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ABSTRACT Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is lead-
ing to public health crises worldwide. An understanding of the pathogenesis and
the development of treatment strategies is of high interest. Recently, neutrophil
extracellular traps (NETs) have been identified as a potential driver of severe SARS-
CoV-2 infections in humans. NETs are extracellular DNA fibers released by neutro-
phils after contact with various stimuli and accumulate antimicrobial substances or
host defense peptides. When massively released, NETs are described to contribute to
immunothrombosis in acute respiratory distress syndrome and in vascular occlusions.
Based on the increasing evidence that NETs contribute to severe COVID-19 cases,
DNase treatment of COVID-19 patients to degrade NETs is widely discussed as a
potential therapeutic strategy. Here, we discuss potential detrimental effects of NETs
and their nuclease degradation, since NET fragments can boost certain bacterial
coinfections and thereby increase the severity of the disease.
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NETs AND COVID-19

The increasing severity of coronavirus disease 2019 (COVID-19) worldwide has
caused an immense pressure on the health care system and the scientific commu-

nity to find new intervention strategies. Infection with severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) has proven to initiate an exacerbated host response
in patients with severe COVID-19, which involves the massive infiltration of dysfunc-
tional mature neutrophils into the lung as a potential risk factor (1). Generally, infiltrat-
ing neutrophils have been shown to release neutrophil extracellular traps (NETs) as a
defense mechanism against invading pathogens. During the last decades, evidence
showing that NETs play a crucial role in the defense mechanisms of various verte-
brates, invertebrates, and plants has accumulated (2). NETs are extracellular fibers of
DNA with associated histones, granule proteins (e.g., myeloperoxidase or elastase), and
cationic antimicrobial peptides (3–9). They are released by activated neutrophils and
were first described as an innate immune response to entrap and kill invading bacteria
(7). Increasing knowledge demonstrates that NETs are built during various infectious
diseases, including viral infections with influenza A virus or human immunodeficiency
virus 1 (HIV-1) (10–13). In addition to having protective antimicrobial effects, aggre-
gated NETs are able to degrade proinflammatory cytokines and thus have been shown
to resolve the inflammation in gout patients (14). However, besides having protective
effects, NETs have been shown to initiate several detrimental effects directly on the
host, as described for thrombosis (15, 16), autoimmune diseases (17), acute respiratory
distress syndrome (ARDS) (18, 19), stroke (20, 21), and other diseases (22, 23), especially
when the efficient elimination of NETs is impaired (24). Furthermore, some bacteria are
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able to escape from NET structures via enhanced spreading inside the body (25), and
some bacteria are able to use products of degraded NETs as growth factors (26). The
effect of NETs on viruses is still not completely understood. However, especially for
enveloped viruses, an antiviral effect of NETs was identified (12, 27, 28). Viruses can be
bound and immobilized in NETs via electrostatic interactions of the positively charged
molecules (e.g., histones or cathelicidins) and can attach to the negatively charged viral
envelope, as was shown, for example, for influenza A virus and HIV-1 (10–12, 27, 29). In
2016, Schönrich and Raftery reviewed the mechanisms by which NETs are produced in
the context of viral infection and how this may contribute to both antiviral immunity
and immunopathology (10). Direct as well as indirect ways of NET induction by viral
infections via antiviral pattern recognition receptors (PRRs), soluble proNET mediators,
or the platelet/neutrophil axis are known. Finally, virus-induced NETs have the ability
to control the virus but also damage the host (30).

Regarding COVID-19, there is clear evidence that NETs contribute to the severity of
pathogenesis by damaging lung epithelial cells (31–33). Specific NET markers, like cell-
free DNA, myeloperoxidase DNA (MPO-DNA), and citrullinated histone H3 (Cit-H3), are
increased in sera from patients with COVID-19 compared to levels in uninfected controls
(32, 34, 35). Several studies detected NETs in vivo in COVID-19 patients in lung tissue,
blood (31, 32, 36), and tracheal aspirate fluid (31). Additionally, Mikacenic et al. have
shown that soluble NET markers are increased in the bronchoalveolar lavage fluid (BALF)
and alveolar spaces of patients with ventilator-associated pneumonia (37). The first stud-
ies demonstrated mechanistic explanations of how NETs are induced and contribute to
COVID-19 pathogenesis. It was demonstrated that viable SARS-CoV-2 induces NETs in
human neutrophils. This NET induction depends on three pathways: (i) the ROS-depend-
ent protein arginine deiminase 4 (PAD-4) pathway, (ii) the angiotensin-converting
enzyme 2 (ACE2)–serine protease axis, and (iii) virus replication (31). However, the com-
plete mechanism of how SARS-CoV-2 induces NETs has not been known until now.

Nevertheless, NETs are strongly discussed as a potential driver of ARDS and the associ-
ated immunothrombosis (32) of COVID-19-patients (38–40). Therefore, new treatment
strategies are being discussed to inhibit or destroy NETs in severe COVID-19 patients.

THERAPEUTIC DNase TREATMENT OF COVID-19 PATIENTS

The reasons why some patients exhibit severe symptoms in COVID-19 is not well
understood, and several ideas are widely discussed, including age, gender, hormones,
genetic background, or immunodeficiencies (41). In this regard, it is of interest that
detrimental effects of uncontrolled NET formation have been demonstrated by several
authors to play a role in certain diseases, e.g., lupus nephritis (42). It is well known that
the host produces DNases to keep a balance between detrimental and beneficial
effects of NETs (42). As an example, patients with DNase deficiencies are more suscepti-
ble to detrimental effects of NETs in the case of lupus nephritis (42, 43).

It seems that during severe SARS-CoV-2 infections, a balanced and immune-protec-
tive NET formation is out of control. Reasons for this may be (i) noneffective or defi-
cient host nuclease activity, (ii) massive overwhelming induction of NET formation, or
(iii) a combination of both reasons.

Several studies have focused on DNase treatments for severe COVID-19 to de-
grade NETs. Based on the described NET formation in COVID-19 patients, it is logical
to consider dornase alfa (Pulmozyme) for the treatment of severe COVID-19 ARDS
(44). Interestingly, local dornase alfa treatment was tested in a calf model after
infection with bovine respiratory syncytial virus (bRSV). Infections with bRSV lead to
airway obstruction, as in infections with RSV in humans, and NET formation was
detected in the BALF of RSV-infected infants (45). Dornase alfa treatment reduced
the NET formation in the lungs; in addition, fewer airway occlusions were detected
(46). Dornase alfa is a recombinant human DNase I that is able to degrade NETs and
cell-free DNA and thereby act mucolytic. It is commonly used in cystic fibrosis (CF)
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patients, which has led to a reduced demand for antibiotics, a reduced frequency of
CF-related symptoms, and improved lung function (47–51).

Currently, there are ongoing clinical trials with dornase in COVID-19 patients
that intend to define the impact of aerosolized intratracheal dornase alfa adminis-
tration on the severity and progression of ARDS in COVID-19 patients (52, 53). It is
speculated that dornase alfa treatment of patients might promote an improved
clearance of secretions and reduce extracellular double-stranded DNA-induced
hyperinflammation in alveoli, preventing further damage to the lungs. Weber et al.
(54) recently reported a single-center case series where dornase alfa was administered
through an in-line nebulizer system to five COVID-19 patients. Data on tolerability and
responses, including longitudinal values capturing respiratory function and inflammatory
status, were analyzed. Following nebulized in-line administration of dornase alfa with
albuterol, the fraction of inspired oxygen requirements was reduced for all five patients.
Albuterol is a bronchodilator that relaxes muscles in the airways and increases airflow to
the lungs and, thus, was used to increase the delivery of dornase alfa to the alveoli.
Overall, no drug-associated toxicities were identified in the five patients. The results pre-
sented in this case series suggest that dornase alfa will be well tolerated by critically ill
patients with COVID-19. In an experimental study, recombinant DNase I-coated polydop-
amine-poly(ethylene glycol) nanoparticulates (named long-acting DNase I) were gener-
ated, and the authors hypothesized that exogenous administration of long-acting DNase
I may suppress SARS-CoV-2-mediated neutrophil activities and the cytokine storm (55).
However, detailed clinical trials are required to formally test the dosing, safety, and effi-
cacy of dornase alfa in COVID-19 patients. Especially, it needs to be considered that
some authors describe, on the basis of in vitro-observed phenomena, that the degrada-
tion product of NETs might be even more cytotoxic than the intact NETs themselves
(56–58).

COINFECTIONS AS TRIGGERSOF SEVERE COVID-19 DISEASE?

Bacteria, e.g., Staphylococcus, Streptococcus, Haemophilus, Pseudomonas, and many
more, are well known to induce NETs (59). Thus, coinfecting agents may also contrib-
ute to massive NET induction and associated detrimental effects. The complex influ-
ence of NETs in primary viral infections with influenza A virus and secondary bacterial
coinfection with Streptococcus pneumoniae inside the ear has already been demon-
strated (60).

In this context, it has also recently been discussed if early bacterial coinfections
have an undefined impact during SARS-CoV-2 infections (61, 62). The study by
Kreitmann et al. (61) demonstrated a higher prevalence of bacterial coinfections
than of other viral infections. The main isolated pathogens were Staphylococcus
aureus, Streptococcus pneumoniae, and Haemophilus influenzae. On the other hand,
a recent systematic review and meta-analysis revealed that a low proportion
of COVID-19 patients have a bacterial coinfection compared to proportions in previ-
ous influenza pandemics (63). However, the commonest bacteria were Mycoplasma
pneumoniae, Pseudomonas aeruginosa, and Haemophilus influenzae. It was dis-
cussed by other authors that a coinfection diagnostic is complex and that antibiotic
use in COVID-19 patients is high in intensive care units (64). Therefore, the authors
concluded that coinfections in COVID-19 patients need good management and
treatment, as well as a characterization of the coinfecting agents. Table 1 summa-
rizes a list of bacterial pathogens found as coinfecting agents in COVID-19 patients.

Coinfections have been described in other pandemics in the world (like the Spanish
flu) as one reason for high numbers of deaths (65, 66), and it is very important to inves-
tigate coinfections during SARS-CoV-2 infections. Compared to 1918 to 1919, the time
of the Spanish flu, nowadays antibiotic treatments are widely used in intensive care
units. However, having in mind that we live in a time of increasing numbers of antibi-
otic-resistant bacteria, preventive antibiotic treatment of COVID-19 patients without
antibiograms should be avoided.
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In this regard, it is of high interest that we have shown in our own recent publication
that nuclease-mediated degradation of NETs promotes the growth of certain bacteria
(e.g., Actinobacillus pleuropneumoniae or Haemophilus influenzae) that use degraded NET
products as an efficient source for NAD or adenosine (26). As Haemophilus influenzae
was found in different studies as a coinfecting agent in COVID-19 patients, this phenom-
enon is of high interest. These bacteria can enhance their growth rate in the presence of
NETs that have been efficiently degraded by the host or bacterial nucleases (DNase I and
micrococcal nuclease) (Fig. 1). This effect can be diminished by inhibiting bacterial aden-
osine synthase, indicating that degraded NETs serve as a source for NAD.

NAD is an essential coenzyme for redox reactions and a substrate of NAD-consum-
ing enzymes, including ADP-ribose transferases, Sir2-related protein lysine deacety-

TABLE 1 Overview of bacteria found as coinfecting agents in COVID-19 patients and their NAD biosynthesis

Bacterial coinfection identified
in COVID-19 patients Family

Gram positive
or negative

Presence of bacteria lacking de novo
NAD biosynthesis (reference) Reference(s)

Acinetobacter baumannii Moraxellaceae Negative No 62, 63
Chlamydia spp. Chlamydiaceae Negative Yes (69) 62, 63
Enterobacter spp. Enterobacteriaceae Negative No 62, 63
Enterococcus faecium Enterococcaceae Positive No 62, 63
Haemophilus influenzae Pasteurellaceae Negative Yes (68) 61, 63
Klebsiella pneumoniae Enterobacteriaceae Negative No 62, 63
Mycoplasma pneumoniae Mycoplasmataceae Lack of a cell wall No 62, 63
Pseudomonas aeruginosa Pseudomonadaceae Negative No 63
Serratia marcescens Yersiniaceae Negative No 62, 63
Staphylococcus aureus Staphylococcaceae Positive No 61–63
Streptococcus pneumoniae Streptococcaceae Positive No 61

FIG 1 Degradation of NETs as a risk factor for severe coinfections and damage of the lung. In the
case of a severe lung infection, e.g., with SARS-CoV-2, neutrophils are activated and release NETs. The
host itself produces nucleases to eliminate and recycle NET products. Importantly, nuclease-mediated
degradation of NETs may promote the growth of certain bacteria that use degraded NET products as
an efficient source for NAD or adenosine.
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lases, and bacterial DNA ligases. Therefore, targeting NAD biosynthesis in bacterial
pathogens has been discussed for the development of antibacterial agents with poten-
tial broad-spectrum activity (67). However, some bacteria have evolved to depend
entirely on the salvage of NAD precursors from other cells; Haemophilus influenzae and
Actinobacillus pleuropneumoniae do not carry genes for a de novo pathway of NAD (68)
and belong to the group of NAD-dependent Pasteurellaceae.

Interestingly, an in vivo infection study with Actinobacillus pleuropneumoniae dem-
onstrated a significant influence of host DNase I inside the lung on the patho-histo-
logical severity of infected pigs (26). In pigs with a high number of lung lesions, a sig-
nificantly larger amount of DNase I and a smaller amount of free DNA than in
infected pigs with a low number of lung lesions were detected. These data shed light
on the detrimental effects of degraded NETs during the host immune response to
certain bacterial species that require and/or efficiently take advantage of degraded
DNA material, which has been provided by the host nucleases. As SARS-CoV-2 does
not depend on NAD and therefore does not benefit from degraded NETs, it may be
hypothesized based on the findings in COVID-19 patients that underestimated bacte-
rial infections (61) are somehow part of the severity of pathogenesis. Indeed, it may
be hypothesized that an acute COVID-19 infection induces NETs and subsequently
provides nutrients for sleeping Haemophilus influenzae cells, a starting point of a fatal
lung infection.

Whether degraded NETs also promote the growth of other bacterial pathogens,
e.g., Mycoplasma pneumoniae, Pseudomonas aeruginosa, or Chlamydiaceae, is still
not known and needs further investigations, especially for coinfections with SARS-
CoV-2.

CONCLUSION: URGENT NEED FOR ADDITIONAL RESEARCH ON NETs AND
COINFECTIONS IN COVID-19 PATHOGENESIS

On one hand, it is considered that a therapeutic nuclease treatment might be
helpful to prevent the detrimental effects of massive NET formation during COVID-
19. However, on the other hand, a nuclease treatment can impact the growth of
certain NAD-dependent pathogenic bacteria, e.g., the lung pathogen Haemophilus
influenzae, which can efficiently use degraded NETs as a growth factor (26).
Therefore, it is necessary to include a systematic bacterial diagnostic followed by
an adjusted antibiotic treatment in clinical trials with dornase alpha. As some bacte-
ria identified in COVID-19 patients are not easy to cultivate from swap and organ
samples, they may indeed be underestimated, as mentioned above. Therefore,
there is an urgent need not only for additional clinical but also for experimental in
vitro research studies focusing on bacterial coinfections in COVID-19 patients.
Follow-up problems in patients may also occur with colonizing bacteria like
Haemophilus influenzae if they benefit from degraded NETs and at the same time
develop antibiotic resistance.

Another upcoming question is “At which time point is a DNase treatment benefi-
cial or detrimental?” It is completely unknown if NET formation in early stages of
COVID-19 may be antiviral, as enveloped viruses like SARS-CoV-2 are described to
be vulnerable through NETs (10). Therefore, the effect of NETs on SARS-CoV-2 in
vitro and in vivo should be investigated more in detail, as NET induction in the early
phase of COVID-19 may prevent severe cases or help in specific groups, depending
on age, general health status, host DNase activity, and further individual character-
istics of infected people. Understanding the role of NETs in the pathogenesis of
COVID-19 seems to be a key element for identifying new treatment strategies for
severe and mild cases. More investigations of the complex host-pathogen interac-
tion during SARS-CoV-2 infections are needed to clarify the influence of conceivable
bacterial coinfections, NET formation, and DNase activity.
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