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1 | INTRODUCTION

| Yanrong Wang'?

Abstract

Hydrothermal vents are considered as one of the most extremely harsh environments
on the Earth. In this study, the complete mitogenomes of hydrothermal vent squat
lobsters, Munidopsis lauensis and M. verrilli, were determined through lllumina se-
guencing and compared with other available mitogenomes of anomurans. The mitog-
enomes of M. lauensis (17,483 bp) and M. verrilli (17,636 bp) are the largest among all
Anomura mitogenomes, while the A+T contents of M. lauensis (62.40%) and M. verrilli
(63.99%) are the lowest. The mitogenomes of M. lauensis and M. verrilli display novel
gene arrangements, which might be the result of three tandem duplication-random
loss (tdrl) events from the ancestral pancrustacean pattern. The mitochondrial gene
orders of M. lauensis and M. verrilli shared the most similarities with S. crosnieri. The
phylogenetic analyses based on both gene order data and nucleotide sequences
(PCGs and rRNAs) revealed that the two species were closely related to Shinkaia
crosnieri. Positive selection analysis revealed that eighteen residues in seven genes
(atp8, Cytb, nad3, nad4, nad4l, nad5, and nadé) of the hydrothermal vent anomurans

were positively selected sites.
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et al., 2008; De Grave et al., 2009). Deep-sea hydrothermal vent is

one of the chemosynthetically driven ecosystems and characterized

The Anomura MacLeay, 1838 is a highly diverse infraorder of deca-
pod, including seven superfamilies, 17 families, and approximately
2,500 species (Ahyong, Schnabel, & Maas, 2009; Bracken-Grissom,
Cannon, Cabezas, Feldmann, & Crandall, 2013; Schnabel, Ahyong,
& Maas, 2011). The Galatheoidea are the most diverse superfamily
within Anomura, with over 1,200 species placed in 69 genera, and
have adapted to a wide range of habitats in freshwater, terrestrial,

shallow-water coral reefs, and hydrothermal vent ecosystems (Baba

with high temperature (up to 390°C), low oxygen levels, enriched hy-
drogen sulfide (H2S), methane (CH4), and heavy metals, such as iron,
zinc, and copper (Little & Vrijenhoek, 2003). Decapod crustaceans,
such as alvinocaridid shrimps, bythograeid crabs, and galatheid
squat lobsters, are dominant fauna in the hydrothermal vents, rep-
resenting approximately 10% of all taxa reported from these vents
(Little & Vrijenhoek, 2003; Martin & Haney, 2005; Yang et al., 2013).
Recently, the hydrothermal vent bythograeid crabs (Hui, Song, Liu,
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Li, & Cui, 2017) and alvinocaridid shrimps (Cottin et al., 2010; Hui,
Cheng, & Sha, 2018; Wang et al., 2017; Zhang, Sun, Luan, Lian, &
Sun, 2017) have demonstrated numerous genetic basis for the ad-
aptations to vent habitats. However, little genomic and molecular
genetic information are available for hydrothermal vent galatheid
squat lobsters, impeding the study for the molecular mechanism in
their adaptation process. A powerful system is needed to examine
the adaptation evolution at the molecular level (e.g., mitochondrial
genome).

The metazoan mitochondrial genome (mitogenome) is typically
a circular double strand DNA molecule, encoding 13 protein-coding
(PCG) genes (seven subunits of the NADH dehydrogenase complex,
the cytochrome b subunit of the cytochrome bcl complex, three
subunits of the cytochrome c oxidase, and two subunits of ATP syn-
thase), 22 transfer RNAs (tRNA) genes, two ribosomal RNAs (rRNA,
rrnS, and rrnl) genes, and a control region (CR) including sites for
the initiation of transcription and replication (Boore, 1999). Owing
to its small genome size, higher evolutionary rates, limited recom-
bination, and maternal inheritance, (Gissi, lannelli, & Pesole, 2008;
Simon, Buckley, Frati, Stewart, & Beckenbach, 2006), mitogenome
has been widely used in species identification (Fu, Han, & Xiao,
2014; Kanmiya et al., 2011), molecular evolution (Cameron, 2014;
Shao et al., 2015; Shao, Zhu, Barker, & Herd, 2012), phylogenetic
relationship (Cameron, 2014; Cameron, Yoshizawa, Mizukoshi,
Whiting, & Johnson, 2011; Chen, Wei, Shao, Dou, & Wang, 2014;
Chen, Wei, Shao, Shi, et al., 2014), and population genetic (Wei et
al., 2012; Zhang et al., 2014) studies. Although the gene content is
relatively conservative, their rearrangements have been frequently
reported, particularly in invertebrates at many taxonomic levels
(Cameron, Johnson, & Whiting, 2007; Hassanin, Léger, & Deutsch,
2005). The gene rearrangement within a lineage has been supposed
to be phylogenetically informative; therefore, comparative analysis
of mitochondrial gene order has been proved to be a valuable phy-
logenetic tool (Akasaki et al., 2006; Boore & Brown, 1998; Smith,
Arndt, Gorski, & Fajber, 1993; Yang, Ye, & Huang, 2016; Yuan, Li, Yu,
& Kong, 2012). Based on the comparative analysis of mitochondrial
gene arrangement, Smith et al. (1993) suggest that the sea cucum-
bers should group with sea urchins and sea stars with brittle stars.
Akasaki et al. (2006) examined the mitochondrial gene arrangements
of subclass Coleoidea and claimed that Octopoda showed the an-
cestral gene order, and the arrangements of mitochondrial genes
in Oegopsida and Sepiida were derived from those of Octopoda.
Based on the study of gene order rearrangements and phylogenetic
relationships of five species belonging to Tellinoidea, Yuan et al.
(2012) prefer to put the genus Sinonovacula within the superfamily
Solenoidea instead of the superfamily Tellinoidea. Extensive mito-
chondrial gene rearrangements have been observed in crustaceans,
such as copepods, anomuran, and brachyuran decapods, among
which more frequent gene rearrangements exhibit compared with
the putative ancestral gene order (Ki, Park, & Lee, 2009; Kim, Choi,
Park, & Min, 2013; Machida, Miya, Nishida, & Nishida, 2002).

The 13 PCGs of mitogenome are all key subunits of complexes
directly involved in the oxidative phosphorylation (OXPHQOS)
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process, directly providing 95% free energy for cells, which is im-
portant for metabolic demands in organisms (Gu et al., 2016; Wu,
Gu, Guo, Huang, & Yang, 2016). In recent years, the mitogenome
has become a powerful system for examining the genetic basis of
organismal adaptation to various harsh environments, and signals
of positive selection have been detected in mitochondrial genes of
various taxa (Korkmaz, Aydemir, Temel, Budak, & Basiblyik, 2017;
Luo, Yang, & Gao, 2013; Scott et al., 2011; Wang et al., 2016; Yu,
Wang, Ting, & Zhang, 2011; Yuan et al., 2018; Zhang et al., 2017;
Zhou, Shen, Irwin, Shen, & Zhang, 2014). Most of these studies fo-
cused their attention on vertebrates, whereas few reports examined
the adaptive evolution of crustacean mitogenomes to hydrothermal
vent environments (Sun, Hui, Wang, & Sha, 2018; Wang et al., 2017).
The molecular evolution of mitochondrial protein-coding genes in
hydrothermal vent squat lobsters are still poorly understood. The
mitogenome resources for the Anomura are limited to only ten mi-
togenomes as recorded on GenBank thus far, with five species from
hydrothermal vents (http://blast.ncbi.nlm.nih.gov).

The Munidopsis is the second largest genus of galatheid squat
lobsters, after Munida, with over 200 species, among which ten are
endemic to the hydrothermal vent environments (Baba et al., 2008;
Martin & Haney, 2005). In this study, we newly sequenced and an-
notated two complete mitogenomes of the hydrothermal vent squat
lobsters, M. lauensis and M. verrilli. Combined with ten available
anomuran mitogenomes, we performed a comparative mitogenom-
ics analysis, in order to: (a) investigate the characteristics of Anomura
mitogenomes; (b) assess the phylogenetic information of mitochon-
drial gene rearrangements; (c) rebuild a mitochondrial phylogeny of
the Anomura that could be used as framework for further evolution-
ary studies; and (d) detect the signals of positive selection of mito-
chondrial genes in hydrothermal vent anomuran species during their

adaptation to deep-sea hydrothermal vent environments.

2 | METHODS AND METHODS

2.1 | Sampling and DNA extraction

The hydrothermal vent squat lobsters, M. lauensis and M. ver-
rilli, were captured from hydrothermal vent chimney at a depth
of 1,121.5 m (119°17'08.321"E; 22°06'55.526"N) and 1,198.7 m
(119°17'08.079"E; 22°06'55.432"N) in southwest Pacific Ocean,
respectively. Both specimens were collected using the remotely op-
erated vehicle (ROV) Quasar Mkll of SMD in the United Kingdom,
which was deployed using the RV KEXUE. They were immediately
preserved in 95% ethanol after taken until DNA extraction. Total
genomic DNA was extracted using the DNeasy tissue kit (Qiagen)
accordingly.

2.2 | Illlumina sequencing, genome
assembly, and annotation

NEBNext® Ultra™ DNA Library Prep Kit for Illumina (NEB) was
used to generate the sequencing libraries following manufacturer's
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instructions. And then, the index codes were added to attribute se-
quences to the sample. The clustering of the index-coded sample
was performed on a cBot Cluster Generation System. Sequencing
was performed based on an lllumina HiSeq 2500 platform, with the
paired-end reads generated for each sample. The paired-end raw
reads were filtered, and the reads with average quality value lower
than Q20 were excluded from further analysis (Sun, Hui, Wang, et
al., 2018; Sun, Sha, & Wang, 2018a). CLC Genomics Workbench
v. 11.0.64 (http://www.clcbio.com/products/clcgenomics-workb
ench/) and SOAP denovo (k-mer = 55) (Li et al., 2010) were selected
to assemble the clean data. De novo assembled contigs longer than
10 Kbp were blasted against the NCBI nr database using the “BLAST”
tool implemented in the CLC Genomics Workbench to extract the
“mitochondrial DNA” contigs. The cutoff E-value of 1.0E-15 was
used. In order to identify contigs of mitochondrial origin, we aligned
the putative mtDNAs of M. lauensis and M. verrilli with the published
complete mitochondrial genomes of the Galatheoidea, Kiwa tyleri
(KY423514), Munida gregaria (KU521508), Neopetrolisthes maculatus
(KC107816), Shinkaia crosnieri (EU420129), and Petrolisthes haswelli
(LN624374) with the aid of “Alignment” tool implemented in the CLC
Genomic Workbench with the default setting. In order to establish
a circular mitochondrial DNA (mtDNA), the contigs identified as mi-
togenome sequences were manually checked for overlap at the be-
ginning and end of the sequence. To evaluate the average sequence
coverage of mitochondrial genomes, we mapped sequences against
the assembled mitochondrial genomes using GNUMAP (Clement et
al., 2010).

The protein-coding genes were searched by ORF Finder (http://
www.ncbi.nlm.nih.gov/gorf/gorf.html), BLASTx, and MITOS Web
Server (Bernt et al., 2013) using the invertebrate mitochondrial ge-
netic code. The sequences and positions of tRNA genes were deter-
mined by ARWEN (Laslett & Canback, 2008) and MITOS Web Server
(Bernt et al., 2013) with the default search mode. The rRNA genes
were identified by blasting the inferred sequences against to other
published crustacean mtDNA sequences (http://www.ncbi.nlm.nih.
gov/BLAST). The gene maps of the M. lauensis and M. verrilli mitoge-
nomes were drawn with the program CGView (Stothard & Wishart,
2005). The complete mtDNA sequences of M. lauensis and M. verrilli
have been deposited in the GenBank database with the accession
numbers MH717895 and MH717896, respectively.

2.3 | Sequence analysis

The relative synonymous codon usage (RSCU) values and nucleotide
composition were calculated using MEGA 5 (Tamura et al., 2011).
The GC and AT-skew values were obtained according to the formu-
lae by Perna and Kocher (1995): AT-skew = (A-T)/(A+T); GC-skew =
(G-C)/(G+C), where A, T, G, and C are the occurrences of the four
nucleotides. DnaSP5.1 (Librado & Rozas, 2009) was taken to deter-
mine the effective number of codons (ENC) and the codon bias index
(CBI) for each PCG. Tandem Repeats Finder 4.0 (Benson, 1999) was
used to search the tandem repeat sequences, and the potential sec-
ondary structures of the repeat sequences were predicted by Mfold

software version 3.2 (Zuker, 2003). When more than one secondary
structures were detected, the most stable one with lowest free en-

ergy /\G was selected.

2.4 | Build phylogeny from gene order data

Along with mitogenome sequences of M. lauensis and M. verrilli (this
study), other 10 available mitogenomes from Anomura, including
Paralithodes brevipes (AB735677), Petrolisthes haswelli (LN624374),
Pagurus longicarpus  (AF150756), Paralithodes camtschaticus
(JX944381), Lithodes nintokuae (AB769476), Clibanarius infraspinatus
(LN626968), K. tyleri (KY423514), M. gregaria (KU521508), N. macula-
tus (KC107816), and S. crosnieri (EU420129), were used in gene order
comparison. CREx (Bernt et al., 2007) was used to conduct pairwise
comparisons of the mitochondrial gene order. CREx inferred the
most possible scenarios for gene rearrangements based on common
intervals. MLGO web server (http://www.geneorder.org/server.php;
Hu, Lin, & Tang, 2014; Zhou, Lin, Feng, Zhao, & Tang, 2017) was used

to infer a phylogeny from gene order data.

2.5 | Build phylogeny from nucleotide sequences

Neighbor-joining (NJ) tree based on uncorrected p distances among
mitochondrial tRNA genes from 12 Anomura taxa (described above)
was constructed using MEGA 5 (Tamura et al., 2011). Maximum
likelihood (ML) and Bayesian inference (Bl) were employed for
phylogenetic reconstructions of the 12 Anomura species based
on nucleotide sequences of 13 PCGs and 2 rRNA genes using 14
species from five other decapod infraorders (Table S1) as outgroup
taxa. The nucleotide sequences for the PCG and rRNA genes were
aligned with MAFFT version 6 online (http://mafft.cbrc.jp/align
ment/software/), applying the E-INS-I manual strategy with default
parameters. Areas of dubious alignment were recognized by the
program Gblocks (Talavera & Castresana, 2007) (default setting)
and excluded from the analyses. PartitionFinder v1.1.1 (Lanfear,
Calcott, Ho, & Guindon, 2012) was used to determine the best par-
titioning schemes and corresponding substitution models. The data
blocks were predefined by genes and codon positions for nucleotide
sequences of protein-coding genes. The Bayesian information cri-
terion (BIC) and the greedy heuristic search algorithm with branch
lengths were estimated as “unlinked” to identify the best-fit partition
schemes. The best-fit partitioning schemes (Table S2) were adopted
in the phylogenetic analyses.

Maximum likelihood was employed in RAXML Black-Box web-
server (http://phylobench.vital-it.ch/raxml-bb/index.php; Stamatakis,
Hoover, & Rougemont, 2008). Bootstrap (BP) values were deter-
mined using 1,000 bootstrap replicates. Bl analysis was performed
by MrBayes 3.1 software (Ronquist & Huelsenbeck, 2003). The
Markov chain Monte Carlo (MCMC) was run for 10,000,000 genera-
tions (sampling every 1,000 generations) to allow adequate time for
convergence. When the standard deviation of split frequencies was
<0.01, the run was stopped. All parameters were checked with Tracer
v 1.5 (Drummond & Rambaut, 2007). After omitting the first 5,000
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“burn in” trees, the remaining 5,000 sampled trees were selected to
estimate the 50% majority rule consensus tree and the Bayesian pos-
terior probabilities (PP).

2.6 | Determine the signals of selection

The codon-based likelihood approach implemented in the CODEML
program from PAML (Yang, 2007) was used to evaluate the potential
selective pressures in the mitochondrial PCGs of hydrothermal vent
anomurans. The 13 individual PCGs and the concatenated dataset
were involved in the positive selection analysis. The tree topolo-
gies inferred from tree-building methods in the present study were
used. The ratio of nonsynonymous to synonymous substitution rates
(Ka/Ks, denoted w) was taken as a measure of selective pressure.
The signals of selection were assessed under several models: one-
ratio model (MO0), free-ratio model (M1), and two-ratio model (M2).
To identify the probabilities of specific residues under positive se-
lection in each gene of the hydrothermal vent anomurans species
(marked as foreground branch), the branch-site Model A (positive
selection model) was selected, which allowed w to vary across line-
ages and sites. All the positively selected sites were determined by
Bayes empirical Bayes (BEB) method (Yang, Wong, & Nielsen, 2005)
with posterior probabilities of 20.95.

3 | RESULTS AND DISCUSSION

3.1 | De novo assemblies of M. lauensis and
M. verrilli mitogenomes

The Hiseq runs resulted in 33,862,831 (10.16 G) and 46,095,676
(13.83 G) paired-end clean reads from M. lauensis and M. verrilli
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libraries, respectively. The sequencing qualities were generally high
for both squat lobsters. About 93.77% of the reads in M. lauensis and
90.54% of the reads in M. verrilli passed Q20, indicating the prob-
ability of a base call error <0.01. There were in total 425,589 and
579,932 contigs assembled de novo based on the paired-end reads
for M. lauensis and M. verrilli, respectively. The lengths of most con-
tigs (82.1% and 85.3% in M. lauensis and M. verrilli, respectively) were
<1 Kbp. Only eleven M. lauensis contigs and thirteen M. verrilli contig
had lengths longer than 10 Kbp. The average sequence coverage was
11.0 and 13.0 for all the assembled contigs of M. lauensis and M. ver-
rilli. The blast results suggested that the top hits (E-value = 0) of the
longest contig in each sample (17,520 and 17,659 bp for M. lauensis
and M. verrilli, respectively) were the mitogenomes of Galatheoidea
species. Therefore, there was a highly possibility that the longest
contig in each sample was the mitogenome of M. lauensis or M. ver-
rilli, which was assembled from multiple overlapping reads. A total
of 29,861 (M. lauensis) and 40,648 (M. verrilli) multiple overlapping
reads were mapped onto the longest mitochondrial contigs, giv-
ing an average coverage 511x for M. lauensis and 691x for M. ver-
rilli mtDNAs, which were about 46-53 times higher than that of all
contigs. The higher sequencing coverage of mtDNAs is consistent
with the high copy numbers of mitochondria in eukaryotic cells and
indirectly confirm the mitochondrial origin of the sequences (Hung
etal., 2013).

3.2 | General genome characteristics

The complete mitogenomes of M. lauensis and M. verrilli were
17,483 bp and 17,636 bp in length, respectively (Figure 1, Table 1).
The sizes of both mitogenomes are the largest among the length

range of all available Anomura mitogenomes (approximately

iy

Munidopsis verrilli

17,636 bp

FIGURE 1 The organization of the mitogenomes of Munidopsis lauensis and M. verrilli. The full names of protein-coding genes, rrnS and rrnL,
are listed under abbreviations. rrnS and rrnL, 12S and 16S ribosomal RNA genes, respectively; atp6 and atp8, ATPase subunit 6 and 8 genes,
respectively; cox1-cox3, cytochrome c oxidase subunits I-1ll genes, respectively; cytb, cytochrome b gene; nad1-6 and 4/, NADH dehydrogenase
subunit 1-6 and 4 L genes, respectively. One uppercase letter amino acid abbreviations are used to label the corresponding tRNA genes
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16,000 bp). The plausible explanation for this phenomenon may
be the extension of noncoding regions, which were 2,077 and
2,200 bp in M. lauensis and M. verrilli, respectively. Each genome
contained the typical 13 PCGs, 22 tRNA genes, 2 rRNA genes, and
one control region (CR). Within these genes, 9 PCGs and 14 tRNAs
were encoded by the light strand, while 4 PCGs, 8 tRNAs, and 2
rRNAs were encoded by the minority strand. Considering their lo-
cation and AT-richness, we supposed continuous region between
rrnS and trnQ to be the CR as in the case of the hydrothermal
vent galatheid crab S. crosnieri (Yang & Yang, 2008). The overlap-
ping nucleotides from seven adjacent genes in the mitogenome
of M. lauensis were discovered up to 27 bp in total. In the case

of M. verrilli mitogenome, eight overlaps between adjacent genes

The base composition (A+T content, G+C content) and strand
asymmetry (AT-skew, GC-skew) were usually used to investigate the
nucleotide-compositional behavior of mitogenomes (Hassanin et
al., 2005). The nucleotide compositions of the complete mtDNA se-
quence for M. lauensis and M. verrilli were both biased toward A and
T (Table 2). The A+T content was 62.40% in M. lauensis and 63.99%
in M. verrilli, which were the lowest among the available Anomura
mitogenomes. The lowest A+T content was also found in the PCGs,
tRNAs, and rRNAs (Table 2). In order to further evaluate the base
bias in the mitogenomes, we measured skewness in different gene
regions of M. lauensis and M. verrilli mitogenomes, and found the
whole genomes of the hydrothermal vent squat lobsters were all
positively AT-skewed (0.086 and 0.077) and negatively GC-skewed
(-0.336 and -0.363). The AT-skew and GC-skew of the two mitoge-
nomes were all stronger than those of the other anomurans (Table 2).

3.3 | Protein-coding genes and codon usage

In the mitogenomes of M. lauensis and M. verrilli, the region of PCGs
was 11,128 and 11,161 bp in size (stop codon included), respectively.
And the overall A+T content of the 13 PCGs was 60.16 (M. lauen-
sis) and 61.64% (M. verrilli), which were lower than those of other
anomurans. The AT-skew and GC-skew of the PCGs in both mitog-
enomes were negative (Table 2). In the mitogenomes of M. lauensis
and M. verrilli, 11 PCGs began with the standard ATN start codon.
The codon GTG was found to be the initiator codon for the atp8
and nadl genes. Ten PCGs ended with complete stop codon TAA,
whereas the nad4 gene was terminated by incomplete stop codon
TA, and cytb and nad5 were terminated by a single T. The presence of
incomplete stop codons is common phenomenon in invertebrate mi-
tochondrial genes, which is presumably completed as TAA via post-
transcriptional polyadenylation (Cannicci et al., 2017; lvey & Santos,
2007; Ojala, Montoya, & Attardi, 1981).

The RSCU values for the 13 PCGs were summarized in Table 3.
The M. lauensis and M. verrilli mitogenomes encoded 3,699 and 3,710
amino acids, respectively. The amino acids Ser (RSCU = 2.19), Leu
(RSCU = 2.14), and Phe (RSCU = 1.62) were mostly used in M. lauen-
sis mitogenome. Also in M. verrilli mitogenome, Ser (RSCU = 2.20),

SUN ET AL.
o
c
T
o
=
©“» o+ o+
f=
o
°
]
SN < (©) o< < <
tE < = O 0O Y E
< O O = = O O
' Lo s
> ' < < ©
= - I <
()
>
°
5 G
9 o were up to 28 bp.
I} c
o =
= . ' ©
2 s ' < 2 2
& = - F o 2
=
3
£
=}
c
g
O O O 5
= = EE ®
= < < < oD
()
c
T
c
S £
o 2
o -
- [
S| 3 gE e =
] s < < < v
2
(1]
()
k=
+ & 0O O ® ® O 1 ® §
O ® 0 ¥ O © KN vV W g
s > ~ ™ ™ =
© = - - 2
o ©
= &L
=
] 2
i)
= =}
- T -
c o c
+ T <t o0 0 O M © O n ;v g
W S VW N 0§ 9 v N v v
SRS = N M ™ 2
- £ = - - =
()
£
©
wv
'E‘-; [}
] E=]
£ -
15}
s - & o <
[ S N &= AN
2 LSl LS8 3388 3
o N M o
o o N o -
£ SE38E3988 ¢
a)c,;u;u{\o'(\{‘:-qi”lm_f,
5§ Y 7 T Y9795 S s
[
T 0 VY 0 O v O ™ N o
Em#l\lecomlﬁm;
T N QN Y o0 N MY N B
S © o w1 e NNNNKN @2
EHHHHHHHHHV’
I}
wv
©
o]
oo
£
- = 9 N o 5 o B¢
= = -
Sl l3geaela 8
= O o NN ~ c
8 O ® X 2 B SR o E ¢
g’g'\»ii“’.x—«mt\lmvo
= M N n VNN NN
T c| 2B 9 9 9 9 55808 ¢
5 6| 88 o & = ® = hHh o L4 @
(= S| € 0 M O ®M o0 M »mn O € o O
= G| =0T @9 N ¥ ¥ ® 4 oo =
c O| S35 o ©® v v o N NNN 2
o ﬂ.z:ﬂﬂﬂﬂﬂﬂﬂﬂﬂo
S B
(o)
<
A L
w g S
r = = )
@ E eS8 TIITex g
9 &£ 8§ £ 8§ 8 £ T £ = ¢
5 L S5 & 5 € € &5 & 5 &5 ¢
&

Leu (RSCU = 2.07), and Phe (RSCU = 1.55) were the most common
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TABLE 2 Genomic features of the mitogenomes of Anomura species

tRNAs Control region

rRNAs

13 Protein-coding genes

Genome
Length

(bp)

GC-

AT-Skew Skew

AT-Skew GC-Skew

AT%

AT-Skew GC-Skew AT% AT-Skew GC-Skew AT% AT-Skew GC-Skew AT%
-0.168

0.003

AT%

Species

0.038 0.238 75.12 0.008 0.146

77.98

0.014

71.57

-0.132

73.86

16,720

Paralithodes

camtschaticus

0.110
0.156
0.136
0.126
0.142
0.091

0.024

76.78
75.99

0.041 0.235

77.97
77.42

0.031
73.18

-0.176
-0.173
-0.194
-0.170
-0.193
-0.185

71.28
70.23

-0.127
-0.134
-0.244
-0.213
-0.199
-0.210

15,731 73.28 -0.003

16,303
15,348

Lithodes nintokuae

0.020
-0.015

0.240
0.302
0.310

0.039

0.034
-0.011
-0.013

0.009
-0.019

72.50
70.01

Paralithodes brevipes

-0.324

-0.041

76.45

72.15

0.035

68.61

Petrolisthes haswelli

0.011 73.17 0.024
-0.050

77.15

69.61

71.28 0.029

67.94

15,630
16,504
15,324

Pagurus longicarpus

-0.118
-0.118

0.037 71.18 0.322 70.62 0.001 69.47 -0.023
74.71 75.14

-0.005

66.37
70.13

0.042
-0.020

Clibanarius infraspinatus

0.002

0.294 72.71 0.011

0.080

71.26

Neopetrolisthes
maculatus

0.039 78.92 0.030 0.062

0.067
-0.015

83.64
79.26
77.92
70.49

0.005

-0.176
-0.196
-0.184
-0.180
-0.184

76.18

-0.220
-0.162
=0.81lE
-0.336
-0.363

-0.044
-0.020
-0.014

16,865 79.32

16,326
15,182

Kiwa tyleri
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-0.131
-0.741
-0.283
-0.313

-0.013
-0.158

84.95

0.140
0.121
-0.224
-0.236

76.12 0.001

0.335

0.051
-0.025
-0.034
-0.039

72.47
70.96

74.94
72.88
62.40
63.99

Munida gregaria

83.49

0.336 74.46 0.006

0.045
-0.015

Shinkaia crosnieri

0.392

73.38

69.59 0.023

0.384
0.386

17,483 0.086 60.13

17,636

Munidopsis lauensis

0.228

75.27

0.020

69.25

0.002

70.83

61.64

0.077

Munidopsis verrilli

amino acids. RSCU also reflects a nucleotide composition bias in
M. lauensis and M. verrilli mitogenomes. The RSCU values for the co-
dons NNU and NNA were usually higher than 1, suggesting a strong
A+T-bias in their third codon position (Table 3). This result supports
the hypothesis that there should be a positive correlation between
the codon usage bias and the AT bias of the third codon position for
the mitogenomes (Chai, Du, & Zhai, 2012; Hao et al., 2012; Kim et al.,
2009; Salvato, Simonato, Battisti, & Negrisolo, 2008).

In order to further explore the codon usage bias among anomu-
ran species, we analyzed the correlations between the effective
number of codons (ENC), codon bias index (CBI), the G+C content
of all codons (G+Cc), and the G+C content of the third codon po-
sition (G+C3s). We found ENC and CBI (R? = .997), CBI and G+Cc
(R? = .984), and CBI and G+C3s (R? = .827) were negatively related,
whereas ENC and G+Cc (R? = .978), and ENC and G+C3s (R? = .971)
were positively related (Figure 2). These results are in consistent
with the neutral mutational theories that the codon usage bias
among organisms are mostly determined by the G+C content of
the mitogenomes (Chen, Lee, Hottes, Shapiro, & McAdams, 2004;
Plotkin & Kudla, 2011).

3.4 | Transfer and ribosomal RNA genes

The complete set of 22 tRNA genes, typical of metazoan mitog-
enomes (two for each of serine and leucine, and one for each of
the other 18 amino acids), were identified from in M. lauensis and
M. verrilli mitogenomes. The tRNA genes ranged from 63 bp (trnG,
as well as trnY in M. verrilli mitogenome) to 73 bp (trnP) in size
and showed a strong A+T bias (69.59% and 69.25% in M. lauen-
sis and M. verrilli, respectively). The AT-skews were positive and
GC-skew were negative for the tRNA genes in both mitogenomes.
Almost all of the tRNAs could be folded into a typical clover-leaf
secondary structures containing four functional arms and corre-
sponding loops (Figures S1 and S2). However, trnS1 had no dihy-
drouridine (DHU) arm in the secondary structure. Although the
tRNA content was conserved in Munidopsis mitogenomes, their
arrangement was specific (see Section 3.5). The tRNA gene rear-
rangement in mitochondrial genomes can probably be explained
by tandem duplication mechanism and tRNA gene recruitment
(Dowton & Austin, 1999; Wang & Lavrov, 2011). In order to ex-
plore the possible evolutionary mechanism of tRNA gene rear-
rangement in Munidopsis mitogenomes, we analyzed tRNA gene
sequences from 12 Anomura mitogenomes. The NJ tree showed
that the equivalent tRNA genes (with the same amino acid and
anticodon identities) from different species form well-defined
clades (Figure 3). This result revealed the orthologous relation-
ships of each equivalent tRNAs. Thus, the tRNA gene rearrange-
ment in Munidopsis, and even other anomuran mitogenomes, most
probably arises from tandem duplication and random loss of tRNA
genes, instead of tRNA gene recruitment.

The rrnL genes were located between trnL; and trnV, while
rrnS were located between trnV and CR (Figure 1 and Table 1). In
M. lauensis and M. verrilli mitogenomes, the A+T content of the two
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TABLE 3 Codon usage of Munidopsis lauensis (MI) and M. verrilli (Mv) PCGs

Mi Mv
Amino acid Codon N (RSCU)? N (RSCU)?
F uUuu 261 (1.62) 260 (1.55)
uucC 2 (0.38) 75 (0.45)
L UUA 206 (2.14) 211 (2.07)
UuG 09 (1.13) 108 (1.06)
L Cuu 2(0.85) 97 (0.95)
CucC 6(0.58) 73(0.72)
CUA 9(1.03) 98 (0.96)
CUG 6(0.27) 24(0.24)
| AUU 185 (1.34) 197 (1.34)
AUC 2 (0.66) 97 (0.66)
M AUA 104 (1.30) 116 (1.27)
AUG 6(0.70) 66 (0.73)
\% GUU 89 (1.30) 96 (1.51)
GUC 5(0.51) 27(0.43)
GUA 70(1.02) 64 (1.01)
GUG 0(1.17) 67 (1.06)
S UcCu 3(2.19) 99 (2.20)
ucc 8(0.66) 43(0.96)
UCA 48(1.13) 49 (1.09)
UCG 9(0.21) 11 (0.24)
P CCu 37(1.00) 41(1.12)
CCC 9 (1.59) 54 (1.47)
CCA 6(0.97) 41(1.12)
CCG 6(0.43) 11 (0.30)
T ACU 43(1.00) 62(1.27)
ACC 5(1.51) 60 (1.23)
ACA 4(1.26) 57 (1.17)
ACG 0(0.23) 16 (0.33)
A GCU 3(1.56) 87 (1.47)
GCC 7 (1.29) 75 (1.27)
GCA 47 (0.79) 53(0.90)
GCG 2(0.37) 21(0.36)

Mi Mv
Amino acid Codon N (RSCU)? N (RSCU)?
Y UAU 63 (1.00) 70(1.12)
UAC 63 (1.00) 55(0.88)
H CAU 14 (0.33) 29 (0.69)
CAC 70 (1.67) 55(1.31)
Q CAA 55 (1.49) 61 (1.65)
CAG 19 (0.51) 13(0.35)
N AAU 62(0.89) 80(1.18)
AAC 78 (1.11) 56 (0.82)
K AAA 57 (1.31) 64 (1.35)
AAG 30 (0.69) 31(0.65)
D GAU 28(0.80) 27(0.93)
GAC 42 (1.20) 31(1.07)
E GAA 53(1.15) 46 (1.06)
GAG 39 (0.85) 41 (0.94)
C uGuU 27 (1.15) 28(1.22)
UGC 20 (0.85) 18 (0.78)
W UGA 56(1.18) 60 (1.24)
UGG 39(0.82) 37(0.76)
R CGU 10 (0.66) 12(0.80)
CGC 11 (0.72) 6(0.40)
CGA 31(2.03) 30 (2.00)
CGG 9 (0.59) 12 (0.80)
S AGU 23(0.54) 32(0.71)
AGC 35(0.82) 20 (0.44)
AGA 40 (0.94) 56 (1.24)
AGG 64 (1.51) 50 (1.11)
G GGU 47 (0.80) 44(0.75)
GGC 46(0.79) 36 (0.61)
GGA 52(0.89) 76 (1.29)
GGG 89 (1.52) 79 (1.34)

Note: N: number of occurrence of the codon; RSCU, relative synonymous codon usage.

“The value in the brackets refer to the RSCU.

rRNA genes were 70.49% and 70.83%, respectively, which were
the lowest among anomuran species (Table 2). The AT-skew of the
two rRNAs was negative (-0.015) in M. lauensis, while it was posi-
tive (0.002) in M. verrilli. The GC-skew in both species were positive
(0.384 and 0.386, respectively).

3.5 | Control region

Twenty-six noncoding regions, totaling 2,754 bp, were inter-
spersed throughout the M. lauensis mitogenome, while the corre-

sponding values were 24 and 2,875 bp in M. verrilli. The noncoding

regions located between rrnS and trnQ (650 and 647 bp in M. lau-
ensis and M. verrilli, respectively) corresponds to the CR identified
in other decapods, which may contain the signals for replication
and transcription (Taanman, 1999). The A+T content of the pre-
dicted control region in M. lauensis and M. verrilli was 73.38% and
75.27%, respectively, with both negative AT-skew (0.392 and
0.228) and positive GC-skew (-0.283 and -0.313). In the CR of
M. lauensis mitogenome, one 205-bp tandem repeat region (9,723~
9,927) was found, which comprised three nearly identical motifs
with 70, 71, and 64 bp in length, respectively (Figure 4). The CR
of M. verrilli contained a 174-bp repeat sequence (9,518-9,691),
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FIGURE 2 Evaluation of codon bias in the mitogenomes of twelve anomuran species. ENC, effective number of codons; CBI, codon bias
index; G+Cc, G+C content of all codon positions; G+C3s, G+C content of the third codon positions

which included two nearly identical motifs (Figure 4). The slipped-
strand mispairing during mtDNA replication may result in the
occurrence of tandem repeats (Levinson & Gutman, 1987). Each
tandem repeat motif could be folded into stem-loop second-
ary structures (Figure 4), which may play an important part in
mtDNA duplications (Stanton, Daehler, Moritz, & Brown, 1994;
Wilkinson & Chapman, 1991). Additionally, special “G(A), T” motif
and AT-rich sequences were also observed in the CRs of M. lau-
ensis and M. verrilli. Similar characteristics were also reported in
the deep-sea anemone Bolocera sp. (Zhang, Zhang, Wang, Zhang,
& Lin, 2017), deep-sea spongicolid shrimp Spongiocaris panglao
(Sun et al., 2018a), and the hydrothermal vent alvinocaridid shrimp
Shinkaicaris leurokolos (Sun, Hui, Wang, et al., 2018).

3.6 | Mitochondrial gene order and rearrangements

The M. lauensis and M. verrilli showed a novel arrangement of mi-
tochondrial genes (Figure 5). Their gene order diverged in many
positions from that of the ancestral pancrustacean pattern, which
is shared by lots of crustaceans and hexapods (Boore, Lavrov, &
Brown, 1998). Totally, we identified at least ten rearrangements in
M. lauensis and M. verrilli mitogenomes compared with the ances-
tral pancrustacean pattern (Figure 5). The main rearrangements
were tRNA translocations, and four rearrangements involved in
PCGs. One of the major fragment containing trnF, nad5, trnH, nad4,
nad4l, and trnT moved to downstream of trnS, from its ancestral

position; the other major fragment containing nad1, trnlL,, rrnL,
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FIGURE 3 Neighbor-joining tree based on uncorrected p distances among mitochondrial tRNA genes from twelve anomuran species. Pb,
Paralithodes brevipes; Ph, Petrolisthes haswelli; Pl, Pagurus longicarpus; Pc, Paralithodes camtschaticus; Ln, Lithodes nintokuae; Ci, Clibanarius
infraspinatus; Kt, Kiwa tyleri; Mg, Munida gregaria; Nm, Neopetrolisthes maculatus; Sc, Shinkaia crosnieri; Ml, Munidopsis lauensis; and My,

Munidopsis verrilli

trnV, rrnS, and CR moved to downstream of trnN. The nad3 gene,
located between trnG and trnA, translocated to the position be-
tween trnQ and trnl. And the fraction trnM-nad2 was located be-
tween trnG and trnD instead of the original position between trnQ
and trnW genes. The trnG, trnA, trnP, trnQ moved to upstream of
trnM, trnS,, nad1, nad3, respectively. The trnl moved to the down-
stream of nad3 gene. The gene block trnS1-trnE translocated to the
middle of trnA and nadé. According to the CREx analyses, these
novel gene orders of M. lauensis and M. verrilli might be the result
of 3 tandem duplication-random loss (tdrl) events from the ances-

tral pancrustacean pattern (Figure S3).

The twelve anomurans exhibited nine types of gene organiza-
tion, which differ from any gene order ever reported in decapods.
P. haswelli, M. gregaria, and N. maculatus showed the most similari-
ties in mitochondrial gene order with the ancestral pancrustacean
pattern (Figure 6). The mitochondrial gene orders of M. lauensis
and M. verrilli (Type | in Figure 5) shared the most similarities with
S. crosnieri (Type I1). This result was consistent with previous study
(Yang & Yang, 2008). K. tyleri (Type Ill) shared higher similarities
with Type IV (P. haswelli/M. gregaria/N. maculatus. These results are
consistent with the conclusion from the gene order-based phylo-

genetic tree (Figure 5). M. lauensis and M. verrilli showed a closest
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relationship with S. crosnieri in the gene order tree (Clade I). K. tyleri
clusters with the P. haswelli/M. gregaria/N. maculatus group (Clade
I1). The Clade IIl contained all other anomuran species. Our results
support that comparisons of mitochondrial gene rearrangements,
to some extent, are a useful tool for phylogenetic studies.
Comparative analysis of mitochondrial gene order has been
proved to be avaluable phylogenetic toolin crustaceans (Shen, Tsang,
Chu, Achituv, & Chan, 2015; Xin et al., 2017). Based on the compara-
tive analysis of mitochondrial gene arrangement within Sessilia, Shen
et al. (2015) found that Amphibalanus amphitrite (Balanidae) should
cluster with Striatobalanus amaryllis (Archaeobalanidae) and Nobia

grandis (Pyrgomatidae) instead of Megabalanus (Balanidae), resulting

in nonmonophyly of the family Balanidae. Xin et al. (2017) exam-
ined the mitochondrial gene arrangements of infraorder Brachyura
and suggested that Clistocoeloma sinensis may belong to the group
Sesarmidae of the superfamily Grapsoidea and that C. sinensis and

Sesarmops sinensis probably belong to sister groups.

3.7 | Phylogenetic analysis

Regardless of different inference methods (Bl or ML), the two trees
displayed identical topology with high nodal support values (Figure 7).
The twelve anomuran species included in this analysis separated into

three highly supported clades, one solely comprised of Paguroidea
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FIGURE 7 Phylogenetic trees derived from maximum likelihood and bayesian analyses based on Anomura mitochondrial PCGs and rRNA
sequences with bootstrap values shown on branches. The first number at each node is the bootstrap probability of ML analyses and the

second number is Bayesian posterior probability

species, C. infraspinatus. The second group consisted of the remain-
ing Paguroidea species and the hydrothermal vent yeti crab K. tyleri
from Galatheoidea. Thus, traditional placement of K. tyleri within
Galatheoidea based on morphology was not retrieved by our analyses,
which is similar to the previous study based on molecular and morpho-
logical data (Schnabel et al., 2011). The third group contained all the re-
maining Galatheoidea species. Thus, the monophyly of the superfamily

Paguroidea and Galatheoidea was not supported. Although the phylog-
eny of Anomura obtained from nucleotide sequences was inconsistent
with that from gene order data, the closest relationship between the
hydrothermal vent squat lobsters M. lauensis/M. verrilli and S. crosnieri
was highly supported in both phylogenies.

Interestingly, the hydrothermal vent galatheid crabs were placed
at more evolved positions in the trees. These observations suggested
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that they migrated from hydrothermal vent environments, instead of
the remnants of ancient hydrothermal vent species, which support
the extinction/repopulation hypothesis (Jacobs & Lindberg, 1998).
This invasion event was also found in hydrothermal vent alvinocarid
shrimps (Sun, Sha, & Wang, 2018b).

3.8 | Positive selection analysis

In the analysis of branch-specific models, the “two-ratios” (M2)
model did not fit the data significantly better than “one-ratio” (MO)
model when we set the vent anomurans as a foreground branch
(p > .05, Table 4). LRTs based on the branch-site models (MA vs. Null
model) detected significant signals of positive selection in seven
genes (atp8, Cytb, nad3, nad4, nad4l, nad5, and nadé) along the hydro-
thermal vent anomuran branches (Table 4). In total, eighteen posi-
tively selected residues were identified by the BEB analyses (BEB
value >0.95).

The mitogenome is characterized by its adaptations to the ex-
treme living environments (Castellana, Vicario, & Saccone, 2011).
One major adaptation of galatheid squat lobsters is positive se-
lection on mitochondrial genes involved in energy metabolism,
hypoxia response, and sulfide-tolerating. NADH dehydrogenase
complex (Complex 1), acting as a proton pump, is the first and the
largest enzyme complex in the respiratory chain (Da Fonseca,
Johnson, O'Brien, Ramos, & Antunes, 2008; Mishmar et al., 2003).
Cytochrome b (Complexes Ill) use direct coupling for electron trans-
fer and proton translocation (Sazanov, 2015). As part of the regu-
latory system of complex V (ATP synthase), atp8 contribute to the
proton translocation path and is directly associated with the produce
of ATP (Anna et al., 2015; Castellana et al., 2011). These can to some
extent explain why more positively selected sites were detected in
complexes I, lll, and V in our study. Similar results were found in hy-
drothermal vent alvinocaridid shrimps (Sun, Hui, Wang, et al., 2018;
Wang et al., 2017), providing a better understanding of the adapta-

tion of organisms to the deep-sea vent environment.

4 | CONCLUSIONS

In this study, we sequenced and annotated the complete mi-
togenomes of two squat lobsters M. lauensis and M. verrilli that
colonized hydrothermal vents. Comparative mitogenomic analy-
ses showed that gene content of the two mitogenomes was con-
served, whereas gene arrangement displayed diversity. NJ analysis
showed the tRNA rearrangements probably arise from tandem
duplication and random loss of tRNA genes. CREx analyses re-
veal the most similarities of mitochondrial gene orders between
M. lauensis/M. verrilli and S. crosnieri. The phylogenetic analyses
based on both gene order data and nucleotide sequences (PCGs
and rRNAs) also indicated that M. lauensis and M. verrilli were most
closely related to S. crosnieri. Eighteen positively selected resi-
dues in seven genes (atp8, Cytb, nad3, nad4, nad4l, nad5, and nadé)

were inferred to be positively selected sites for the branch of the

hydrothermal vent anomurans, which may indicate that these

genes experienced adaptive evolution.
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