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 Background: The incidence rate of thyroid cancer has increased greatly during the last few decades, and highly sensitive and 
specific methods for early diagnosis and prognostic evaluation remain lacking. In this study, we investigated a 
novel approach based on microwave theory to detect thyroid cancer.

 Material/Methods: Freshly excised thyroid tissues (n=236) from 48 patients were identified as normal or malignant using histolo-
gy. Each sample was measured for effective dielectric permittivity and effective conductivity (0.5–8 GHz). The 
means of each of these parameters of the normal and malignant groups were compared.

 Results: The effective dielectric permittivities of normal and malignant thyroid tissues were 24.026±1.951 to 17.950±1.648 
and 69.782±2.734 to 57.356±1.802, respectively. Also, as a function of frequency, the effective conductivi-
ties of normal and malignant thyroid cancer were 0.8395±0.2013 to 1.8730±0.0979 and 1.8960±0.5024 to 
9.7461±0.9349 (S/m), respectively. The mean effective dielectric permittivities and effective conductivities of 
normal thyroid tissues were significantly lower than that of thyroid cancer tissues.

 Conclusions: Measuring the effective dielectric permittivity and effective conductivity of excised thyroid tissues may be a 
new and viable method to determine malignancy in thyroid cancer.
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Background

The incidence rate of thyroid cancer has increased rapidly in 
recent years, with a projected estimate for the year 2017 of 
56 870 new cases and 2010 deaths in the United States [1]. 
Conventional methods of diagnosing thyroid cancer are ul-
trasonography, fine-needle aspiration biopsy, and computed 
tomography [2], but each of these methods has limited low 
sensitivity and specificity, indeterminate results, or imposes a 
radiation hazard [3]. Therefore, early diagnosis of thyroid can-
cer remains a challenge, with many patients undergoing sur-
gical resection for what eventually proves to be a benign con-
dition. Improving the accuracy of early diagnosis of thyroid 
cancer could reduce the number of unnecessary procedures. 
New, non-invasive diagnostic approaches with higher sensi-
tivity and specificity are urgently needed.

Microwaves are alternating current in the frequency range of 
300 MHz to 300 GHz [4]. This frequency range is especially 
useful for biomedical detection and treatment, being a com-
promise between the demands for shallow penetration and 
high spatial resolution. Previous studies have investigated the 
dielectric properties of microwaves for the ability to differenti-
ate normal and malignant breast [5–7], cervical neoplasia [8], 
prostate [9], and bladder [10] tissues. However, for the thyroid, 
the investigated dielectric spectrum has included frequencies 
only in the KHz or several MHz range [11,12]. The prospective 
study of Stojadinovic et al. [13] measured the electrical imped-
ance spectroscopy of thyroid nodules from 50 to 20 000 Hz, 
and reported that the positive and negative predictive values 
of malignant thyroid nodules were 83% and 79%, respectively. 
Despite the safety, ease of use, and possible diagnostic value 
of using this technique to differentiate various thyroid tissue 
types, the accuracy and robustness remain low.

Because microwave frequencies are non-ionizing and exhib-
it reasonable penetration, diagnostic methods in thyroid can-
cer based on differences in dielectric properties may be both 
achievable and harmless. It is reasonable to suppose that mi-
crowaves may even be suitable for mass surveys for thyroid 
cancer. However, available data regarding thyroid tissue with-
in the microwave band is almost nil.

To determine whether microwave parameters have poten-
tial diagnostic value in thyroid cancer, the present large-scale 
study investigated the dielectric properties of freshly excised 
thyroid tissues, comparing groups of normal and malignant 
tissues as determined by pathology.

Material and Methods

Object of study

The Ethics Committee of Sichuan Provincial People’s Hospital 
approved this study. The study sample included 236 freshly 
excised thyroid tissues obtained from 48 patients undergoing 
thyroidectomy at Sichuan Provincial People’s Hospital. All the 
specimens were stored in heated, sealed, and insulated con-
tainers to minimize desiccation, and were transported to the 
measurement location.

Pathological examination

The pathological examination was performed in accordance 
with the hospital’s standard protocol. Typically, a pathologist 
paged one of the engineers responsible for conducting the 
measurements as soon as the specimens arrived. To confirm 
the histological type, samples were stained with hematoxy-
lin and eosin (H&E). Within 2 h, the microwave parameters of 
the samples from the pathology department were measured, 
as described below.

Original data acquisition

After H&E staining, the pathologist assisted us to cut 1 piece 
off each specimen, with the following shape criteria: with at 
least 1 side approximately flat (to avoid an air gap between 
the sample and the aperture of the coaxial line), and a mini-
mum square area of the flat side at least 5–6 times that of the 
coaxial aperture. Since the aperture was ~10.2 mm2, the edg-
es of the square flat face were >7.8 mm. In addition, the min-
imum thickness of the tissue sample from the chosen side to 
the opposite side was >2 mm [14–17].

To obtain the scattering (S) microwave parameter of each sam-
ple (i.e., S1, S2… Sn), a coaxial probe was connected to a Vector 
Network Analyzer (VNA, Rohde & Schwarz R&S; Figure 1). The 
reference parameter S0 was measured when the probe was 
open to the air. All the frequency bands of the S-parameters 
ranged from 0.5 GHz to 8 GHz.

Data de-embedding

Using the VNA, the first step was calibration for the point be-
tween the VNA and the coaxial probe. The S-parameters (S1, 
S2… Sn) were saved to ASCII files (*.CSV) using the viewer soft-
ware of the VNA (ZVH viewer, R&S, version V1.44). The ASCII 
files were imported into MATLAB (version 2014A). S1, S2… Sn 
were subtracted from the reference S0 to calibrate and remove 
information related to the coaxial probe. After de-embedding 
the data in this way, the S-parameters of the samples were 
exported into SNP files.
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Modeling

In microwave theory, any material that can transport electro-
magnetic fields can transmit microwaves. We modeled the cells 
of the samples as a series of transmission lines (Figure 2), with 
n number of cells (in this case n=2, 4, or 8). The components in-
ductance (L) and capacitance (C) represent energy storage, and 
resistance (R) and conductance (G) constitute energy loss [4].

Modeling entailed importing the SNP files into the Advanced 
Design System (Agilent Technologies, Version 2015), in which 
a transmission line was designed to fit the S-parameter from 
each SNP File. The L, C, R, and G values for each sample are 
then recorded.

Measurement results

When we obtained the values of the model parameters, we 
applied the following formulations from microwave theory: 
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Statistical analysis

All data were analyzed using SPSS 13.0 software (SPSS, Chicago, 
IL, USA). Measured data are depicted as mean ± standard devi-
ation and compared by multivariate repeated-measures anal-
ysis of variance. A statistical difference of P<0.05 was consid-
ered significant.

Results

Histology-based group criteria

We categorized the tissue groups as normal or malignant based 
on the WHO classification criteria applied to the histology slides.

To minimize uncertainty when determining the composition 
of tissues within the probe’s sensing volume, we established 
the criteria for categorizing tissue groups based on histolo-
gy slides (Figure 3). We had a histopathologic diagnosis of 
138 pieces of normal tissues and 98 pieces of papillary thy-
roid cancer conducted by 2 experienced pathologists. The di-
agnosis was made according to the NCCN Clinical Practice 
Guidelines in Oncology.

Effective dielectric permittivity and effective conductivity 
of normal thyroid tissue and thyroid cancer as a function 
of frequency

The mean effective dielectric permittivity was calculated as a 
function of frequency for both normal and malignant thyroid 
tissues (Figure 4A, 4B, respectively). From 0.5 to 8 GHz, the 

PC VNA SamplesCoaxial probe

Figure 1. Schematic of measuring system.

L/n R/n

C/n G/n

Figure 2. One cell of the transmission line model.
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effective dielectric permittivity of normal thyroid tissues var-
ied from 24.026±1.951 to 17.950±1.648, and that of thyroid 
cancer from 69.782±2.734 to 57.356±1.802. These variations 
in the effective dielectric permittivity differed significantly be-
tween the normal and cancer tissues (P<0.05).

The mean effective conductivity was also calculated as a func-
tion of frequency for both normal and malignant thyroid tis-
sues (Figure 4C, 4D, respectively). From 0.5 to 8 GHz, the ef-
fective conductivity of normal thyroid tissues varied from 
0.8395±0.2013 to 1.8730±0.0979 S/m, and that of thyroid 

A B

Figure 3.  H&E staining of (A) normal thyroid tissue, (B) papillary thyroid cancer.

Figure 4.  Dielectric constant or effective conductivity as a function of frequency. (A, B) Dielectric constant of (A) normal thyroid tissue 
and (B) thyroid cancer. (C, D) Effective conductivity of (C) normal thyroid tissue and (D) thyroid cancer (201 sample points).
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cancer from 1.8960±0.5024 to 9.7461±0.9349 S/m. These vari-
ations in the effective conductivity differed significantly be-
tween the normal and cancer tissues (P<0.05).

To be more specific, the microwave parameters of 2 thyroid 
tissue types at low (0.5 GHz), middle (2GHz, 4GHz, 6GHz), 
and high (8 GHz) frequencies were described and compared 
(Table 1). It was obvious that the effective dielectric permit-
tivity and effective conductivity of thyroid cancers significant-
ly differed from those of normal tissues at low, middle, and 
high frequencies.

Real and imaginary part of impedance of normal thyroid 
tissue and thyroid cancer

The real and imaginary part of impedance of 2 thyroid tis-
sue types at low (0.5 GHz), middle (2GHz, 4GHz, 6GHz), and 
high (8 GHz) frequencies were also described and compared 
(Table 1). It was obvious that real and imaginary part of im-
pedance of thyroid cancers significantly differed from those of 
normal tissues at low, middle, and high frequencies (P<0.05).

Discussion

This study investigated the feasibility of applying microwave 
theory to differentiate malignant thyroid cancer from nor-
mal thyroid tissues. The dielectric properties (effective dielec-
tric permittivity and effective conductivity) of 236 thyroid tis-
sues from 48 patients were determined. It was found that the 

normal and malignant tissues differed significantly with re-
spect to both of these parameters.

Previous relevant research has sought to differentiate normal 
and malignant cells based on differences in proliferation, cy-
toskeleton, metabolism, and other functional categories. It is 
believed that the electrical properties of cells vary as a result 
of these differences [18, 19]. A previous report [20] showed 
that electrical impedance signal features were useful to dis-
tinguish between malignant and benign thyroid nodules. In 
the present study, we also investigated the real part and the 
imaginary part of complex microwave impedance of 2 thyroid 
tissue types at low (0.5 GHz), middle (2GHz, 4GHz, 6GHz), and 
high (8 GHz) frequencies and found that there were significant 
differences in all 3 kinds of frequencies. When only P values 
were taken into account, there seemed to be no significant 
difference between impedance and permittivity and conduc-
tivity, but there were some differences in physical significance. 
Impedance is defined as the frequency domain ratio of the 
voltage to the current. In KHz and MHz frequency bands, it is 
not hard to define and measure the voltage and current; thus, 
the impedance is more convenience to use. Therefore, the fre-
quencies used in most previously published papers using im-
pedance for thyroid cancer diagnosis have been in the KHz or 
MHz range [11,12,20], but in the GHz band, theories and in-
struments only focus on the electromagnetic wave. Thus, the 
voltage and current are difficult to define, so we chose per-
mittivity and conductivity, which are macroscopic manifesta-
tions of microscopic physical mechanisms and are more com-
prehensive and convenient to use. However, there are no data 

0.5 GHz 2 GHz 4 GHz 6 GHz 8 GHz

eeff

Normal 24.026±1.951 22.040±1.852 19.919±1.746 18.550±1.677 17.950±1.648

Cancer 69.782±2.734 65.716±2.429 61.379±2.103 58.581±1.894 57.356±1.802

P 0.0003 0.0002 0.0002 0.0002 0.0002

seff, (S/m)

Normal 0.840±0.201 1.178±0.195 1.538±0.174 1.771±0.142 1.873±0.098

Cancer 10.896±0.502 4.455±0.643 7.198±0.795 8.970±0.892 9.746±0.935

P 0.0243 0.0014 0.0009 0.0002 0.0000

Re(Z*), (W)

Normal 74.254±3.577 46.645±3.511 27.287±1.458 20.152±0.755 16.756±0.404

Cancer 30.561±0.671 23.798±1.660 12.346±0.667 8.818±0.422 7.262±0.333

P 0.0017 0.0025 0.0008 0.0001 0.0000

Im(Z*), (W)

Normal 11.392±0.948 28.308±1.266 22.811±1.131 18.290±0.711 15.677±0.416

Cancer 15.749±0.287 15.958±0.571 10.968±0.508 8.300±0.368 6.971±0.303

P 0.0103 0.0009 0.0007 0.0002 0.0000

Table 1. Microwave parameters of 2 thyroid tissue types at low (0.5 GHz), middle (2 GHz, 4 GHz, 6 GHz) and high (8 GHz) frequencies.

eeff – effective dielectric permittivity; seff – effective conductivity; Re(Z*) – real part of impedance; Im(Z*) – imaginary part of im-
pedance; p – cancer group compared with normal group.

1280
Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System]  
[ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica]  
[Chemical Abstracts/CAS]

Cheng Y. et al.: 
Dielectric properties for differentiating normal and malignant thyroid tissues

© Med Sci Monit, 2018; 24: 1276-1281
CLINICAL RESEARCH

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)



in the literature related to the effective dielectric permittivi-
ty or effective conductivity. Our present results did not indi-
cate so great a fold-change between normal and malignant 
thyroid tissues. This may be due, at least partly, to the rela-
tive lack of adipose tissue surrounding the thyroid; therefore, 
there is less water and there are lower dielectric properties.

When measuring the dielectric parameters of any material, 
there must be stable and continuous contact with the dielec-
tric probe. This is easiest when the material tested is soft or 
liquid. Some probes that are suited for hard materials are not 
recommended for measuring the dielectric properties of soft-
er human tissues.

Compared to conventional diagnostic modalities such as im-
munohistochemistry, microwave detection has the advantag-
es of being fast, easy to use, and low-cost. Recently, several 
new diagnostic and treatment methods have emerged [21,22]. 
Microwave theory is very promising for early diagnosis and 
strategizing treatment in thyroid cancer, but the present study 
does have some limitations. For example, only the dielectric 
properties of normal and malignant tissues were measured, 
and we did not include a sufficient number of benign samples 
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