
On the Learnability of Concepts

With Applications to Comparing Word Embedding
Algorithms

Adam Sutton(B) and Nello Cristianini

University of Bristol, Bristol BS8 1UB, UK
adam.sutton@bristol.ac.uk

Abstract. Word Embeddings are used widely in multiple Natural Lan-
guage Processing (NLP) applications. They are coordinates associated
with each word in a dictionary, inferred from statistical properties of
these words in a large corpus. In this paper we introduce the notion of
“concept” as a list of words that have shared semantic content. We use
this notion to analyse the learnability of certain concepts, defined as the
capability of a classifier to recognise unseen members of a concept after
training on a random subset of it. We first use this method to measure
the learnability of concepts on pretrained word embeddings. We then
develop a statistical analysis of concept learnability, based on hypothesis
testing and ROC curves, in order to compare the relative merits of vari-
ous embedding algorithms using a fixed corpora and hyper parameters.
We find that all embedding methods capture the semantic content of
those word lists, but fastText performs better than the others.

Keywords: Word embedding · Linear classifier · Concepts

1 Introduction

Word embedding is a technique used in Natural Language Processing (NLP) to
map a word to a numeric vector, in a way that semantic similarity between two
words is reflected in geometric proximity in the embedding space. This allows
NLP algorithms to keep in consideration some aspects of meaning, when pro-
cessing words. Typically word embeddings are inferred by algorithms from large
corpora based on statistical information. These are unsupervised algorithms, in
the sense no explicit information about the meaning of words is given to the
algorithm. Word embeddings are used as input to multiple downstream systems
such as text classifiers [19] or machine translations [2].

An important problem in designing word embeddings is that of evaluating
their quality, since a measure of quality can be used to compare the merits
of different algorithms, different training sets, and different parameter settings.

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
I. Maglogiannis et al. (Eds.): AIAI 2020, IFIP AICT 584, pp. 420–432, 2020.
https://doi.org/10.1007/978-3-030-49186-4_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49186-4_35&domain=pdf
https://doi.org/10.1007/978-3-030-49186-4_35

On the Learnability of Concepts 421

Importantly, it can also be used as an objective function to design new and
more effective procedures to learn embeddings from data. Currently, most word
embedding methods are trained based on statistical co-occurrence information
and are then assessed based on criteria that are different than the training ones.

Cosine similarity and euclidean distances have shown the ability to repre-
sent semantic relationships between words such as in GloVe where the vector
representations for the words man, woman, king and queen are such that [13]:

king − queen ≈ man − woman (1)

Schnabel et al. [16] identifies two families of criteria: intrinsic and extrinsic,
the first family assessing properties that a good embedding should have (eg:
analogy, similarity, etc.), the second assessing their contribution as part of a
software pipeline (eg. in machine translation).

We propose a criterion of quality for word embeddings, and then we present
a statistical methodology to compare different embeddings. The criterion would
fall under the intrinsic class of methods in the classification of Schnabel et al. [16],
and has similarities with both their coherence criterion and with their catego-
rization and relatedness criteria. However it makes use of the notion of “concept
learnability” based on statistical learning ideas. We make use of extensional def-
initions of concepts, as they have been defined by [1]. Intuitively, a concept is
a subset of the universe, and it is learnable if it is possible for an algorithm to
recognise further members after learning a random subset of its members.

The key part in this study is that of a “concept”. If the set of all words in
a corpus is called a vocabulary (which can be seen as the universe), we define
any subset of the vocabulary as a concept. We call a concept learnable if it is
possible for a learning algorithm to be trained on a random subset of its words,
and then recognise the remaining words. We argue that concept learnability
captures the essence of semantic structure, and if the list of words has been
carefully selected, vetted and validated by rigorous studies, it can provide an
objective way to measure the quality of the embedding.

In the first experiment we will measure the learnability of Linguistic Inquiry
and Word Count (LIWC) lists. We compare LIWC lists to randomly generated
word lists for popular pretrained word embeddings of three different algorithms
(GloVe [13], word2vec [10], and fastText [9]). We show that LIWC concepts are
represented in all embeddings through statistical testing.

In our second experiment we compare the learnability of different types of
embedding algorithms and settings, using a linear classifier. We compare three of
these embedding methods (GloVe [13], word2vec [10], and fastText [9]) to each
other. We use the same method as previous, however for this experiment we train
with the same hyper parameters and corpus across all three word embeddings
[20]. We show that from this experiment fastText performs the best, performing
significantly better than both word2vec and GloVe.

This study is a statistical analysis of how a given word embedding affects the
learnability of a set of concepts, and therefore how well it captures their meaning.
We report on the statistical significance of how learnable various concepts are

422 A. Sutton and N. Cristianini

under different types of embedding, demonstrating a protocol for the comparison
of different settings, data sets, algorithms. At the same time this also provides
a method to measure the semantic consistency of a given set of words, such as
those routinely used in Social Psychology, eg. in the LIWC technique.

2 Related Work

Word embedding algorithms can be generated taking advantage of the statis-
tical co-occurrence of words, assuming that words that appear together often
have a semantic relationship. Three such algorithms that take advantage of this
assumption are fastText [9], word2vec [8], and GloVe [13].

There has been a lot of work focused on providing evaluation and under-
standing for word embeddings. Schnabel et al. have looked at two schools of
evaluation; intrinsic and extrinsic [16]. Extrinsic evaluations alone are unable to
define the general quality of a word embedding. The work also shows the impact
of word frequency on results, particularly with the cosine similarity measure that
is commonly used. Intrinsic methods have also had criticisms, with Faruqui
et al. calling word similarity and word analogy tasks unsustainable and showing
issues with the method [5].

Nematzadeh et al. showed that GloVe and word2vec have similar constraints
when compared to earlier work on geometric models [11]. For example, a human
defined triangle inequality such as “asteroid” being similar to “belt” and “belt”
being similar to “buckle” are not well represented within these geometric models.

Schwarzenberg et al. have defined “Neural Vector Conceptualization” as a
method to interpret what samples from a word vector space belong to a certain
concept [17]. The method was able to better identify meaningful concepts related
to words using non linear relations (when compared to cosine similarity). This
method uses a multi class classifier with the Microsoft Concept Graph as a
knowledge base providing the labels for training.

Sommerauer and Fokkens have looked at understanding the semantic infor-
mation that has been captured by word embedding vectors [18] using concepts
provided by [3] and training binary classifiers for these concepts. Their pro-
posed method shows that using a pretrained word2vec model some properties of
words are represented within the embeddings, while others are not. For example,
functions of a word and how they interact are represented (e.g. having wheels
and being dangerous), however appearance (e.g. size and colour) are not as well
represented.

3 Methods and Resources

3.1 Embeddings

A corpus C is a collection of documents from sources such as news articles, or
Wikipedia. From C we can extract a set of words to be a vocabulary V. Each
document in C is a string of words (in which the ordering of words within the

On the Learnability of Concepts 423

document is used as part of the embedding algorithm). With a vocabulary V and
a corpus a function Φ to be defined such that Φ : V → R

d, which is mapping
every word in the vocabulary to a d dimensional vector. Word vectors from a
word embedding are commonly formalised as w.

Using an embedding method Φ, we will now define the action of going from
words in a vocabulary to an embedded space as: Φ(wordj ∈ V) = wj ∈ R

d. A
word vector for a given word will now be defined as w. Word vectors are generally
normalised to unit length for measurement in word analogy or word similarity
tasks:

ŵ =
w

||w|| (2)

3.2 Concepts

In this paper we make use of the notion of a ‘concept’ defined as any subset
of the vocabulary, that is a set of words. Sometimes we will use the expression
“list of words”, for consistency with the literature in social psychology, but we
will never make use of the order in that list, so that we effectively use “list”
as another expression for “set”, in this article. We define this as a set of words
L ⊆ V (or for an embedding a set of points in R

d such that Φ(L) ⊆ Φ(V)).
We use the word vectors from a word list to define this concept in an embed-

ding. In general, a concept is defined as any subset of a set (or a “universe”).
We would normally define a concept as an unordered list of words that have
been created, validated, and understood by humans that should be learnable by
machines. However for the purpose of this paper a concept can be defined as any
subset of words from V. This use is consistent with the Extensional Definition
of a concept used in logic, and the same definition of concept as used in the
probably approximately correct model of machine learning [1].

3.3 Linear Classification

A classifier is a function that maps elements of an input space (a universe, in
our case a vocabulary) to a classification space. A binary linear classifier is a
function that classifies vectors of a vector space Rd into two classes, as follows:

f : Rd → {0, 1}, f(x) = σ(〈x,w〉 + b) (3)

We will learn linear classifiers from data, using the Perceptron Algorithm on a
set of labeled data, which is a set of vectors labeled as belonging to class 1 or
class 0. As we will learn concepts formed by words, and linear classifiers only
operate on vectors, we will apply them to the vector space generated by the word
embedding, as follows.

A linear classifier is a simple supervised machine learning model used to
classify membership of an input. We will use a single layer perceptron with
embeddings as input to see if it is possible for a perceptron to predict half of a
word list, while being trained on its other half.

424 A. Sutton and N. Cristianini

Given a word list L such that Φ(L) ⊆ Φ(V) ⊆ R
d we will define the words

from this list as Lc = V \ L. We will use L and Lc to define a train set and test
set for our perceptron. We will first uniformly sample half of the words of L,
we will then sample in equal amount from Lc. We will then append these two
word lists to make Ltrain. To produce a test set Ltest we will take the remaining
words that haven’t been sampled from L, and sample the same number of words
again from Lc.

A member of the training set can be defined as li ∈ Φ(Ltrain). We define our
prediction function ŷ as:

ŷ = σ((
d∑

i

θili) + b) (4)

where θ and b are the training parameters of the classifier and σ is the sigmoid
function. We will then train the perceptron using the cross entropy loss function:

J = − 1
|L|

|L|∑

i

yi log ŷi + (1 − yi) log(1 − ŷi) (5)

where yi is the correct class of the training sample.

3.4 Linguistic Inquiry and Word Count

This study uses lists of words generated by the LIWC project [12], a long-running
effort in social psychology to handcraft, vet and validate lists of words of clini-
cal value to psychologists. They typically aim at capturing concerns, interests,
emotions, topics, of psychological significance. LIWC lists are well suited to an
experiment of this kind as the words within them are common and relevant to
any cross-domain corpus.

Table 1. Sample words from the LIWC word lists used in experiments

Full name Sample words List name

Positive emotions happy, pretty, good posemo

Negative emotions hate, worthless, enemy negemo

Anger processes hate, kill, pissed anger

Biological processes eat, blood, pain bio

Relativity area, bend, exit relative

Affective processes happy, ugly, bitter affect

Social processes talk, us, friend social

Work concerns work, class, boss work

Family concerns mom, brother, cousin family

Health concerns weak, heal, blind health

On the Learnability of Concepts 425

Table 1 shows samples of the ten word lists used in this study as well their
full names, and what they will be described as when used in the context of
this study. Most word lists used have hundreds of words in them. Family is the
smallest word list with a total of 54 words being used. These word samples will
used to extensionally define word lists as concepts within the embedding.

4 Measuring Performance of Linear Classifiers

We will measure the performance of a linear classifier by using the receiver
operating characteristic (ROC) curve, a quantity defined as the performance
of a binary classifier as its prediction threshold is changed between the lowest
probable prediction and its highest probable prediction. This curve plots the
True Positive Rate (also known as the Recall) and the False Positive Rate (also
known as the fall-out) at each classification threshold possible. We also show the
accuracy of the classifier, and the precision.

Our first experiment will look at the three word embedding algorithms of
GloVe, word2vec, and fastText with regards to how they perform using pre-
trained word embeddings readily available online. Our second experiment will
compare all three algorithms performance under identical conditions, with the
same training corpus and hyper parameters.

We will take the input as the embedding representations for words, and the
output being a binary classification if the word belongs to that LIWC word set
(L) or not. For the training set Ltrain, we will uniformly random sample half of
the words from the list L we are experimenting on. We will then sample an equal
number of words from Lc. For the test set Ltest we take the remaining words
from L, and again sample another equal set of negative test samples from Lc.

We repeat this method 1,000 times, and for each iteration of this test we
generate new word lists Ltrain and Ltest each time. This method of a linear
classifier has been defined in Eq. 4 and Eq. 5. This experiment is performed for
the 10 LIWC word lists listed in Table 1. We take their average across all 1,000
iterations of the experiment we performed.

4.1 Learning Concepts from GloVe, Word2vec, and FastText

In this section we will look at the ability of three different word embedding
algorithms to capture information in word lists that reflect real world concepts.

To ensure that these metrics are statistically significant, we have created a
null-hypothesis of making random concepts based on random word lists
(Lrandom) and performing the same classification task on the random concept.
We repeat this test 1000 times and take the best performance for each of the met-
rics we look at for these random lists (which will be defined as Lrandom(max)). Of
1000 tests, we hypothesise no concept defined by a random word list outperforms
any of the word lists we test on.

426 A. Sutton and N. Cristianini

Table 2. Average Performance of a Linear Classifiers using LIWC word lists on GloVe
word embeddings to identify members of its own set. Random lists are also tested to
obtain a p-value and compare performances. These embeddings perform better than
random word lists resulting in a p-value of < 0.001

L Size Accuracy Recall FPR Prec AUC

Lposemo 392 0.915 0.902 0.079 0.919 0.964

Lnegemo 492 0.913 0.913 0.085 0.915 0.965

Langer 184 0.888 0.880 0.103 0.896 0.950

Lbio 558 0.895 0.871 0.087 0.909 0.954

Lrelative 632 0.937 0.935 0.059 0.940 0.979

Laffect 908 0.910 0.906 0.085 0.914 0.962

Lsocial 396 0.906 0.887 0.075 0.922 0.962

Lwork 322 0.899 0.880 0.081 0.916 0.959

Lfamily 54 0.884 0.893 0.125 0.881 0.956

Lhealth 232 0.895 0.880 0.105 0.893 0.953

Lrandom(max) 400 0.547 0.32 0.115 0.617 0.574

Lrandom(avg) 400 0.500 0.198 0.198 0.502 0.501

GloVe. We will set GloVe to be our embedding algorithm (Φ), with the corpus
C being a collection of Wikipedia and Gigaword 5 news articles. These embed-
dings are pretrained and available online on the GloVe web-page [6]. These word
embeddings are open for anyone to use, and can be used to repeat these experi-
ments.

Table 2 shows the performance and statistics of ten different word lists from
LIWC. Lrandom(avg) shows the average performance of concepts defined from
random word lists. Lrandom(max) shows the best performing random word list
for each test statistic.

An accuracy of approximately 0.9 shows a high general performance. The
precision and recall show that these word lists are able to accurately discern
remaining members of its list and words that are not a part of the concept.
After a thousand iterations of random word lists the best performing random
lists (shown in Lrandom(max)) were performing worse than each LIWC word list,
giving a p-val of < 0.001 for each word list.

word2vec. We will use word2vec as our embedding algorithm (Φ), with the
corpus C being a dump of Wikipedia from April 2018 [22] using the conventional
skip-gram model. These embeddings are available online on the Wikipedia2Vec
web-page [22]. These word embeddings are open for anyone to use, and can be
used to repeat these experiments.

Table 3 shows the performance and statistics of ten different word lists
from LIWC while using the word2vec embedding algorithm. Lrandom(avg) and
Lrandom(max) again show the average and best performances of random word
lists.

On the Learnability of Concepts 427

Table 3. Average Performance of Linear Classifiers using LIWC word lists on word2vec
embeddings to identify members of its own set. Random lists are also tested to obtain a
p-value and compare performances. These embeddings perform better than all random
word lists resulting in a p-value of < 0.001

L Size Accuracy Recall FPR Prec AUC

Lposemo 392 0.904 0.914 0.115 0.888 0.959

Lnegemo 492 0.923 0.920 0.081 0.919 0.970

Langer 184 0.890 0.906 0.126 0.879 0.953

Lbio 558 0.890 0.901 0.120 0.882 0.954

Lrelative 632 0.911 0.952 0.135 0.876 0.963

Laffect 908 0.886 0.947 0.177 0.842 0.950

Lsocial 396 0.893 0.911 0.123 0.881 0.957

Lwork 322 0.877 0.910 0.154 0.855 0.947

Lfamily 54 0.874 0.912 0.164 0.853 0.953

Lhealth 232 0.893 0.899 0.113 0.889 0.959

Lrandom(max) 400 0.545 0.27 0.055 0.68 0.576

Lrandom(avg) 400 0.498 0.128 0.130 0.494 0.500

An accuracy of approximately 0.9 shows a high general performance,
although it performs slightly worse than GloVe’s pre-trained embeddings. This
shows that the word2vec embedding algorithm Φ applied to the corpus C yields
word vectors that represent the real world meaning of words. The AUC is
extracted from the scores of the sigmoid within the classifier. Overall word2vec
performs slightly worse than GloVe embeddings in most metrics. However while
the source corpora is very similar, GloVe has additional sources of information.
The p-values for these word lists in comparison to random word lists is again
<0.001 showing that these word lists that have a real world representation are
represented accurately within the embedding.

fastText. The third and final word embedding algorithm (Φ) we will test is fast-
Text [7]. The corpus C is a collection of Wikipedia, “UMBC WebBase corpus”
and statmt.org news [9]. These embeddings are also pretrained word embeddings
that are available from the fastText website.

Table 4 shows the performance statistics of the fastText word embeddings
using our proposed method to evaluate word embeddings. Lrandom(avg) and
Lrandom(max) show the random performance, while the other lists are LIWC
word lists and their respective performances.

A precision of 1 in the best performing random word lists are insignificant as
the recall is shown to be poor, due to predicting most samples to be negative.
The p-val of all of the word lists defined by LIWC is <0.001 as after one thousand
iterations no random list outperformed any of LIWC lists. This again means that

428 A. Sutton and N. Cristianini

Table 4. Average Performance of Linear Classifiers using LIWC word lists on fastText
embeddings to identify members of its own set. Random lists are also tested to obtain
a p-value and compare performances. These embeddings perform better than random
word lists resulting in a p-value of < 0.001

L Size Accuracy Recall FPR Prec AUC

Lposemo 392 0.928 0.925 0.068 0.931 0.977

Lnegemo 492 0.937 0.934 0.067 0.932 0.978

Langer 184 0.940 0.965 0.084 0.919 0.981

Lbio 558 0.917 0.933 0.098 0.905 0.970

Lrelative 632 0.933 0.966 0.099 0.907 0.977

Laffect 908 0.886 0.947 0.177 0.842 0.950

Lsocial 396 0.927 0.920 0.074 0.925 0.973

Lwork 322 0.918 0.914 0.077 0.922 0.970

Lfamily 54 0.966 0.975 0.041 0.960 0.995

Lhealth 232 0.931 0.940 0.078 0.924 0.980

Lrandom(max) 400 0.51 0.04 0.0 1.0 0.562

Lrandom(avg) 400 0.500 0.007 0.006 0.427 0.505

these word lists represent a real world concept, and that the embeddings are able
to capture this information of this concept by using members of the set within
the embedding to define it.

4.2 Comparing Embeddings

In this section we will be comparing the performance of the three word embed-
ding algorithms used in the previous experiment. However, for this experiment
the hyper parameters and the corpora trained will be fixed for the purpose of
direct comparison. All embeddings have been generated by ourselves using the
three word embedding algorithms word2vec (skip-gram), GloVe, and fastText.

The AUC metric we have previously shown can be viewed as a measure of
the learnability of an embedded concept. This compares the true positive rate
(also known as the recall) and the false positive rate and shows the performance
at each threshold that is possible within the classifier on for a given word lists
test set.

This AUC could be seen as the performance of that binary classifier, and also
as a measure of the quality of each embedding and a measure of the quality of
each word list. The better the performance of an embedding, the higher perceived
quality of that embedding. The better a list performs on all embeddings, the
higher the quality of that list.

To accurately compare the performance of the embedding algorithms, we
perform the same test as shown in Sect. 4.1. However we ensure that a number

On the Learnability of Concepts 429

of parameters are kept the same for each embedding, to maintain fairness. For
this test, we will ensure that the corpus used to train will be identical between
all embeddings. The corpus (C) used for all three embedding algorithms will be
a dump from the English Wikipedia taken from the first of July, 2019 [20]. The
embedding dimension d will be set to 300. A word must appear a minimum of
five times to be embedded, and the context window of all words is five.

In Table 5 we show the AUC performance of all three embedding algorithms
used in the paper. The fastText embedding algorithm is shown to have the high-
est performing embedding for 8 of the 10 lists that have been tested. Glove
performs best on two lists, and generally performs better than word2vec over-
all. These performances are consistent with previous comparisons of these word
embeddings [9,13]. The word list Lrelative is shown to have the best overall per-
formance across all three non-random embeddings, demonstrating the quality of
that list.

Table 5. AUC performance of word lists for each embedding algorithm used in these
experiments, along with the average AUC for an embedding across all lists. Bold
denotes the embedding algorithm that performs best for a given word list. Italic denotes
the best performing list for each embedding algorithm.

L GloVe word2vec fastText

Lposemo 0.961 0.929 0.965

Lnegemo 0.965 0.945 0.973

Langer 0.957 0.928 0.970

Lbio 0.960 0.935 0.974

Lrelative 0.971 0.927 0.961

Laffect 0.960 0.944 0.958

Lsocial 0.960 0.925 0.973

Lwork 0.947 0.909 0.970

Lfamily 0.948 0.864 0.963

Lhealth 0.952 0.923 0.975

Mean 0.958 0.922 0.968

Median 0.960 0.927 0.970

We tested the statistical significance of the performance differences observed
between GloVe and fastText. To this purpose we performed a Wilcoxon signed-
rank test, using the median of the AUCs from each embedding as the test statistic
[21]. We use the Wilcoxon signed-rank test as the fastText mean AUCs shown
in Table 5 do not represent a normal distribution.

We propose a null hypothesis that the median difference of fastText and
GloVe AUCs (as shown in Table 5) are 0. We use a sample size of 10 as the
difference of no pairs are equal to zero. We set our alpha to 0.01 for a one sided

430 A. Sutton and N. Cristianini

(right) tail test, where the test statistic Wcrit is 5. We find our resulting Wtest

to be 3, which leads us to reject the null hypothesis and show that fastText
outperforming GloVe is statistically significant, for the word lists that we are
testing. This gives us a p-value of 0.0088.

5 Conclusion

In this paper, we have shown that word embeddings are able to capture the
meaning of human defined word lists. We have shown the ability of embedding
algorithms in learning concepts from word lists. In particular we have shown this
quality in word2vec, GloVe and fastText. We have shown that learning embed-
dings from real data can represent real world concepts defined extensionally,
utilising word lists provided by LIWC.

We have also shown the relative performance of GloVe, fastText, and
word2vec when using LIWC word lists to form concepts using similar corpora
that derive most of their corpora from Wikipedia. fastText performs better in
the majority of situations for all word lists we have tested from LIWC, while
GloVe outperforms word2vec generally. However as all algorithms use slightly
different corpora, this result may change depending on the corpora used.

This measure of performance of word embeddings can be used in the future as
a measure of “quality” of word embeddings. While there are other methods that
look at the performance of word embeddings by evaluating their performance in
a specific task [15], our method differs in that it looks at an embeddings general
ability to understand human defined concepts. There has also been criticism of
evaluating word embeddings using only word similarity tasks [5]. This method
can also be used in another way as a measure of the quality of word lists and
their ability to accurately describe a concept, providing an assumption or proof
that an embedding is performing suitably to the users needs.

Future work with this method would involve extensive testing of the method
using with varying differing hyper parameters to see the optimal performance
of these embedding algorithms. An example of this is the impact of embedding
dimension on performance. Another experiment could be looking at the perfor-
mance of this test on deep contextualized embeddings such as ELMo [14] and
BERT [4]. These embeddings have been shown to have better performance on
many tasks that employ word embeddings. While these embeddings are opti-
mized for their specific end tasks, they train embeddings before that tuning
process takes place. There is potential to compare these embeddings by testing
the extracted embedding with a linear classifier, or fine tuning their full model
to our task. However a key benefit for sentence embeddings is the context of
words around them, which our task will not benefit from.

Further work could be focused on the performance of different word lists
and concepts within word embeddings. The benefit of this could be to validate
word lists that are not as carefully curated as LIWC word lists. These word lists
may come from different fields, as LIWC is focused on clinical psychology other
word lists may perform differently. Different source corpora may also change the

On the Learnability of Concepts 431

performance of these word lists due to the meaning of some words changing from
domain to domain.

References

1. Anthony, M., Biggs, N.: Computational Learning Theory, vol. 30. Cambridge Uni-
versity Press, Cambridge (1997)

2. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

3. Devereux, B.J., Tyler, L.K., Geertzen, J., Randall, B.: The centre for speech, lan-
guage and the brain (CSLB) concept property norms. Behav. Res. Methods 46(4),
1119–1127 (2014)

4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

5. Faruqui, M., Tsvetkov, Y., Rastogi, P., Dyer, C.: Problems with evaluation of word
embeddings using word similarity tasks. arXiv preprint arXiv:1605.02276 (2016)

6. Pennington, J., Socher, R., Manning, C.D.: Wikipedia 2014 + Gigaword 5 pre-
trained word embeddings. http://nlp.stanford.edu/data/glove.6B.zip, Accessed 07
Oct 2019

7. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759 (2016)

8. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

9. Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., Joulin, A.: Advances in pre-
training distributed word representations. In: Proceedings of the International Con-
ference on Language Resources and Evaluation, LREC 2018 (2018)

10. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in neural
information processing systems, pp. 3111–3119 (2013)

11. Nematzadeh, A., Meylan, S.C., Griffiths, T.L.: Evaluating vector-space models
of word representation, or, the unreasonable effectiveness of counting words near
other words. In: CogSci (2017)

12. Pennebaker, J.W., Francis, M.E., Booth, R.J.: Linguistic inquiry and word count:
Liwc 2007, Mahway: Lawrence Erlbaum Associates 71 (2001)

13. Pennington, J., Socher, R., Manning, C.: Glove: Global vectors for word repre-
sentation. In: Proceedings of the 2014 conference on empirical methods in natural
language processing, EMNLP, pp. 1532–1543 (2014)

14. Peters, M.E., et al.: Deep contextualized word representations. arXiv preprint
arXiv:1802.05365 (2018)

15. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100,000+ questions for
machine comprehension of text. arXiv preprint arXiv:1606.05250 (2016)

16. Schnabel, T., Labutov, I., Mimno, D., Joachims, T.: Evaluation methods for unsu-
pervised word embeddings. In: Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pp. 298–307 (2015)

17. Schwarzenberg, R., Raithel, L., Harbecke, D.: Neural vector conceptualization for
word vector space interpretation. arXiv preprint arXiv:1904.01500 (2019)

18. Sommerauer, P., Fokkens, A.: Firearms and tigers are dangerous, kitchen knives
and zebras are not: testing whether word embeddings can tell. arXiv preprint
arXiv:1809.01375 (2018)

http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1605.02276
http://nlp.stanford.edu/data/glove.6B.zip
http://arxiv.org/abs/1607.01759
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1802.05365
http://arxiv.org/abs/1606.05250
http://arxiv.org/abs/1904.01500
http://arxiv.org/abs/1809.01375

432 A. Sutton and N. Cristianini

19. Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T., Qin, B.: Learning sentiment-specific
word embedding for twitter sentiment classification. In: Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). vol. 1, pp. 1555–1565 (2014)

20. Wikimedia: enwiki dump on 20190701. https://dumps.wikimedia.org/enwiki/
20190701/. Accessed 07 Jul 2019

21. Wilcoxon, F.: Individual comparisons by ranking methods. In: Kotz, S., John-
son, N.L. (eds.) Breakthroughs in Statistics. Springer Series in Statistics (Per-
spectives in Statistics). Springer, New York (1992). https://doi.org/10.1007/978-
1-4612-4380-9 16

22. Yamada, I., Asai, A., Shindo, H., Takeda, H., Takefuji, Y.: Wikipedia2vec: an
optimized tool for learning embeddings of words and entities from wikipedia. arXiv
preprint 1812.06280 (2018)

https://dumps.wikimedia.org/enwiki/20190701/
https://dumps.wikimedia.org/enwiki/20190701/
https://doi.org/10.1007/978-1-4612-4380-9_16
https://doi.org/10.1007/978-1-4612-4380-9_16

	On the Learnability of Concepts
	1 Introduction
	2 Related Work
	3 Methods and Resources
	3.1 Embeddings
	3.2 Concepts
	3.3 Linear Classification
	3.4 Linguistic Inquiry and Word Count

	4 Measuring Performance of Linear Classifiers
	4.1 Learning Concepts from GloVe, Word2vec, and FastText
	4.2 Comparing Embeddings

	5 Conclusion
	References

