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Introduction
The mechanisms of atrial fibrillation (AF), the most common 
cardiac arrhythmia in the clinical practice, are not fully 
understood. Acute AF in normal isolated sheep hearts has 
been found to often depend on fast rotors localized mainly to 
the posterior wall of the left atrium (LA) and the pulmonary 
veins (PVs) junction (PV-LAJ) with fibrillatory conduction 
toward the rest of the atria.1 Recent clinical data also point 
to rotors in various atrial sites as a mechanism driving parox-
ysmal AF.2–4 Previous simulations have already demonstrated 
that rotors can occur in the PV-LAJ, provided the PV size is 
adequate, and nonuniform coupling conditions exist.5 How-
ever, how the rotors form or drift in the PV-LAJ, as well as the 
drift underlying ionic mechanisms, have not been investigated 
systematically.6,7 Earlier studies using cardiac computer mod-
els have shown a causal link between rotor drift and spatial 
heterogeneity in the action potential (AP) properties.8 Rotors 
drifted toward regions with prolonged action potential dura-
tion (APD) or reduced excitability,9,10 which were inscribed 
mainly due to heterogeneities in multiple ion channels,11 and 
particularly K+ channels.10

As shown in Figure 1, IK1 and IKr play a role in rotor 
dynamics by affecting both the membrane APD and 
excitability.12,13 Figure 1A presents the average duration and 
frequency of the tachyarrhythmic episodes in the wild-type 
(WT) and transgenic (TG) mice, in which IK1 was upregu-
lated by overexpressing the Kir2.1.13 There was statistical dif-
ference between duration (WT, 3 ± 9; TG, 350 ± 1181 seconds, 
P , 0.001) and frequency (WT, 26.2 ± 5.2; TG, 44.6 ± 4.3 Hz, 
P , 0.001) of the arrhythmias in the two groups. In addition, 
Figure 1A displays a representative snapshot of the distribu-
tion of membrane voltage and the underlying inactivation gat-
ing variables (h⋅j) of the sodium current (INa) during simulated 
reentry in WT and TG mouse hearts. The product of the h and 
j gates is representative of the excitability of the resting tissue. 
The voltage maps show that the wavelength is shorter and the 
diastolic potential is more hyperpolarized (darker blue) over a 
wider area in the TG cardiac sheet, compared to the WT (values 
of diastolic potentials were ∼−94 mV in TG versus ∼−90 mV in 
WT). This results in greater recovery of Na+ channel availability 
(maximum value of h⋅j is 0.808 versus 0.684 in TG versus WT 
hearts, respectively). Furthermore, the accelerated final phase 
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of repolarization results in a larger area in which Na+ channels 
have recovered (orange), and thus greater excitability in front of 
the depolarization wave front. These factors contribute in part 
to the higher rotor frequency seen in the TG hearts.
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figure 1. the effect of IK1 and IKr on rotor stability and frequency. (A) top: 
average duration and frequency of arrhythmias in four Wt and eight tg 
hearts from mice. Bottom: spatial distribution of transmembrane voltage 
(top) and inactivation gating variables (h⋅j gates, bottom) of the Ina during 
stable reentry in a 2 × 2 cm2 cardiac cell sheet. the diastolic potential is 
more hyperpolarized over a wider area in the tg heart sheet (∼−94 mV), 
compared to the Wt case (∼−90 mV). the h⋅j gate map shows that the 
maximum availability of na+ channels in tg (0.808) exceeds that of the 
Wt heart (0.684) and occupies a larger area during the excitable gap 
(from ref. 13). (b) the effects of herg infection on reentry frequency 
in neonatal rat ventricular myocytes monolayers. top: snapshots 
from representative optical mapping movies in monolayers infected 
with ad-gFP (left), ad-herg (middle), or ad-g628s (right). Bottom: 
reentry frequencies in individual monolayers infected with ad-gFP 
(IKr-overexpression, open circles), ad-herg (P , 0.05 versus gFP, 
closed circles), or ad-g628s (P = ns versus ad-gFP; P , 0.05 versus 
ad-herg, open triangles). horizontal bars represent mean values. one-
way analysis of variance (anoVa) with tukey’s multiple comparison test 
(reproduced from ref. 12).

In addition, sustained functional reentry is seen to 
accelerate in cardiomyocytes’ monolayers infected by hERG to 
increase their IKr.12 The top of Figure 1B shows phase maps of 
single rotors generating spiral waves in control (Ad-GFP, left), 
IKr-overexpressing (middle), and G628S-overexpressing (IKr 
blockade, right) monolayers of neonatal rat ventricular myo-
cytes.12 The bottom graph in Figure 1B compares the ranges of 
individual rotation frequencies of control monolayers with that 
of IKr-overexpressing and G628S-overexpressing monolay-
ers. The important role of IKr is illustrated by the significantly 
higher average rotational frequency in IKr-overexpressing 
monolayers than in GFP controls (21.12 ± 0.81, n = 43 versus 
9.21 ± 0.58 Hz, n = 16; P , 0.001), whereas the frequency in 
the G628S monolayers is slightly lower (6.14 ± 0.3 Hz, n = 17; 
P = not significant [NS] versus GFP).

While the effect of the individual IK1 and IKr on rotor 
dynamics and hence on its drift should be discernable, the 
complex coexisting heterogeneity in the expression of chan-
nels at the PV-LAJ, such as in dogs, which show a larger 
current density of IKr and a smaller density of IK1 in the PV 
compared to LA,14,15 in conjunction with structural discon-
tinuities (narrow PV sleeves compared to the larger LA), 
precludes a simple prediction of the rotor dynamics at the 
PV-LAJ. To address such substrate effects, the data pre-
sented in this paper aim to elucidate ionic mechanisms of 
rotor drifting at the PV-LAJ, a region that is important for 
paroxysmal AF maintenance in many patients. We review 
here an investigation in two-dimensional (2D) and pseudo-
three-dimensional (3D) models of the PV-LAJ to test the 
hypothesis that the characteristic heterogeneous dispersion 
of transmembrane currents during paroxysmal AF, in the 
absence of remodeling, is a determinant of rotor drift. Our 
numerical simulations further demonstrate IK1 dominance 
in conveying a preferential rotor drift direction toward the 
PVs. We also demonstrate the cycle-by-cycle mechanism 
by which PV-LAJ regions with longer refractoriness and 
lower excitability tend to attract rotors. Notwithstand-
ing the reliance on simple models and animal-based ionic 
kinetics, it is proposed that the specific ionic properties of 
the human atrial substrate also predispose the PVs, or any 
other atrial region with reduced IK1 density, to attract rotor 
activity during AF.16–18

Numerical Methods
Computer simulations were performed on two simple models 
of the junction between the LA and the PV (Fig. 2)19:

1. A 50 × 50 mm2 regular 2D square mesh model was imple-
mented and subjected to no-flux boundary conditions.

2. A pseudo-3D cylindrical surface model of 50 mm length 
and perimeter constructed by applying no-flux bound-
ary conditions at the LA and PV edges and periodic 
boundary conditions on the other two edges of a regular 
2D mesh.
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The transmembrane potential was based on the 
Courtemanche-Ramirez-Nattel and Kneller (CRN-K) model 
of human atrial cell kinetics for AF without remodeling and 
in the presence of 0.0015 µM acetylcholine.20–22 Electrical 
activity was computed using a monodomain and numeri-
cally stable Euler forward scheme with 100 µm internodal 
distance, 0.005 ms time step, and isotropic diffusion coef-
ficient of 0.062 mm2/ms adjusted for conduction velocity of 
48 cm/s.23,24 Initial conditions were the membrane variables 
at resting potential following pacing a single cell at 1 Hz for 
10 seconds.

Heterogeneous ionic conditions were implemented by 
assigning a spatial Boltzmann distribution of conductance 
for IK1, IKs, IKr, Ito, and ICaL between the LA and the PV 
based on the data from dogs14 and described in Figure 2A 
(maximum conductance for IKr and IKs was increased by 50% 
and 60%, respectively, while that for IK1, Ito, and ICaL was 
diminished by 42%, 25%, and 30%, respectively). Single 
and paired ionic currents heterogeneities were implemented, 
as well as three additional conditions of ionic heterogene-
ity were modeled: (1) all currents varied spatially according 
to their corresponding Boltzmann function (Condition I); 
(2) all currents, except IK1, varied (Condition II); and (3) 
only IK1 varied in space (Condition III). Reentrant excita-
tion patterns were induced by S1–S2 cross-field stimulation 
protocols,22 and their pivoting points were identified as a sin-
gularity point (SP) and tracked in the phase domain from 
the moment of their appearance.19

Spatial profiles of peak sodium channels availability 
(h⋅j)peak were obtained by averaging those parameters in time 
for every pixel across the model in the last 2 of 5 seconds 
simulations. Measurements of minimum diastolic potential 
(MDP) and maximum upstroke velocity (dV/dtmax) followed 
similar procedure.

results
Ionic gradients and rotor attraction toward the PV. 

We tested the effect of all individual and pairwise currents 
on drift by switching them from heterogeneous to uniform 
(Fig. 3). Figure 3A shows that different ionic current het-
erogeneity, when applied individually, has a different drift 
direction. However, when pairs of ionic heterogeneities 
were combined, Figure 3B shows that the IK1 heterogeneity 
is the primary ionic factor that determines the direction 
of the drift toward the PV; whatever IK1 heterogeneity is 
combined with, the drift direction is always in the direc-
tion imposed by the IK1, namely a drift from the LA toward 
the PV region.
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figure 3. spatial gradients of individual and paired currents and reentry 
drift in a flat model. (A) effect of spatial gradient for each individual 
current on rotor drift. 2D PV-LAJ model showing spatiotemporal 
trajectories of sPs of rotors in gradients of IKs (black), IKr (green), Ito 
(yellow), ICal (blue), and IK1 (red) as described by the individual Boltzmann 
distributions in Figure 2a. While Ito and IK1 cause the rotor to drift toward 
the PV edge, the gradients in the other currents cause the rotor to 
drift toward the opposite la edge. insert: top view of the trajectories. 
(b) effect of spatial gradients in paired currents on rotor drift. the table 
shows the direction of the drift when ionic gradients as indicated in the 
abscissa and ordinate (green cells) were considered. IK1 is the only 
current whose gradient leads to PV attraction (in red fonts) of the rotor, 
regardless of gradient in any other current (reproduced from ref. 19).
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As a demonstration of major dependence of rotor drift 
in the PV-LAJ on the specific ionic current heterogeneity of 
IK1 in contrast to all the other combined heterogeneities, we 
generated rotors in the three ionic conditions implemented in 
the cylindrical and flat model and tracked the spontaneous 
trajectory of their SP. Figure 4 demonstrates that the rotor in 
the heterogeneous PV-LAJ region drifts predictably as a con-
sequence of the particular condition simulated.

In Condition I, ie, heterogeneity in the currents IK1, IKs, 
IKr, Ito, and ICaL as characterized at the PV-LAJ in dog,14 the 
drift is toward the PV edge of the model. However, when all 
the currents except IK1 are set to be heterogeneous, and IK1 
density is maintained homogenously and is equal to the LA 
region value (Condition II), the drift reverses toward the LA 
(when the IK1 is homogeneously equal to the PV region – not 
shown – the drift is also toward the LA). On the other hand, 
when all the currents are set uniform (either with the LA or 
the PV values) and only IK1 is set to disperse as in the dog 
(Condition III), the drift is again toward the PV, but with a 
faster rate as compared with the drift in Condition I. This set 
of three scenarios in cylindrical as well as in the flat models, 
shown in Figure 2, clearly points to the strong effect of IK1 on 
the direction of the rotor drift in the LA-PV junction area. As 
controls, we simulated rotors in 2D models with uniform ionic 
properties of either the LA or the PV that revealed nondrift-
ing rotors. The rotors in the model with uniform LA properties 
were slightly faster than those in the model with the uniform 
PV properties (7.7 versus 7 Hz, respectively; other properties 
of the rotors did not vary by more than about 10%).19

Heterogeneous excitability and rotor drift in the 
PV-LAJ. Ionic heterogeneity is imposing nonuniform excit-
ability properties and a rotor drift toward a predictable direc-
tion.9 In Figure 5, we analyze the role of tissue excitability 
in rotor drifts by quantifying the spatiotemporal distribution 
of the product of membrane model parameters h and j (h⋅j), 
which determines the INa availability during rotor pivoting.22 
Figure 5A illustrates the drift trajectory of a rotor in a 2D 
model under Condition I and shows a time–space plot (TSP) 
of h⋅j along the line of the drift. A closer look at the TSP near 
the pivoting location during a single cycle shows higher values 
of h⋅j at the left side (LA) of the drift than at the right side 
(PV). Thus, a progressive shift of the pivoting point toward 
the PV is always toward a region with lower h⋅j values.

Figure 5B shows snapshots of the voltage and h⋅j at a 
moment when the wave front near the rotor tip is propagating 
toward the LA (top) and a half cycle later, when that wave 
front is propagating toward the PV (bottom). The h⋅j snap-
shots clearly demonstrate that the wave propagating toward 
the LA is facing a higher h⋅j (red) as compared with the wave 
propagating toward the PV. The h⋅j gradient during the drift 
is further confirmed by plotting the time course of the voltage 
and h⋅j at 2 pixels flanking momentarily the SP of the rotor: 
one on the LA side and the other on the PV side, 4 mm away 
from the tip. Those dynamical plots show that the peak h⋅j for 
each cycle at the LA side is always .0.4 and at the PV side is 
always ,0.4. As illustrated, the alternating SP drift is larger 
during propagation toward the PV (low h⋅j) than during its 
propagation toward the LA (high h⋅j). The result is a net drift 
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toward the lower h⋅j, ie, less excitable, region. Importantly, it 
is noticeable that the presence of heterogeneity at the core area 
is critical for the rotor drift; in the absence of heterogeneity at 
the core, a rotor may be stable.19

Figure 6 summarizes the relationship between rotor drift 
and spatial distribution of excitability factors during reentry in 
the three conditions simulated. Figure 6A shows for illustra-
tion purposes a map with the distribution of the time-averaged 
h⋅j peak values for the model with greatest excitability gradient 
(Condition III) and shows that those values are about twofold 
larger in the LA edge as compared with those at the PV edge 
(0.8 and 0.4, respectively). The graph in Figure 6A presents 
the spatial profiles of the h⋅j and the drift direction for the 
three conditions. It is seen that the two conditions with lowest 
density of IK1 at the PV edge (blue and red) have profiles with 
reduced h⋅j at that edge as well, in contrast to the condition 
without the IK1 gradient, where h⋅j is maximal at the PV edge. 

Overall, the directionality of the drift in the three conditions 
as indicated by the superimposed arrows is fully consistent 
with the rotor attraction by any region with lowest h⋅j values 
where the steepest h⋅j gradient (red) corresponds to the fastest 
drifting rotor, as indicated in Figure 4B (red).

Next, Figure 6B quantifies metrics associated with the 
AP measurements of excitability: we focus on the dV/dtmax 
and MDP, which plays a role in determining the availabil-
ity of INa during the membrane depolarization. On the left 
side, we present samples of aligned pairs of APs recorded in 
locations (asterisks) near the LA (red) and PV (blue) edges 
during reentry in the three conditions. As can be appreciated, 
each condition presents a distinct heterogeneity in its APs as 
quantified on the right side of the panel, but for the three con-
ditions, the drift direction is toward the regions with lowest 
excitability as determined by the slowest dV/dtmax and most 
positive MDP.22

Figures 3 and 4 demonstrated the important role of IK1 
in determining the direction of the rotor drift in the PV-LAJ. 
In Figure 7 we study the effect of various relevant current–
voltage relationships of IK1 on such drift direction. Figure 7A 
shows four relationships between the current density and 
transmembrane voltage (I–V relationship) for different IK1 lev-
els, including up- and downregulation, as well as their cor-
responding APs showing different APDs and MDPs. The 
four I–V relationships were incorporated in a PV-LAJ model 
with Condition I, and rotor activity as well as AP parameters 
were tracked. As can be observed from Figure 7B, increas-
ing or decreasing the IK1 increases or decreases the average 
rotor frequency, respectively. Figure 7C demonstrates that h⋅j 
profiles across the PV-LAJ vary in both levels and gradient 
directions as a consequence of altering the I–V relationships. 
In particular, it is noticeable that the rotor drifts toward the 
PV for a broad range of IK1 levels, whereas a reversal in the 
drift and h⋅j gradient direction occurs only at a 75% reduction 
in IK1 (a behavior similar to that of a uniform IK1 shown under 
Condition II in Fig. 4).

Up- and downregulation of IK1 also hyperpolarize and 
depolarize MDP as well as increase and decrease upstroke 
speed, respectively (Fig. 4), with consistent drifts toward 
higher MDP and lower upstroke velocity. Overall, the con-
sequences of altering the I–V properties of IK1 in the hetero-
geneous models on MDP and upstroke velocity are complex 
and suggest a nonmonotonic dependency. Nevertheless, fur-
ther alterations in extracellular potassium concentration in the 
range of 4–7 mM, as well as alteration in the I–V profile to 
resemble closely those of Kir2.1 or Kir2.3, affect excitability 
and rotation frequency but do not alter direction of h⋅j gradi-
ents and drift directions toward the PV.19

discussion
The findings presented here suggest the following: (1) the 
heterogeneous distribution of transmembrane currents in the 
PV-LAJ plays a major role in the preferential localization of 
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rotors near or at the PVs, and the spatial dispersion of IK1 
is particularly important in determining such attraction. 
(2) Rotor drift in the PV-LAJ can be attributed to an excit-
ability (maximum INa availability) gradient in the vicinity of 
the rotor pivoting point.

Mechanisms of AF and rotor dynamics. Our under-
standing of AF in individual patients would benefit from 
knowledge of how driving rotors form and then become stable 
or unstable, under the conditions of multifactorial substrate 
heterogeneity.25,26 Paroxysmal AF in patients and in isolated 
normal sheep hearts has been found often to depend on fast 
rotors localized to the posterior wall of the LA and the PVs 
region with fibrillatory conduction toward the rest of the 
atria.1,2 However, the ionic properties underlying those rotors’ 
formation and drift remain unclear.7,27 Moreover, recent stud-
ies have indicated that in some patients, rotors that drive the 
AF may reside outside of the PV area.4 Our simulations here 
demonstrate that the spatial distribution of ionic currents 

found in the canine PV-LAJ is conducive to attracting rotors 
to the PV region. In addition, we also demonstrate that this 
attraction toward the LA can be reversed or arrested, if cer-
tain ionic currents are altered, which in turn may explain 
the variability in the location of rotors found in different 
patients. However, AF may involve several coexisting rotors 
at any given moment. In these cases, in addition to the drift 
imposed by the underlying substrate, the faster rotors can also 
exert an overriding influence on the slower rotors,28 and the 
combination of these two factors on rotor dynamics warrants  
further investigation.

substrate heterogeneity and rotor drift. In addition to 
the role of restitution characteristics of cells in rotor stability,29 
simulations with gradient of excitability showed spiral wave 
drifting in the direction of the region exhibiting lower excit-
ability and velocity, with additional perpendicular component 
depending on the rotor chirality,8 excitability, and repolar-
ization,9 regardless of the details of the initial conditions.30 
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Simulations using more biophysically detailed ionic models 
found that for a fixed gradient in APD imposed by linearly 
varying potassium currents, the velocity of the drift of a rotor 
is a function of the magnitude of the gradient10 and a steep 
gradient in APD can lead to conduction block of premature 
beats.31 Our simulations in a flat and cylindrical (to account 
for a drift not fully aligned with the gradient direction) mod-
els19 are in agreement with all those previous studies but refine 
the previous prediction that rotors would drift toward regions 
with longer APD9,32,33 to only .80% repolarization measured 
at frequencies close to the rotor frequency. Our simulations 
also show (Figs. 6 and 7) the drift predictability of various 
measures of excitability, which includes MDP, dV/dtmax, and 
h⋅j (INa availability).

IK1, IKr, and rotor dynamics during fibrillation. IK1 and 
IKr density gradients in the dog PV-LAJ are found to be oppos-
ing each other.14 As recent studies have shown that these two 
currents are important in rotor dynamics and AF,12,13,34–37 the 
ionic mechanisms leading to the propensity of the PV region 
to favor rotor activity16–18 became complex. We show for the 
first time19 a clear propensity of the currents distribution in 
the PV-LAJ to attract rotors to the PVs and the dominant 

role for the IK1 dispersion over all currents, and in particular 
IKr, in determining the localization of a rotor in that area and 
open the possibility that interplay between IK1 and IKr may be 
important for the differential localization of rotors in AF.

Comparing with other recent studies, the drift toward 
low IK1 in our study is fully consistent with the simulations 
by Kneller et al.21, Comtois et al.38, and Comtois and Nattel39 
who studied the effect of artificial heterogeneity in the inward 
rectifier IK,ACh on AF dynamics. Their simulations also sug-
gest that while rotors accelerate their rotation frequency with 
increasing IK,ACh,27 the low IK,ACh regions are the ones that 
attracts rotors.21 Other studies also described rotor attractions 
to long APD regions, albeit with a sharp heterogeneities.40 
A recent study by Sekar et al.41 utilized circular monolayers 
with overexpression of IK1 either in a central circular island 
or in its periphery to show that rotors stably pivot around 
the island regardless of the relative level of IK1. In that study, 
the gradient, however, was very sharp relative to the size 
of the rotor core, and the preparation was highly symmetrical, 
which may explain why that study did not show a preferential 
anchoring of rotors to either low or high inward rectifying 
K+ current levels as observed in this and other studies.21,38,42 
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Finally, in a recent study in cardiomyocytes monolayers with 
heterogeneous IKr expression, stable rotors localized to the 
region with highest expression of IKr.37 Those stable rotors did 
not drift as in our simulations since they reside in a relatively 
uniform large region, in accordance with our simulations pre-
sented elsewhere.19

Limitations. We study a specific set of membrane kinetic 
models (CRN-K) with a Boltzmann distribution of the cur-
rent densities across the PV-LAJ preferred for extensive vali-
dation of propagation properties22,43 over a more recent and 
detailed model requiring adjustments.44,45 Experimental or 
clinical data on ionic properties and dispersion in the atria 
are scarce; we focused on the effect of reported ionic cur-
rents data for the dog. However, attraction or repulsion of 
rotors by the PVs at the PV-LAJ may be affected by factors 
other than those studied here. For example, the heterogeneity 
in the intrinsic cellular properties may have different effec-
tive heterogeneity in refractory and excitability30 depending 
on structural intercellular coupling,46 fibrosis,47 or the size 
of the medium.31,39,48,49 Further, the drift of rotors may be 
influenced by accumulations of intra- or extracellular ions, as 
has been shown to occur in AF.50 Our study ruled out that 
PV narrow funnel-like anatomy reverses the ionic-induced 
attraction to the PVs19; however, additional anatomical fac-
tors such as wall thickness,51,52 the fiber bundles,53 or fibrosis7 
may also regulate the drift of rotors, possibly even counter-
acting the drift trend caused by the ionic gradients. To miti-
gate these limitations, we focused in our study on conditions 
relevant only to paroxysmal AF, prior to any remodeling and 
fibrosis, and incorporated various possible I–V relationships 
to substantiate our conclusions regarding the IK1 dominance 
and drift prediction.19 Our study nevertheless should be 
considered only as a first step in elucidating the concept of 
heterogeneity-induced drift and needs to be tested in future 
experimental studies.

conclusions
Consistent with experimental and clinical studies on parox-
ysmal AF, simulations in an ionically heterogeneous model 
of the PV-LAJ showed rotor attraction toward the PVs. Our 
simulations suggest that IK1 heterogeneity across the PV-LAJ 
is dominant compared to other currents in conveying the drift 
direction through its effect on refractoriness and excitability.
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Abbreviations
AP: action potential
APD: action potential duration

AF: atrial fibrillation
Condition I: all currents varied spatially in the model
Condition II: all currents, except IK1, varied spatially in 

the model
Condition III: only IK1 varied spatially in the model
CRN-K: Courtemanche-Ramirez-Nattel and Kneller
CV: conduction velocity
DF: dominant frequency
dV/dtmax: maximum upstroke velocity
Gx: maximum conductance of channel x
h⋅j: the fraction of sodium channels available for 

activation
h⋅jpeak: the maximum fraction of sodium channels avail-

able for activation during a cycle
IK1: inward rectifier potassium current
IK,ACh: acetylcholine modulated inward rectifier potas-

sium current
IKr: rapid delayed rectifier potassium current
IKs: slow delayed rectifier potassium current
Ito: outward transient potassium current
INa: sodium current
ICaL: L-type calcium current
LA: left atrium
LV: left ventricle
MDP: minimum diastolic potential
PVs: pulmonary veins
PV-LAJ: LA and PV junction
RV: right ventricle
SP: singularity point. (Used to indicate the pivoting loca-

tion of a rotor)
S1, S2: two sequential stimulations at particular times 

and locations
TSP: time–space plot.
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