor-

ing or rescuing aberrant p53 activity has proven a suc-

cessful therapeutic strategy (Takimoto et al 2002; Bossi 

and Sacchi 2007). For example, CP-31398 and PRIMA-1 

have been shown to rescue p53 activity by binding to 

defective p53 and then restoring its ability to function 

normally (Wang et al 2003). Moreover, these agents act 
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synergistically. For example, PRIMA-1 and cisplatin act 

synergistically to enhance tumor cell apoptosis (Bykov 

et al 2005).

PTEN
The PTEN (phosphatase and tensin homolog deleted on 

chromosome ten, also known as MMAC1 or TEP1) gene is 

located on chromosome 10q23.1 (Li et al 1997; Weng et al 

1999). It consists of nine exons and transcribes a 5.5 kb 

mRNA, which encodes for a 53 kDa protein (Kim and Mak 

2006). The PTEN protein contains a phosphatase domain 

at the amino terminal region, with a phosphatase motif 

(HCX(A/X)GXXR(S/T)G) that is common for both tyrosine 

and dual-specifi city (serine and threonine) phosphatases 

(Li et al 1997; Simpson and Parsons 2001). The catalytic 

region consists of a wider pocket than most phophatases and 

contains three positively charged amino acids that account 

for its preference for acidic substrates (Di Cristofano and 

Pandolfi  2000). The main substrate for the phosphatase is 

PIP
3
 (Maehama and Dixon 1999). The carboxy terminal 

region consists of a C2 domain that binds phospholipids 

and of a tail region that contains PEST sequences and CK2 

phosphorylation sites important for structural stability and 

catalytic activity (Simpson and Parsons 2001). Finally the 

tail region contains a PDZ domain that binds MAGI proteins, 

which are important for locating the phosphatase at the cell 

membrane.

PTEN functions in the cell’s economy through arrest-

ing the cell cycle and promoting cell apoptosis, as well as 

regulating cell adhesion, migration, and invasion especially 

through extracellular molecules like the integrins (Tamura 

et al 1999; Di Cristofano and Pandolfi  2000; Waite and Eng 

2002). The PTEN phosphatase acts as a TSG by dephos-

phylating PIP
3
, thereby downregulating AKT (also known 

as protein kinase B). Inhibition of AKT activation in turn 

downregulates the signal transducer or effector mTOR 

(mammalian target of rapamycin), which in turn leads to 

arrest of the cell cycle at G1 and to programmed cell death 

(Lu et al 1999; Guertin and Sabatini 2005; Bianco et al 

2006). Besides the cytoplasm, PTEN is also found in the 

nucleus and may function in not only downregulating the 

AKT/mTOR pathway but also other cellular pathways like 

CENP-C and RAD51 pathways that are important in chro-

mosome integrity (Chung et al 2006; Baker 2007). Finally, 

PTEN is also involved in the downregulation of cyclin D1 

through the MAPK pathway.

PTEN is involved in germ-line mutations that are 

responsible for Cowden and Bannayan-Riley-Ruvalcaba 

syndromes, in which 80% of the tumors arising in these 

syndromes are present in the breast (Liaw et al 1997; Marsh 

et al 1998; Lu et al 1999). Loss of PTEN is associated 

with aggressive breast malignancy and poor prognosis 

(Garcia et al 1999; Petrocelli and Slingerland 2001). 

PTEN in Cowden breast cancer is chiefl y mutated within 

the amino terminal phosphatase domain, while PTEN in 

Bannayan- Riley-Ruvalcaba breast cancer is mutated in 

the non-phosphate domains (Rhei et al 1997; Marsh et al 

1998; Waite and Eng 2002). Loss of PTEN is also prevalent 

in sporadic breast cancer, although mutation of the gene 

is infrequent and methylation of the PTEN promoter is 

responsible for inhibiting PTEN gene expression (Khan 

et al 2004). Although PTEN is involved in regulation of 

the P13K/AKT/mTOR pathway in breast carcinogenesis, 

recent evidence suggests that its regulation is more com-

plex (deGraffenried et al 2004; Panigrahi et al 2004; Bose 

et al 2006).

PTEN and the P13K/AKT/mTOR pathway provide 

useful targets for developing robust therapies for breast 

cancer (Lu et al 2003; Kim et al 2005). There has been little 

work done to target PTEN until recently. Reconstitution 

studies with PTEN gene therapy in a mouse model for lung 

cancer, for example, reveals that apoptosis is increased, 

while AKT and mTOR activation is decreased signifi cantly 

(Kim et al 2005). In addition, antisense oligonucleotides 

to PTEN resulted in trastuzumab resistance, while rescue 

of PTEN through P13K inhibitors restored trastuzumab 

sensitivity (Nagata et al 2004). Recently, Par-4 has been 

shown to participate in PTEN-mediated apoptosis and 

may provide a useful target for therapeutic development 

(Goswami et al 2006).

A number of inhibitors have been developed to key 

components of the P13K/AKT/mTOR pathway (Chen 

et al 2005; Granville et al 2006). P13K inhibitors target 

the p110 ATP binding site in the catalytic pocket. The two 

best known inhibitors are LY294002 and wortmannin, 

which in combination is more effective than either alone 

and exhibits fewer toxicities. AKT inhibitors exhibit a 

variety of mechanisms, including translocation inhibition 

and binding to the catalytic or substrate binding sites. 

Examples of these inhibitors include perifosine, PX-316, 

and NL-71-101. The most studied inhibitors are those for 

mTOR and include rapamycin and its derivatives CCI-779, 

RAD-001, and AP-23573 (Vignot et al 2005; Tsang et al 

2007). Phase II trials with CCI-779 demonstrated its safety 

for treating advanced and metastatic breast cancer (Chan 

et al 2002). Recently, a multicenter randomized phase II 
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trial suggests that oral administration of 10 mg daily of 

RAD-001 is also effi cacious in metastatic breast cancer 

patients (Ellard et al 2007).

BRCA1 and BRCA2
The tumor susceptibility genes, BRCA1 and BRCA2, are 

found in about 80% of familial breast cancer cases and only 

5%–10% of all breast cancer cases (Rosen et al 2003; Antoniou 

and Easton 2006). BRCA1 and BRCA2 are considered high-

penetrance variants, especially in some ethnic groups like 

Ashkenazi Jews, with as high as 90% penetrance – although 

there is evidence to indicate that the estimates over-represent 

the penetrance by about a half (Begg 2002; Macdonald et al 

2004). In general the risk of developing breast cancer increases 

with age, but due to nongenetic factors the age of onset can 

vary widely (Osborne et al 2004). However, among those who 

carry BRCA1 or BRCA2 mutations, the risk of developing 

cancer not only increases with age but the age of onset is 

markedly earlier (Macdonald et al 2004). Both BRCA1 and 

BRCA2 are caretaker genes and are important in maintaining 

the integrity of the cell’s genome (Venkiteraman 2002; 

Iggvarsson 2004; Macdonald et al 2004).

BRCA1 is located on chromosome 17q21 and contains 

24 exons, 22 of which encode for a 220 kDa nuclear 

phosphoprotein (Nathanson et al 2001; Macdonald et al 

2004; Schulz 2006). Exon 11 alone accounts for around 

50% of the encoding gene. The BRCA1 protein exhibits 

several structure domains important for its function (Rosen 

et al 2003). At the amino terminus is a zinc-binding RING-

fi nger domain, containing a cys3-his-cys4 structure, which 

binds BARD1 (BRCA1-associated RING domain protein) 

and BAP1 (BRCA1-associated protein) – hallmarks of the 

RING-fi nger family of transcriptional regulatory proteins. 

The domain also binds other proteins, including cyclin D1, 

ERα, and c-MYC. The carboxy terminus contains two 110 

amino acid sequence BRCT (BRCA C terminal) domains 

that are involved in transcription activation and for binding 

proteins critical for that function, like histone deactylase. 

Finally, BRCA1 has a central domain that binds proteins 

involved in repair of double-strand DNA breaks. BRCA1 

mutations are usually frame-shift mutations that result in a 

truncated protein, but point mutations can occur at both the 

amino and carboxy termini.

The BRCA1 protein is part of a genome surveillance 

complex (BASC) that is composed of DNA repair and TSG 

proteins, such as MSH2 and the RAD50-MRE11-p95 com-

plex, which are involved in recombination-mediated repair 

of double-stranded DNA breaks (Nathanson et al 2001; 

Macdonald et al 2004; Gudmundsdottir and Ashworth 2006). 

The BRCA 1 gene is transcribed during late G1 phase and 

throughout the S phase (Macdonald et al 2004). Following 

DNA damage, ATM, ATR, or CHK2, regulator proteins in 

pathways of tumor cell suppression, rapidly phosphorylate 

BRCA1 to an active state (Gasco et al 2002; Gudmundsdottir 

and Ashworth 2006). BRCA1 stops the cell cycle at the S 

and G2/M checkpoints, points before cell division (Rosen 

et al 2003; Deng 2006). In general, BRCA1 inhibits the 

activity of oncogenes and amplifi es the activity of TSGs 

(Rosen et al 2003). For example, it can bind and inhibit 

c-MYC or it can transactivate both p21 and p27 (Rosen et al 

2003). BRCA1 can also bind directly to p53, enhancing its 

transcriptional ability and stabilizing its protein (Gasco et al 

2002). Finally, it also functions in chromatin remodeling 

and is required for centromere replication (Rosen et al 2003; 

Osborne et al 2004).

The BRCA2 gene is located on chromosome 13q12 and 

contains 27 exons, 26 of which encode for a 384 kDa nuclear 

phosphoprotein (Nathanson et al 2001; Macdonald et al 2004; 

Schulz 2006). Like BRCA1, BRCA2’s exon 11 accounts for 

half of the coding gene; and, its exon 10 is relatively large 

compared to other exons. BRCA2 is somewhat structurally 

similar to BRCA1 but does not contain as many well defi ned 

structural domains as BRCA1 (Nathanson et al 2001). The 

amino terminus contains transcriptional activation domains, 

while the carboxy terminus contains a nuclear localization 

signal that is involved in shuttling the recombinase RAD51 

from the cytoplasm to the nucleus (Venkitaraman 2002; 

Gudmundsdottir and Ashworth 2006). The central domain 

contains eight copies of the ~40 amino acid BRC repeat, which 

are responsible for binding RAD51. BRCA1 and BRCA2 are 

thought to be co-regulated during the cell cycle and DNA 

repair (Rosen et al 2003; Macdonald et al 2004). They, along 

with RAD51, BARD1 and other components, form the BRCC 

complex that is critical for double-strand DNA break repair 

(Gudmundsdottir and Ashworth 2006).

The BRCA susceptibility genes afford clinical investi-

gators several strategies for targeted therapy (Yarden and 

Papa 2006). One strategy is to target histone deacetylase, 

which is involved in chromosome integrity. BRCA1, as 

noted above, binds and regulates the deacetylase from com-

promising chromosome integrity. Inhibitors to the enzyme 

would compensate for breast tumors that do not express 

BRCA1. Another strategy is to inhibit poly(ADP-ribose) 

polymerase 1 (PARP1), an enzyme involved in repair of 

breaks in DNA. Recent studies demonstrate that breast 

cancer cells defi cient in BRCA genes are three orders of 
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magnitude more sensitive than normal breast cells to PARP1 

inhibitors, resulting in the induction of cell programmed 

death because chromosomal DNA breaks are not repaired 

(Bryant et al 2005; Farmer et al 2005; Turner et al 2005).

The next strategy focuses on BRCA replacement gene 

therapy. Studies have shown that reintroduction of BRCA 

genes into breast cancer cells have resulted in cell cycle arrest 

and apoptosis (Osborne et al 2004; Stoff-Khalili et al 2006). 

Another strategy involves BRCA1 overexpression in a breast 

cancer cell line, which confers resistance to chemotherapy. 

Utilization of BRCA1 antisense oligonucleotides restored 

drug sensitivity (Husain et al 1998). Finally, second gen-

eration platinum-based chemotherapeutics is being actively 

perused to treat cancer patients (Kelland 2007). For example, 

a phase II clinical trial with carboplatin is currently underway 

(BRCA trial 2007).

Challenges
The challenges for the genetic approach to breast cancer 

involve both greater understanding of the underlying molecu-

lar mechanisms for breast carcinogenesis and more effective 

and specifi c treatment regimes, as well as prevention of the 

disease. As for the underlying molecular mechanism, a fuller 

understanding of the pathways and of the genes that constitute 

those pathways are required. For example, ten genes have 

been identifi ed for inherited breast cancer cases; but, they 

only account for 50% of the cases (Walsh and King 2007). 

The genes responsible for the other half of inherited breast 

cancer cases are unresolved. Another important factor for 

understanding breast cancer development is the tumor’s 

microenvironment, which also plays a signifi cant role in 

tumor initiation and progression (Liotta and Kohn 2001; 

Wiseman and Werb 2002). The microenvironment is no lon-

ger considered an “innocent bystander” that passively serves 

as scaffolding for carcinogenesis (Erickson and Barcellos-

Hoff 2003). Rather, an altered microenvironment or terrain is 

a common feature of cancer and it is thought to induce malig-

nant transformation of the surrounding epithelium through 

oncogenic pathways (Comoglio and Trusolino 2005). These 

“landscaper” defects refl ect alterations in genes responsible 

for the microenvironment’s composition and architecture 

(Kinzler and Vogelstein 1998; Alessandro et al 2004).

Chow et al (2006) have identified three challenges 

for breast cancer therapy research. The fi rst involves the 

improvement of the efficacy for conventional chemo-

therapy. Especially the use of combinatorial strategies is 

required to optimize a therapeutic regime, and yet keep 

toxicities at a minimum. The next challenge is to develop 

targeted therapeutic protocols for many of the known genes 

responsible for breast cancer development, especially in 

terms of gene therapy, and to incorporate them into pres-

ent protocols or to develop new ones. Moreover, what is 

required is not an additive but a synergistic effect between 

different drugs. Such synergism insures that the therapeutic 

protocol is optimally effective and minimally harmful to the 

patient. The development of cancer is a complex phenomenon 

that requires a number of genes and molecular pathways. 

In essence, the disease is a synergistic interplay of genes 

and pathways and only a combination of drugs that targets 

these genes and pathways will be effective. It is doubtful if 

there is a “magic bullet” therapy for many types of cancer, 

including breast cancer. In addition, there is the need for 

the discovery of new genes and genes products to target for 

therapeutic regimes. The fi nal challenge is the development 

of better methods for categorizing breast cancer heteroge-

neity, as well as better means to predict drug response and 

resistance. Pharmacogenetics and DNA microarray analysis 

are already being employed to provide more accurate clas-

sifi cation of breast cancer types and response of patients to 

drugs (Lønning et al 2005; Espinosa et al 2006; Marsh and 

McLeod 2007).

Besides these challenges there are two additional ones: 

cancer stem cells (CSCs) and prevention. Although the 

idea of CSCs is an old one it has only been within the past 

decade that it has been supported experimentally (Clarke 

et al 2006; Dean 2006; Massard et al 2006; Witcha et al 

2006), even though there are some theoretical and techni-

cal concerns in terms of its application to solid tumors like 

breast cancer (Hill 2006). The traditional stochastic model 

claims that any cell can become tumorigenic, while the 

hierarchical model or cancer stem cell hypothesis claims 

that only a subset of tumor-initiating cells is responsible for 

tumorigensis (Dick 2003). The cancer stem cell hypothesis 

has important implications for therapy. Instead of treating 

proliferating cells, which can only result in limited tumor 

remission with possible recurrence, elimination of the CSCs 

would effectively remove the cancer. Recently CSCs, rep-

resenting about 2% of the cells, were isolated from human 

breast cancer tissue and produced tumors upon injection 

into immunodefi cient mice (Al-Hajj et al 2003). Moreover, 

these cells have been grown in vitro (Ponti et al 2005, 2006). 

The challenge for breast cancer treatment is to target breast 

CSCs and their unique components thereby permitting their 

complete destruction.

The second challenge for breast cancer research is pre-

vention in terms of medical management for early onset of 
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the disease and with respect to lifestyle factors. Medical 

management vis-à-vis prevention, especially of inherited 

breast cancer, includes procedures such as early detection of 

breast cancer by imaging techniques, chemoprevention, and 

prophylactic surgical procedures (Pruthi et al 2007; Robson 

and Offi t 2007). Early detection of breast cancer is important 

in terms of its prevention, especially since it metastasizes 

rather quickly. Although the sensitivity of traditional mam-

mography is around 85%, it is not as sensitive (38%–55%) for 

women with dense breasts or BRCA mutations (Kerlikowske 

et al 1996; Scheuer et al 2002; Pruthi et al 2007). This means 

that there is still a considerable number of false negatives, 

even for traditional imaging techniques. Although new imag-

ing technology is being developed, such as digital mammogra-

phy, ultrasound, and MRI, appropriate clinical trials have yet 

to be conducted to test them (Elmore et al 2007).

A number of prospective, randomized, placebo-controlled 

clinical trials have been conducted recently in terms of 

chemoprevention, especially with the fi rst-generation SERM 

tamoxifen and the second-generation SERM raloxifene 

(Cuzick et al 2003; Vogel 2007). The results from these 

studies, although encouraging, have been mixed. From 

the four trials, Royal Marsden, NSBP P-1, Italian, and 

IBIS-I, the total number of breast cancers developed from 

the tamoxifen-treated group was 289 out of 14,192 woman, 

while for the placebo-controlled group it was 465 out of 

14,214 women. This represents an average of 38% for the 

reduction of breast cancer incidence, with a range from 

17%–49%. The STAR study, which was recently completed, 

compared tamoxifen to raloxifene and found that the second-

generation SERM was as effective as the fi rst generation 

SERM and exhibited less pronounced side effects like bone 

fractures and thromboemboli. Aromatase inhibitors (AIs) 

are currently being tested in two international clinical trials 

(O’Regan 2006). The use SERMs or AIs are effective against 

the incidence of ER-positive breast tumors. Future research 

must address the prevention of ER-negative tumors.

Besides chemoprevention, surgical procedures have been 

also developed to prevent the incidence of breast cancer in 

high risk women, especially BRCA mutation carriers. The 

fi rst is bilateral prophylactic or risk-reducing mastectomy. 

The PROSE study found that this surgical procedure reduced 

the risk of breast cancer by 90% for women with intact ova-

ries and by 95% for women without ovaries (Rebbeck et al 

2004). To date, there has not been a randomized controlled 

clinical trial to confi rm the benefi t of the procedure (Zakaria 

and Degnim 2007). The major problem with this procedure 

is its acceptance among high risk women, which requires 

sociological and psychological studies (Lynch et al 2001). 

Another more acceptable surgical procedure – because of 

self-image issues – is prophylactic or risk-reducing salpingo-

oophorectomy, which reduces the risk of breast cancer by 

about 50% (Kauff and Barakat 2007). The major problem 

with this procedure is the use of hormones to manage post 

salpingo-oophorectomy, which may increase the risk of 

breast cancer incidence.

Lifestyle factors, including body size and composition, 

diet, and exercise, are important factors in breast cancer 

prevention (Brody et al 2007; Michels 2007). For example, 

maintaining one’s “ideal” body weight (BMI = 19–25 kg/m2) 

and engaging in moderate exercises reduces the risk of breast 

cancer by about 30% (Pruthi et al 2007). Interestingly, diet, 

especially in terms of a low-fat and high in vegetables, fruit, 

and fi ber diet, does not reduce the risk of breast cancer for 

women with treated early-stage breast cancer (Pierce et al 

2007). However, the role of diet on the incidence of breast 

cancer requires further investigation with respect to long term 

studies, especially for women who are at risk for the disease. 

In addition, even though alcohol consumption, cigarette 

smoking, and exposure to environmental carcinogens are 

known risk factors for breast cancer, there is still much that 

needs to be investigated in terms of lower risk patients. In 

conclusion, although the nature of breast cancer is better 

understood today than several decades ago there is still much 

more basic and clinical research needed before the disease is 

controlled and hopefully someday eradicated.
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