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Abstract

Countless neurodegenerative diseases are associated with perverse multiple targets of cyclic

nucleotide signalling, hastening neuronal death. Cilostazol, a phosphodiesterase-III inhibitor,

exerts neuroprotective effects against sundry models of neurotoxicity, however, its role

against Huntington’s disease (HD) has not yet been tackled. Hence, its modulatory effect on

several signalling pathways using the 3-nitropropionic acid (3-NP) model was conducted. Ani-

mals were injected with 3-NP (10 mg/kg/day, i.p) for two successive weeks with or without the

administration of cilostazol (100 mg/kg/day, p.o.). Contrary to the 3-NP effects, cilostazol

largely preserved striatal dopaminergic neurons, improved motor coordination, and enhanced

the immunohistochemical reaction of tyrosine hydroxylase enzyme. The anti-inflammatory

effect of cilostazol was documented by the pronounced reduction of the toll like receptor-4

(TLR-4) protein expression and the inflammatory cytokine IL-6, but with a marked elevation in

IL-10 striatal contents. As a consequence, cilostazol reduced IL-6 downstream signal, where

it promoted the level of suppressor of cytokine signalling 3 (SOCS3), while abated the phos-

phorylation of Janus Kinase 2 (JAK-2) and Signal transducers and activators of transcription 3

(STAT-3). Phosphorylation of the protein kinase B/glycogen synthase kinase-3β/cAMP

response element binding protein (Akt/GSK-3β/CREB) cue is another signalling pathway that

was modulated by cilostazol to further signify its anti-inflammatory and antiapoptotic capaci-

ties. The latter was associated with a reduction in the caspase-3 expression assessed by

immunohistochemical assay. In conclusion the present study provided a new insight into the

possible mechanisms by which cilostazol possesses neuroprotective properties. These inter-

secting mechanisms involve the interference between TLR-4, IL-6-IL-10/JAK-2/STAT-3/

SOCS-3, and Akt/GSK-3β/CREB signalling pathways.

Introduction

One of the progressive neurodegenerative disorders is the Huntington’s disease (HD), which is

an autosomal inherited disease that targets mainly the striatum. [1]. Psychiatric disturbances,

cognitive debility, as well as waning of motor function are the triad that signifies the clinical
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pathological changes in HD [2]. The 3-nitropropionic acid (3-NP) is an irreversible inhibitor

of succinate dehydrogenase (SDH), a mitochondrial complex II enzyme, responsible for the

oxidation of succinate to fumarate in the Kreb’s cycle. In turn, it hinders the electron transport

in the oxidative phosphorylation flow and impairs mitochondrial function, hence, resulting in

a decrease in ATP levels and oxidative burst, events that integrate to cause neuronal injury

[3,4]. 3-NP closely simulates many of the neuropathological and behavioral features of HD;

hence, 3-NP treated rodents provided a relevant model to examine possible treatments for HD

[5]. More interestingly, repeated administration of 3-NP at low doses provokes motor alter-

ation from hyperactivity to hypoactivity depicting the progression from chorea to a parkinso-

nian-like syndrome in human[6].

The level of cyclic adenosine monophosphate (cAMP) decreases in various neuropathologi-

cal conditions [7–9] and aggravation of neuroinflammatory processes in neurodegenerative

diseases was robustly correlated with aberrant cAMP signalling, possibly originating from

abnormal PDEs expression [10]. The study of cyclic nucleotide signalling in the last decades

has revealed a stunning complexity and may exploit several cellular pathways [11].

Cilostazol, a type III phosphodiesterase inhibitor, increases intracellular cAMP levels; the

drug was approved by the Food and Drug Administration for the treatment of intermittent

claudication, besides, its principal actions including inhibition of platelet aggregation, antith-

rombotic action in cerebral ischemia, and vasodilation mediated by the increased cAMP levels

[12]. Cilostazol has been shown in a multicenter, randomized, and double-blind clinical trial

to provide a considerable risk reduction in patients with recurrent cerebral infarction [13].

Several in vivo studies revealed that cilostazol may be a powerful candidate to protect against

brain lesions and cognitive impairment associated with chronic cerebral hypoperfusion and

focal cerebral ischemia [14–19].

Based on the previous background, the present study was conducted to investigate the

potential of cilostazol on the striatal neuropathological as well as behavioural derangements

induced by 3-NP in rats. It also extended to explore some of the possibly integrating signalling

cues that could offer neuroprotection against 3-NP model.

Material and methods

Ethics statement

This study was carried out in strict accordance with the recommendations in the Guide for the

Care and Use of Laboratory Animals of the National Institutes of Health (NIH publication

No.85-23, 1996). The protocol was reviewed and approved by the Ethics Research Committee

of Faculty of Pharmacy, Cairo University (PT: 2052). All efforts were exerted to minimize ani-

mal suffering during the experimental period. Where, the duration of the experiment was as

short as possible, the number of animals was kept to a minimum and all animals were sacri-

ficed by decapitation under light anaesthesia.

Animals

Adult male Wistar rats (150 ± 20 g) were obtained from National Research Centre (NRC, Giza,

Egypt). Animals were allowed to acclimatize in the animal facility of Faculty of Pharmacy

(Cairo University) for one week prior to starting any experimental procedure. Rats were

allowed free access to standard chow pellet and water ad libitum and were kept under con-

trolled environmental conditions (constant temperature of 23±2˚C, humidity of 60±10%, and

light/dark (12/12 h) cycle with lights on at 6:00 am). All behavioural tests were carried out in a

sound isolated laboratory.

Cilostazol improves Huntington’s model via different pathways
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Experimental design

Rats were divided randomly into 4 groups (n = 12); group 1 represents the normal control

group and animals received saline, while group 2 depicts cilostazol (Otsuka pharmaceutical

Co. S.A.E, Cairo, Egypt) normal treated group and rats were gavaged cilostazol orally (100 mg/

kg/day [20]). In groups 3 and 4, rats were injected daily with 3-NP (Sigma-Aldrich, MO, US;

10 mg/kg, i.p; [21]) without and with cilostazol for 14 days to serve as the HD model and the

cilostazol treated groups, respectively. On the last day of the experiment, rats were evaluated

for behavioural tests, then sacrificed and the striata were collected for biochemical, western

blot, and immunohistochemical analysis.

Behavioural tests

Twenty-four hours after the last dose of treatments, rats were screened for motor performance

using manual gait analysis, pole, and cylinder tests.

Manual gait analysis. This experiment was adopted from previous 6-hydroxydopamine-

lesioned rat model [22,23] to assess the 3-NP-induced sensorimotor dysfunction. The experi-

ment assessed both stride length (distance cut in centimetres by one foot through the gait cycle

using 3 hind paw strides when the animal moves at constant pace; [23]) and stride width

(mean of side-to-side distance between the two hind paws in three consecutive strides; [24]).

At the beginning of experiment and before injecting 3-NP, rats were trained to cross directly

into their home via a horizontal path; afterwards the hind limbs were immersed in a non-toxic

paint (Crayola LLC, NY, USA), and the animals were allowed to travel the corridor to their

home cage on a piece of paper.

Pole test. Muscle rigidity and postural instability were assessed by this test, by placing

each rat, head-up, on top of a wooden pole (69 cm long, 8–10 cm in diameter) that was placed

in the home cage. The time required for each animal to descend down the pole to the ground

was determined and the mean time of 5 trials for each rat was calculated [25].

Cylinder test. Rats were placed in a clear plexiglass cylinder (height/diameter = 30/20 cm)

and video recorded for 5 min. When the animal raises forelimbs above shoulder level and

touches the cylinder wall with either one or both forelimbs, this is considered as a rear. Addi-

tionally, rat must remove both forelimbs from the cylinder wall and touch the cylinder base

before another rear was scored. Hence, total rearing time, in addition to rearing frequency in 5

minutes were determined [26,27].

Striatal processing

After behavioural testing, all animals were sacrificed by decapitation under thiopental sodium

(5 mg/kg) anaesthesia [28]. Brains were rapidly dissected out and the striata were isolated and

stored at -80˚C. The right striata of 8 animals were homogenized in radioimmunoprecipitation

assay (RIPA) buffer (50 mM Tris HCl, pH 8, 150 mM NaCl, 1% Triton X-100, 0.5% sodium

deoxycholate and 0.1% SDS) provided with protease inhibitor cocktail and used for the estima-

tion of phosphorylated cAMP response element binding protein (p-S133 CREB), p-S473 Akt,

and toll like receptor (TLR)-4. The left striata of the previous 8 rats were homogenized in ice

cold phosphate buffer saline (PBS; pH = 7.4) and used for the ELISA determination of interleu-

kin (IL)-6, IL-10, nuclear factor kappa B (NF-κB) p65, phosphorylated glycogen synthase

kinase-3 β (p-S9 GSK-3β), Janus Kinase 2 (p-Y1007/1008 JAK-2), signal transducers and acti-

vators of transcription (p-Y705 STAT-3) and suppressor of cytokine signalling 3 (SOCS3) in

addition to, caspase-3 activity. These parameters were normalized to protein content, mea-

sured according to Bradford [29]. The striata of the remaining 4 rats were used to determine
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the immunohistochemical protein expression of tyrosine hydroxylase (TH) and caspase-3,

besides the histopathological assessment.

Quantification of striatal NF-κB p65, IL-6, IL-10, pY1007/1008 JAK-2, pY705 STAT3,

SOCS3, and pS9 GSK-3β by ELISA technique. The following parameters were assessed

using the corresponding ELISA kit with the source and catalogue number mentioned in paren-

thesis. Striatal NF-κB p65 (MyBioSource; CA, USA; cat# MBS261874) IL-6 (RayBiotech; Geor-

gia, USA; cat# ELR-IL6); IL-10 (R&D; Minneapolis, USA; cat# R1000); p-Y1007/1008 JAK-2

(Invitrogen; CA, USA; cat# KHO5621); p-Y705 STAT-3 (Creative Diagnostics; NY, USA; cat#

DEIA4233); and SOCS3 (MyBiosource; CA, USA; cat# MBS2515983); p-S9 GSK-3β (LifeSpan

BioSciences, Inc.; Seattle, WA, USA; cat# LS-F1521). All the procedures were performed

according to the manufacturers’ instructions.

Assessment of p-S133 CREB, p-S473 Akt, and TLR4 by Western Blot technique. Fol-

lowing striatal protein quantification (Bio-Rad Protein Assay Kit, CA, USA), 10 μg proteins of

each sample were separated by SDS polyacrylamide gel electrophoresis and transferred to a

nitrocellulose membrane using a semi-dry transfer apparatus (Bio-Rad, CA, USA). Mem-

branes were then soaked in 5% non-fat dry milk to block non-specific binding sites. Afterward,

the membrane was incubated with anti- p-S133 CREB (1:250; cat#: PA1-851B), anti- pS473

Akt (1:100; cat#: OMA1-03061) and anti-TLR4 (1:100; cat#: MA5-16216) polyclonal antibody

(ThermoFisher Scientific, MA, USA) overnight at 4˚C on a roller shaker. Next, membranes

were probed with horseradish peroxidase-conjugated goat anti-rat immunoglobulin (Dianova,

Hamburg, Germany). Finally, the blots were developed with enhanced chemiluminescence

detection reagent (Amersham Biosciences, IL, USA). Protein was quantified by densitometric

analysis using a scanning laser densitometer (GS-800 system, Bio-Rad, CA, USA). Results were

expressed as arbitrary units (AU) after normalization for β-actin protein expression.

Immunohistochemical assay of tyrosine hydroxylase (TH) and caspase-3. For immu-

nohistochemical examination, striatal tissues were fixed in 10% neutral buffered formalin

overnight and then embedded in paraffin, to be sectioned at 4-μm thickness. The paraffin

embedded sections were deparaffinized in xylene, and hydrated by ethyl alcohol in decreasing

concentrations (100%, 95% and 70%). Antigen retrieval was achieved by heating slides (in a

200 ml Coplin jar filled with 10 mM citrate buffer) in a commercial microwave oven operating

at a frequency of 2.45 GHz and 600 W power setting. After two heating cycles of 5 minutes

each, slides were allowed to cool at room temperature and thoroughly washed in PBS (pH 7.4).

Striatal sections were stained by applying the labelled streptavidin–biotin–peroxidase method

according to the manufacturer staining protocol (Vectastain Elit ABC peroxidase kit, Vector

Laboratories, Burlingame, CA, USA). Brifly, endogenous peroxidase activity was quenched by

incubating the specimen for 5 min with 3% hydrogen peroxide. Sections were incubated with

corresponding primary antibody for TH (Biorbyt Co., Cambridge, UK; cat#:orb43362) and

caspase-3 (Abcam Co., Cambridge, UK;cat#:ab184787) at 4˚C overnight. After conjugation

with streptavidin–biotin–peroxidase complex, colouring was performed with 3, 30-diamino-

benzidine substrate-chromogen and hematoxylin was used for counter staining the reacted

caspase-3 (1:100) and TH (1:100) antibodies. Microscopical examination was performed and

five serial fields were captured at 400× magnification and the intensity of reaction into striatal

area for each antibody among different groups was determined using Leica Application Suite

imaging software (Leica Microsystems, Germany).

Determination of caspase-3 activity. Caspase-3 activity was estimated using a colorimet-

ric assay kit (R&D Systems, Inc., USA; cat#: BF3100). The results were expressed as fold

increase in optical density relative to the normal group.

Cilostazol improves Huntington’s model via different pathways
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Histopathological analysis

The paraffin embedded slides were stained using H&E stain for histopathological evaluation.

Neuronal cells stained with H&E were viewed and the striatal neurons were outlined, then the

pathological changes in striatum were examined at high power (×400 magnification) in each

group. In H & E staining, each section was assigned a damage score between 0 and 3 for each

of five parameters, namely, necrosis of neurons, neurophagia, cellular edema, congestion of

blood vessels and focal gliosis. The scores for the five parameters measured for each rat were

summed to obtain the “total histology score”, being maximally 15 (three being the maximum

for the five parameters examined). An experienced pathologist who was blinded to the experi-

ment groups performed all histopathological examinations.

Statistical analysis

Data are expressed as means ± SEM. GraphPad Prism1 software package, version 6 (Graph-

Pad Software Inc., CA, USA) was used to carry out all statistical tests. For parametric analysis,

multiple comparisons were performed using one way analysis of variance (ANOVA) test fol-

lowed by Tukey’s Multiple Comparison test. For non-parametric data, one-way analysis of var-

iance test (Kruskel-Wallis Test) followed by Dunn’s multiple comparisons test were used.

P<0.05 was set as the significance limit for all comparison.

Results

Groups treated with cilostazol alone without 3-NP injections showed no significant difference

as compared to the normal control group, thus, all comparisons were carried against the nor-

mal control group.

Cilostazol ameliorated 3-NP-induced neurobehavioral derangements

Fig 1 highlights the 3-NP-induced behavioural abnormalities. Using the manual gait test,

3-NP injection suppressed locomotion and motor coordination evidenced by the (A) increased

stride width along with a shortening of the (B) stride length. However, concomitant adminis-

tration of cilostazol improved muscle coordination and hindered the 3-NP effect significantly.

Additionally, using the cylindrical test 3-NP-lesioned animals exhibited a progressive decrease

in the (C) rearing time and (D) rearing frequency (rearing/5 min) in comparison to normal

control group. Treatment with cilostazol, on the other hand, increased both the number and

time of rearing significantly compared to 3-NP group. Finally, results of the pole test revealed

that insulted rats showed a significant decrease in (E) T−total compared to normal group,

whereas cilostazol reverted the 3-NP effect.

Cilostazol alleviated 3-NP-induced alternations in tyrosine hydroxylase

(TH) and caspase-3

The deficit motor performance observed after 3-NP treatment was associated with a reduction

in the optical density of striatal TH antibody immuno-reactivity as compared to normal group

(Fig 2). Simultaneously, 3-NP-insulted rats exhibited an upsurge in caspase-3 expression as

shown by immunohistochemical assay as well as caspase-3 activity to reach 4 fold the normal

group (Fig 3).

Nevertheless, co-administration of cilostazol protected striatal neuronal cells from degener-

ative apoptotic death as it suppressed both the expression and the activity of pro-apoptotic pro-

tein caspase-3 and consequently preserved dopaminergic neurons as shown by increased

immunostaining density of striatal TH as compared to 3-NP control group.
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Cilostazol modulated the striatal contents of IL-6, IL-10, NF-κB p65 and

TLR-4

Untreated rats with 3-NP insult (Fig 4) showed a marked elevation in (A) TLR-4, (B) NF-κB

p65 and (C) IL-6, along with a significant fall in the (D) IL-10 content. Conversely, presence of

cilostazol impeded the 3-NP action, as it heightened the anti-inflammatory cytokine IL-10,

while reduced NF-κB p65, IL-6 and TLR-4.

Cilostazol enhanced the striatal p-(S473) Akt, p-(S9) GSK-3β, and p-(S133)

CREB

As depicted in Fig 5, 3-NP abated the striatal (A) p-GSK-3β, as well as the protein expression

of (B) p-Akt and (C) p-CREB, as compared to normal control group. On the other hand, cilos-

tazol increased the phosphorylation of the three signalling molecules, as compared to 3-NP-

lesioned rats.

Fig 1. Effect of cilostazol (100 mg/kg, p.o) on (A) stride width, (B) stride length, (C) rearing time, (D) rearing

frequency, and (E) T−total in 3-NP-treated rats. Non-parametric data are presented as median (max-min) using

Kruskel–Wallis test followed by Dunn’s as a post-hoc test. Parametric data are presented as mean ± SEM. Statistical

analysis was performed using one-way ANOVA followed by Tukey’s Multiple Comparison. a Significantly different

from normal group at P<0.05, b Significantly different from 3-NP- treated group at P<0.05.

https://doi.org/10.1371/journal.pone.0203837.g001
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Cilostazol modulated the striatal contents of p-(Y1007/1008) JAK-2, p-

(Y705) STAT3, and SOCS3

Fig 6 demonstrated that 3-NP boosted striatal (A) p-JAK-2 and its downstream (B) p-STAT3,

effects that were paralleled by an increase in (C) SOCS3 content, as compared to normal con-

trol group. Contrariwise, the coadministration of cilostazol suppressed both p-JAK-2 and p-

STAT3, but caused a further rise in SOCS3 content, as compared to 3-NP.

Fig 2. Effect of cilostazol (100 mg/kg, p.o) on protein expression of TH in 3-NP-treated rats. Data are presented as

mean ± SEM. Statistical analysis was performed using one-way ANOVA followed by Tukey’s Multiple Comparison. a

Significantly different from normal group at P<0.05, b Significantly different from 3-NP- treated group at P<0.05, ab

Significantly different from both normal and 3-NP- treated groups at P<0.05.

https://doi.org/10.1371/journal.pone.0203837.g002

Fig 3. Effect of cilostazol (100 mg/kg, p.o) on (A) protein expression and (B) activity of caspase-3 in 3-NP-treated

rats. Caspase-3 protein expression is presented as mean ± SEM and caspase-3 activity is presented as fold increase

relative to normal group. Statistical analysis was performed using one-way ANOVA followed by Tukey’s Multiple

Comparison. a Significantly different from normal group at P<0.05, b Significantly different from 3-NP- treated group

at P<0.05, ab Significantly different from both normal and 3-NP- treated groups at P<0.05.

https://doi.org/10.1371/journal.pone.0203837.g003
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Cilostazol-preserved neurons in striata against 3-NP-induced degeneration

Histopathological photomicrographs (Fig 7) show that (C) 3-NP section caused a significant

neuronal damage compared to sections of the normal (A) saline and (B) cilostazol groups.

Fig 4. Effect of cilostazol (100 mg/kg, p.o) on striatal protein expression/contents of (A) TLR-4, (B) NF-κB p65,

(C) IL-6, and (D) IL-10 in 3-NP-treated rats. Data are presented as mean ± SEM. Statistical analysis was performed

using one-way ANOVA followed by Tukey’s Multiple Comparison. a Significantly different from normal group at

P<0.05, b Significantly different from 3-NP- treated group at P<0.05, ab Significantly different from both normal and

3-NP- treated groups at P<0.05.

https://doi.org/10.1371/journal.pone.0203837.g004

Fig 5. Effect of cilostazol (100 mg/kg, p.o) on striatal protein expression/contents of (A) p-GSK-3β, (B) p-Akt,

and (C) p-CREB in 3-NP-treated rats. Data are presented as mean ± SEM. Statistical analysis was performed using

one-way ANOVA followed by Tukey’s Multiple Comparison. a Significantly different from normal group at P<0.05, b

Significantly different from 3-NP- treated group at P<0.05, ab Significantly different from both normal and 3-NP-

treated groups at P<0.05.

https://doi.org/10.1371/journal.pone.0203837.g005
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3-NP resulted in (C) severe neuronal necrosis and neuronophagia, (D) focal gliosis, and (E)

cellular edema with congested blood capillaries. The total histology score was markedly

increased in rats with 3-NP insults (G). On the other hand, co-administration of cilostazol

Fig 6. Effect of cilostazol (100 mg/kg, p.o) on striatal contents of (A) p-JAK-2, (B) p-STAT-3, and (C) SOCS3 in

3-NP treated rats. Data are presented as mean ± SEM. Statistical analysis was performed using one-way ANOVA

followed by Tukey’s Multiple Comparison. a Significantly different from normal group at P<0.05, b Significantly

different from 3-NP- treated group at P<0.05, ab Significantly different from both normal and 3-NP- treated groups at

P<0.05.

https://doi.org/10.1371/journal.pone.0203837.g006

Fig 7. Effect of cilostazol (100 mg/kg, p.o) on striatal histopathological photomicrographs in 3-NP-treated rats.

Sections A and B show normal neuronal structure of rats receiving saline and cilostazol, respectively. Section of (C)

3-NP treated group show a significant neuronal damage with severe neuronal necrosis and neuronophagia, (D) focal

gliosis, and (E) cellular edema with congested blood capillaries. However, section of (F) cilostazol treated group show

an improvement in histopathological changes induced by 3-NP, except for mild cellular edema. (G) Total histology

score, data are expressed as box plots of the median of 6 animals. Statistical analysis was done using Kruskal-Wallis test

followed by Dunn’s test. a Significantly different from normal group at P<0.05, b Significantly different from 3-NP-

treated group at P<0.05.

https://doi.org/10.1371/journal.pone.0203837.g007
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resulted in a prominent decrease in total histology score (G) as well as improvement in histo-

pathological changes induced by 3-NP, except for mild cellular edema (F).

Discussion

The present study highlighted the potential neuroprotective effect of cilostazol, the phosphodi-

esterase III inhibitor, in a 3-NP-induced HD model. Cilostazol strongly ameliorated 3-NP-

induced neuro-inflammation and striatal degeneration. It amended the 3-NP-induced lesions

in the striatal dopaminergic neurons as evidenced by the increased protein expression of TH

along with the marked improvement in histopathological changes. These restorations were

reflected on the functional tests, where cilostazol enhanced neurobehavioral performance

(locomotor activity, motor coordination, muscle rigidity, and postural stability) as well. The

present study shed light on some of the multiple downstream signalling targets of cyclic nucle-

otide that may account for the cilostazol neuroprotective effects.

Cilostazol signified its anti-inflammatory effect by suppressing the inflammatory event

resulting from the 3-NP-induced elevation in NF-κB p65, IL-6, and TLR-4 protein expression.

Indeed, the inflammatory cascades provoked as a response to many types of brain insults are

pivotal to control and counteract detrimental effects on neurons. However, severe or chronic

inflammation, can itself damage neurons due to the excessive activation of astrocytes and

microglia via the utilization of TLRs [30,31]. These receptors recognize damage-associated

molecular patterns and mediate host-inflammatory responses to injury through the activation

of transcription factors, such as NF-κB p65, as shown herein, with the subsequent production

of pro-inflammatory cytokines, as IL-6, TNF-α and IL-1β [32,33].

The upregulation of TLR-4 expression has been reported in Parkinson’s disease and multiple

systems atrophy post-mortem brain tissue, suggesting clinical relevance of TLR-4 in the progres-

sion of many widespread neurodegenerative diseases [34,35]. Moreover, chronic or excessive

activation of glia by IL-6 is a common denominator in neuronal loss in several neurodegenera-

tive diseases [36]. In the present study, injection of 3-NP markedly increased the striatal IL-6,

which in turn increases TLR-4, these results concur with that of Tamandl et al. [37] who showed

that IL-6 upregulated TLR-4 resulting in hyper-responsiveness to lipopolysaccharides (LPS). The

anti-inflammatory effect of cilostazol can be attributed partly to the inhibition of the key inflam-

matory transcription factor NF-κB p65 that entails its downstream cytokines as reported herein

and previously [38]. In support to the current findings, Park et al. [39] reported that cilostazol

was able to suppress the expression of TLR-4 along with cytokine production in macrophages

from patients with rheumatoid arthritis.

Apart from abating the inflammatory mediators, cilostazol spared the anti-inflammatory

cytokine IL-10 possibly by the phosphorylation/inactivation of GSK-3β. In fact, GSK3β, a cru-

cial modulator of innate inflammatory processes, potently suppresses the production of the

cytokine IL-10, while concurrently augments the production of pro-inflammatory cytokines in

response to TLR-4 signalling pathway [40,41]. Additionally, cilostazol has activated/ phosphor-

ylated protein kinase B (PKB or Akt) and the downstream molecule CREB besides GSK-3 β to

pin down its anti-inflammatory character and to concur with previous studies in different

models [42,43]. Ample evidence have emphasized the neuroprotective effect of p-Akt/p-GSK-

3β in different models of neurotoxicity in rats [44–46]. Therefore, the ability of 3-NP to reduce

the phosphorylated forms of the Akt/GSK-3β/CREB cue certified the occurrence of inflamma-

tory milieu to highlight the role of neuro-inflammation in the progression of 3-NP-induced

striatal degeneration, as confirmed herein and reported earlier [6,47]. Cilostazol-mediated

activation of Akt is responsible for the current inactivation/ phosphorylation of GSK-3β at the

serine site to match previous work [48] and to endorse the activation of many downstream
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transcription factors, such as CREB [49]. This can provide a molecular understanding of how

GSK-3β inactivation promotes an anti-inflammatory immune response after TLR activation.

Inactive/phosphorylated GSK-3β enhances CREB association with CREB binding protein

(CBP), while reducing the interaction between NF-κB p65 with CBP required for its optimal

transcriptional activity [40]. A previous in vitro study[50] harmonizes with the present find-

ings, where cilostazol significantly increased the expression of p-CREB and decreased nuclear

NF-κB p65 (level and DNA binding activity). Moreover, p-CREB plays an essential role in the

production of IL-10 via binding to its promotor region to induce its transcription [51] to be

one explanation for the boosted IL-10 content.

Besides its anti-inflammatory role, p-CREB plays a role in the improved motor activity

noticed herein via increasing the gene transcription of TH as stated previously by Park et al.

[50] and as reported in our findings. In the present work, cilostazol-mediated activation of

CREB was associated also by an increase in the protein expression of TH to increase the pro-

duction of dopamine and to support the intact functional dopaminergic neurons [52].

Apart from its role in inflammation, the Akt/GSK-3β/CREB axis plays also a part in cell sur-

vival via regulating apoptosis, a cellular death type that has been involved in various neurode-

generative disorders including HD [53,54]. Activation of one or more TLRs in neurons and

glial cells increases the vulnerability of neurons to apoptosis [55]. In parallel, downregulation

of the defence signal Akt/GSK-3β promotes the neuronal death partially via suppressing CREB

activity that correlates with the expression of many survival and proliferation genes [56]. The

current immuno-histological examination along with the enzyme activity test revealed that

cilostazol markedly curbed caspase-3 activity that was enhanced in 3-NP treated rats, to

emphasize its neuroprotective potential. This effect is possibly linked to its modulatory effect

on TLR-4 expression and p-Akt/p-GSK-3β/p-CREB signalling pathway. In line with these find-

ings, earlier studies divulged that cilostazol possesses an anti-apoptotic effect via enhancing the

phosphorylation/activation of CREB and increasing the anti-apoptotic Bcl-2 in cerebral ische-

mia model [17,43] and in the white matter region after cerebral hypoperfusion [18].

In our study, the second molecular signalling pathway that was modulated by cilostazol is

the p-JAK-2/p-STAT-3/SOCS3 pathway to nail down its anti-inflammatory effect. Activation

of p-JAK-2/p-STAT-3 pathway plays a dire role in neuro-inflammatory diseases [57,58], where

upon binding to its receptor, IL-6 triggers the phosphorylation of JAK-2 with the subsequent

phosphorylation of its downstream molecule STAT-3. Dimerized p-STAT-3 molecules trans-

locate into the nucleus to augment the transcription factor NF-κB [59], a fact that adds to the

increased content of this transcription factor. Additionally, nuclear STAT-3 by binding to

DNA increases cytokine gene expression, suggesting that by activating STAT-3, IL-6 promotes

its own production in a feed-forward loop leading to sustained inflammation [60]; these events

support our results. Such inflammatory cascade induces SOCS3 to act as a negative feedback

regulator to inhibit inflammation running out of control [61]. Beurel and Jope. [62] previously

reported that during neuro-inflammation the glial production of IL-6 prerequisites a strong

integration between p-STAT-3 and active GSK-3β, where, GSK-3β was found to be crucial for

the activation of STAT3 in primary astrocytes by promoting its tyrosine phosphorylation (Y

705)[63]. Hence, the interference with either the activity of STAT-3 or GSK-3β was associated

with a marked suppression in the release of IL-6 to confirm the key role of both molecules in

promoting IL-6 production by glial cells [62].

In agreement with the previous in vitro study of Park et al. [50], cilostazol herein impeded

the 3-NP-associated elevation in IL-6/p-JAK-2/p-STAT-3 to accentuate the neuroprotective

role mediated by suppressing this cue. These data synchronize with that of Qin et al. [64], who

also underlined the beneficial effects of inhibiting JAK/STAT pathway in α-synuclein-induced

neuroinflammation and dopaminergic neurodegeneration. In what appears to be a vicious
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cycle, STAT-3 also induces the expression of TLR-4 with proposed binding sites of STAT-3 in

the TLR4 promoter region [65,66]. This could partially explain the marked increase in both

STAT-3 content and TLR-4 expression after 3-NP administration and their co-inhibition in

cilostazol treated rats.

The ability of cilostazol to dampen p-STAT-3 could be attributed to the inactivation of

GSK-3β, since GSK-3β profoundly activates STAT-3 [63]. As a compensatory response against

the inflammatory events, SOCS-3 was elevated in the 3-NP rats; however, this rise was not

enough to oppose the inflammatory upsurge in the 3-NP group. Nevertheless, concomitant

administration of cilostazol increased further the production of SOCS-3 to play its role in

quelling the inflammatory flare and to support the findings of Gaudy et al. [67], who proved

that increased cAMP induces SOCS3 to negatively regulate JAK/STAT signalling pathway.

Intriguingly, SOCS3 has a regulatory role in the function of STAT3 induced by IL-6, but not

that of IL-10 due to a different affinity of SOCS3 to the two receptors [68]. In a mutual inter-

vention, the cilostazol-induced SOCS-3 expression could indorse the production of IL-10 [69],

which in turn, can induce further the release of SOCS3 [70, 71]. In addition, the ability of cilos-

tazol to trigger PI3K/Akt/p-GSK-3β trajectory may participate in increasing IL-10 production

[72].Thus, the anti-inflammatory effect of IL-10 mediated through STAT-3 is preserved along

with that of PI3K/Akt/GSK-3β pathway, which implicated in both the production and

responses to IL-10 [72].

In conclusion, the present study highlighted the neuroprotective potential of cilostazol

against 3-NP-induced HD model via modulating the crosstalk between TLR-4, Akt/GSK-3β/

CREB and JAK-2/STAT3/SOCS-3 signalling pathways to provide a promising therapeutic tool

slowing the progression of HD.
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