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P H Y S I C S

A flying Schrödinger’s cat in multipartite  
entangled states
Zhiling Wang†, Zenghui Bao†, Yukai Wu, Yan Li, Weizhou Cai, Weiting Wang, Yuwei Ma, 
Tianqi Cai, Xiyue Han, Jiahui Wang, Yipu Song, Luyan Sun, Hongyi Zhang*, Luming Duan*

Schrödinger’s cat originates from the famous thought experiment querying the counterintuitive quantum super-
position of macroscopic objects. As a natural extension, several “cats” (quasi-classical objects) can be prepared 
into coherent quantum superposition states, which is known as multipartite cat states demonstrating quan-
tum entanglement among macroscopically distinct objects. Here, we present a highly scalable approach to 
deterministically create flying multipartite Schrödinger’s cat states by reflecting coherent-state photons 
from a microwave cavity containing a superconducting qubit. We perform full quantum state tomography on 
the cat states with up to four photonic modes and confirm the existence of quantum entanglement among them. 
We also witness the hybrid entanglement between discrete-variable states (the qubit) and continuous-variable 
states (the flying multipartite cat) through a joint quantum state tomography. Our work provides an enabling 
step for implementing a series of quantum metrology and quantum information processing protocols based 
on cat states.

INTRODUCTION
In Schrödinger’s thought experiment, a cat would be in a peculiar 
mixture of being dead and alive if it is entangled with an atom (1). 
In quantum experiments, the cat is usually emulated by quantum 
superposition of macroscopically distinct states, for example, super-
position of two coherent states with opposite phases (2). Once 
being entangled with an atom, such a system equivalently forms a 
Schrödinger’s cat. Preparing Schrödinger’s cat states has attracted 
wide research interest from testing quantum foundations to demon-
strating the increasing controllability of modern quantum systems. 
Over the decades, Schrödinger’s cat states have been successfully 
prepared in various physical systems, including vibrational states of 
a trapped ion (3), propagating photon modes (4–16) and microwave 
photons confined in superconducting cavities coupled with either 
Rydberg atoms (17, 18) or superconducting qubits (19). By entangling 
with more continuous-variable modes, a multipartite Schrödinger’s 
cat can be obtained as 𝒩(∣⟩⊗n ± ∣−⟩⊗n), where ∣⟩ represents 
a coherent state, 𝒩 is a normalization factor, and n represents the 
number of photonic modes (the number of entangled parties), es-
sentially describing quantum entanglement of coherent states (20). 
It is of great importance for fundamental tests of the quantum non-
locality (21) and for implementation of quantum metrology (22), 
quantum information processing (23, 24), and quantum network 
(25, 26). The preparation of bipartite cat states has been demon-
strated in circuit quantum electrodynamics systems for station-
ary microwave photonic modes in resonators (27) or through a 
nondeterministic photon subtraction for propagating optical pho-
tons (28). However, those protocols are difficult to be extended 
for generation of multipartite cat states, limited either by the re-
quirement of intermediate stationary cat states or the nondeter-
ministic nature of the scheme.

In this work, we demonstrate a highly scalable approach to gen-
erate multipartite cat states (29, 30) for itinerant microwave photons, 
or flying cat states, by sequentially reflecting coherent-state micro-
wave pulses from a resonator containing a superconducting qubit. 
We prepare even and odd cat states containing up to four photonic 
modes and further demonstrate the possibility to generate more su-
perposition and entanglement structures by coherent control of the 
qubit state. The full quantum state tomography is performed on the 
itinerant photonic modes to verify the existence of quantum en-
tanglement of the multipartite cat states. Hybrid entanglement be-
tween the qubit and the flying cat states is also confirmed through 
a joint quantum state tomography. We note that the fidelity and 
the scale of the cat states prepared with our method are mainly 
limited by the resonator internal loss and the qubit decoherence, 
which can be alleviated to prepare larger-scale multipartite cat states. 
Our work thus presents a highly scalable scheme for the determin-
istic generation of multipartite cat states and provides an important 
enabling tool to realize various quantum metrology (31) and quan-
tum information processing protocols based on continuous-variable 
cat states (32, 33).

RESULTS
The protocol
We consider a superconducting microwave cavity (resonator) dis-
persively coupled to a transmon qubit (34, 35). The Hamiltonian of 
the system can be written as H/ℏ = (r + z)a†a + qz/2, where r 
is the cavity frequency, a(a†) is the annihilation (creation) operator 
of the cavity mode, q is the qubit frequency, z is Pauli operator of 
the qubit, and  represents dispersive shift induced by the interaction 
between the qubit and the cavity. The cavity resonance frequency de-
pends on the state of the qubit due to the dispersive term. As shown 
in Fig. 1C, we tune the cavity linewidth  to approximately 2∣∣, 
resulting in qubit state–dependent reflections with the same strength 
but the opposite phases if the input photon frequency is at r (36). 
Consequently, if a train of n coherent-state microwave photon pulses 
at r are sent to the cavity, then the reflected photon state can be 
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expressed as∣⟩⊗n (or ∣−⟩⊗n) for qubit in the ground state ∣0⟩ (or 
in the excited state ∣1⟩). If the qubit is prepared in a quantum super-
position state ​(∣0⟩+ ∣1⟩) / ​√ 

_
 2 ​​, then the combined system is in a multi-

partite Schrödinger’s cat state in the form (30)

	​​  1 ─ 
​√ 
_

 2 ​
 ​ (∣0〉∣〉 ​​​​ ⊗n​ + ∣1〉∣− 〉 ​​​​ ⊗n​)​	 (1)

We can further apply another /2 rotation along −y axis R−y(/2) 
after the photon reflections, yielding the state

	​​  
​ 1 ─ 2 ​ [ (∣0〉 + ∣1〉 ) ∣〉 ​​​​ ⊗n​ + (∣0〉 − ∣1〉 ) ∣− 〉 ​​​​ ⊗n​]

​    
= ​ 1 ─ 2 ​ [ ∣0〉(∣〉 ​​​​ ⊗n​ + ∣− 〉 ​​​​ ⊗n​ ) + ∣1〉(∣〉 ​​​​ ⊗n​ − ∣− 〉 ​​​​ ⊗n​ ) ]

​​	 (2)

Therefore, an even or odd multipartite cat state of microwave 
photons 𝒩(∣⟩⊗n ±∣− ⟩⊗n) can be obtained by projecting the qubit 
state to either ∣0⟩ or ∣1⟩. It should be emphasized that obtaining 
well-defined multipartite cat states requires carefully determined 
pulse lengths and time intervals between the pulses to fit the band-
width of the cavity and to ensure that the photonic modes can be well 
distinguished in the time domain, respectively.

To generate more superposition and entanglement structures of 
the coherent states, one can apply some specific unitary qubit rotations 
between the adjacent reflections of the photon pulses, as illustrated 

in Fig. 1A. The additional qubit rotations effectively prepare different 
forms of multipartite Schrödinger’s cat state compared with Eq. 1. 
Detailed discussions can be found in section S1D. In addition, be-
cause the coherent pulses are generated externally by a microwave 
signal source, it is convenient to use different amplitudes and shapes 
for the pulses and thus obtain well-tunable sizes for each component 
of the multipartite cat states.

Multipartite cat states
Following the abovementioned protocol, we first showcase the 
preparation of single-party cat states by reflecting a coherent pulse 
of microwave photons from the cavity when the qubit is prepared at 
​(∣0⟩+ ∣1⟩) / ​√ 

_
 2 ​​. We perform quantum state tomography on the re-

flected itinerant microwave photons conditioned on the qubit state 
projected to either ∣0⟩ or ∣1⟩ with a homodyne setup, considering the 
added noises introduced by the inefficiency of the detection chain 
(37, 38). In Fig. 2 (A and B), we present the reconstructed Wigner 
functions for even and odd single-party cat states with  = 1.07. Com-
pared with the corresponding ideal states, we obtain a fidelity of 
0.75 for the even cat state and 0.69 for the odd cat state. As a char-
acteristic of “nonclassicality” of a quantum state, the negative-valued 
Wigner function reaches about −0.031 ± 0.006 for the even cat state 
and −0.124 ± 0.019 for the odd cat state, which verifies its nonclassical 
nature. The infidelity of the prepared single-party cat states mainly 

Fig. 1. The protocol for the preparation of flying multipartite cat states. (A) We use a microwave cavity (51, 52) dispersively coupled to a superconducting qubit to 
deterministically generate multipartite cat states of itinerant microwave photons. We first set the qubit to a superposition state ​(∣0⟩+ ∣1⟩) / ​√ 

_
 2 ​​ and send itinerant micro-

wave photons in coherent state (orange) to the cavity. The reflected photons would acquire a conditional  phase shift depending on the qubit state; thus, we would 
have ∣⟩(∣− ⟩) if the qubit is in ∣0⟩(∣1⟩). By sending a train of coherent state photon pulses, which are sequentially reflected from the cavity, we would have a multipartite 
entangled state (∣0⟩∣⟩⊗n + ∣1⟩∣− ⟩⊗n). (B) State evolution during the preparation of the multipartite cat states, where we use a cat to represent the quasi-classical 
coherent states. Starting with the multipartite entangled state, the qubit is rotated with a /2 pulse, resulting in a state as ((∣0⟩ + ∣1⟩)∣⟩⊗n + (∣0⟩ − ∣1⟩)∣− ⟩⊗n). Then, 
the qubit state is mapped to either ∣0⟩ or ∣1⟩ with a projective measurement. The photon state conditioned on the qubit state of ∣0⟩ (or ∣1⟩) is thus an even n-partite cat 
state 𝒩(∣⟩⊗n + ∣− ⟩⊗n) (or an odd n-partite cat state 𝒩(∣⟩⊗n −∣− ⟩⊗n)). Note that more superposition and entanglement structures can be generated by varying the 
amplitudes of input coherent pulses or by applying specific qubit rotations between adjacent reflections of the photon pulses, illustrated in (A) as dashed line–enveloped 
pulses. (C) Cavity reflection spectra when the qubit is in either ∣0⟩ (blue) or ∣1⟩ (red). The resulting phase difference of the qubit state–dependent reflections is shown in 
black. The dots are measured results, and the solid lines are theoretical fittings. The dashed line indicates the frequency of the input photons.
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originates from the photon loss during the reflection process and the 
qubit decay/dephasing during the cat state preparation.

We further scale the multipartite cat state up to four photonic 
modes by successively sending coherent photon pulses to the cavity 
with  = 0.72 in each pulse. The photon pulses are 500-ns square 
pulses, and the interval between the adjacent pulses is 300 ns. The 
full-density matrix of the qubit state–dependent itinerant microwave 
field is reconstructed with the maximum likelihood quantum state 
estimation in Fock basis (38–40). Considering the fact that the ideal 
states are Greenberger-Horne-Zeilinger–type entangled coherent 
states (see Eq. 2), the density matrices are plotted in the cat basis for 
clarity. It is worth noting that the population outside this subspace 
is small enough for an intuitive comparison between the experimen-
tal state and the ideal state, as discussed in Materials and Methods. 
Specifically, the qubit state–dependent multipartite cat state has the 
same parity as is the case for single-party cat, with even (odd) cat state 
conditioned on the qubit state in ∣0⟩ (∣1⟩). In Fig. 2 (C and D), we 
present the experimentally reconstructed density matrices for bi-
partite cat states, with a fidelity of 0.66 for even state and 0.62 for odd 
state. Figure 2 (G and H) shows the reconstructed density matrices for 
even multipartite cat states, with a fidelity of 0.54 for the tripartite 
cat state and 0.53 for the quadripartite cat state, corresponding to a 
maximally achieved cat size n∣2∣2 up to 8.3 photons (18).

The dominant error sources for the multipartite cat states are the 
cavity loss and the qubit decay/dephasing. We note that the fidelity 
of the multipartite cat state decreases with an increasing number of 
parties n. The cavity loss–induced state preparation error is posi-
tively related with the cat size and, thus, the number of parties. The 
qubit dephasing–induced error is related with the total state prepa-
ration time, which is also positively correlated with n. These errors 

can be effectively suppressed by reducing the cavity internal loss and 
improving the qubit coherence. Taking experimentally achievable 
improvements, we estimate that it is possible to prepare a multipar-
tite cat state with more than 15 photonic modes and a fidelity better 
than 0.9 for  = 0.5 or with 9 photonic modes for  = 2 with a fidel-
ity of about 0.91, indicating an excellent scalability of the scheme. A 
detailed discussion about the error model and error budget can be 
found in Materials and Methods and in section S4.

From the experimental results, we find that odd cat state suffers 
more error than that for even cat state. A possible explanation is that 
both the cavity loss–induced and qubit state–induced errors lead to a 
mixed state ​​(∣⟩⟨∣)​​ ⊗n​ / 2 + ​(∣− ⟩⟨− ∣)​​ ⊗n​ / 2​, while an even cat state 
​𝒩(​∣⟩​​ ⊗n​ + ​∣− ⟩​​ ⊗n​)​ has a higher fidelity with this mixed state than 
that for an odd cat state ​𝒩(​∣⟩​​ ⊗n​ − ​∣− ⟩​​ ⊗n​)​

	​​
​F​0​ n​( ) = ​ 

1 + exp(− 4n ​∣∣​​ 2​ ) + 2exp(− 2n ​∣∣​​ 2​)
   ───────────────────────   

2 + 2exp(− 2n ​∣∣​​ 2​)
 ​ ,

​    
​F​1​ n​( ) = ​ 

1 + exp(− 4n ​∣∣​​ 2​ ) − 2exp(− 2n ​∣∣​​ 2​)
   ───────────────────────   

2 − 2exp(− 2n ​∣∣​​ 2​)
 ​

 ​​	 (3)

In Eq. 3, the difference terms scale exponentially with the cat size 
n∣2∣2, predicting a reduced infidelity difference between even and 
odd cat states with larger sizes.

As discussed before, multipartite states with more superposition 
and entanglement structures can be synthesized by rotating the qubit 
to different states before the reflections of coherent-state photon 
pulses. As a proof of principle, we prepare ∣⟩∣⟩ ± ∣− ⟩∣ − ⟩ 
type of cat states by inserting R−y() rotation between two succes-
sive reflection pulses. In the experiment, we take  = , the resulting 

Fig. 2. Multipartite cat states. (A and B) Three-dimensional plots of Wigner functions of the single-party even and odd cat states with  = 1.07, obtained when the qubit 
is measured in ∣0⟩ and ∣1⟩, respectively. (C and D) The real part of the density matrices for even and odd bipartite cat states with  = 0.72 when the qubit is projected 
in ∣0⟩ and ∣1⟩, respectively. The itinerant photon states are reconstructed with a maximum-likelihood quantum state estimation in Fock basis. For clarity, we plot the 
obtained density matrices in the cat basis ∣±⟩ ∝ ∣⟩ ± ∣− ⟩ with small population outside these states not shown. (E and F) The real part of the density matrices for 
bipartite cat states when inserting a qubit  rotation between the two successive reflections of microwave photons, conditioned on the qubit measured in ∣0⟩ and ∣1⟩, 
respectively. The  rotation refocuses some of the qubit dephasing, resulting in improved fidelities of the generated cat states. (G and H) The real part of the density 
matrices for even tripartite and quadripartite cat states with  = 0.72, conditioned on the qubit measured in ∣0⟩. The matrix elements of the corresponding ideal states 
are indicated with the transparent boxes. The fidelity of the flying cat states compared to the corresponding ideal states are also labeled.
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density matrix is shown in Fig. 2 (E and F), with a fidelity of 0.80 and 
0.71 for the bipartite state conditioned on the qubit in ∣0⟩ and ∣1⟩, 
respectively. From the experimental results, a systematically improved 
state fidelity can be observed for the cat states with the qubit  rota-
tion than that of the corresponding odd or even cat states. This can 
be explained by the fact that the additional  pulse refocuses some 
of the qubit dephasing during the cat state preparation, leading to 
an effectively longer qubit dephasing time and, thus, smaller errors. 
Such a refocusing effect can be well produced from the numerical 
simulation in section S4. These results demonstrate the great poten-
tial of this scheme for the preparation of generalized multipartite 
cat states more than merely even or odd cat states.

Multipartite quantum entanglement
To verify the existence of quantum entanglement of the prepared 
states, we calculate localizable entanglement between the first and 
the last itinerant photonic modes. The full density matrix is reduced 
by projecting other photonic modes into the eigenstates of the oper-
ator ​x  =  (​a​​ †​ + a ) / ​√ 

_
 2 ​​, leaving a set of bipartite matrices. Note that 

these projections are purely mathematical operations on the measured 
density matrix but not real measurement operations using homo-
dyne detections. In this way, we estimate a lower bound on the lo-
calizable entanglement (40, 41). An optimized lower bound on the 
localizable entanglement shall be given by comparing over all possi-
ble local measurement strategies, which is beyond the scope of this 
work. We calculate negativity with the partial transpose of the re-
duced density matrix, and the localizable entanglement N is quanti-
fied by the weighted summation of the negativities of these matrices, 
which is a metric for the existence of quantum entanglement if N is 
larger than zero (see more details in section S3E). In Fig. 3, the scatter 
plots show the localizable entanglement of the experimentally pre-
pared multipartite cat states. The statistically positive values clearly 
demonstrate the existence of quantum entanglement in the multi-
partite flying photonic states. We note that the calculated localiz-
able entanglement for an ideal multipartite cat state of n = 4 is close 
to 0, which does not necessarily mean the absence of entanglement 

but is mainly due to the loose lower bound taken in this work. An 
optimized lower bound can be acquired by choosing a more suitable 
projection basis (41, 42).

Hybrid quantum entanglement
The Schrödinger’s cat state essentially describes hybrid entangle-
ment between discrete-variable states (the superconducting qubit) 
and multipartite continuous-variable states (itinerant microwave 
photon fields) (43–45), as shown in Eq. 1. We measure entangle-
ment witness between the superconducting qubit and the itinerant 
microwave photonic modes based on a joint quantum state to-
mography (38). By replacing the /2 qubit rotation in Fig. 1B with 
R−y(0), R−y(/2), R−x(/2), R−y(), one can get the set of joint mo-
ments 〈a†a〉,〈a†ax〉,〈a†ay〉,〈a†az〉, respectively. The density matrix of 
the experimentally prepared qubit-cat system can thus be obtained 
with a maximum likelihood state estimation (38), for which the pho-
tonic part density matrix is plotted in cat basis for convenience. As 
shown in Fig. 4 (A and B), compared with the corresponding ideal 
states, we measure a fidelity of 0.59 for the qubit and single-party 
cat hybrid system and a fidelity of 0.58 for the qubit and bipartite cat 
system. The nonvanishing off-diagonal elements in the density ma-
trices demonstrate a coherent superposition of the qubit and the mi-
crowave cat state. To witness the existence of quantum entanglement 
in the hybrid system, we calculate negativity n on the basis of the 
reconstructed density matrix, as N1 = 0.192 ± 0.014 for the qubit 
and single-party cat system and N2 = 0.135 ± 0.010 for the qubit and 
bipartite cat system. The significant positive values unambigu-
ously verify quantum entanglement between the qubit state and the 
continuous-variable photonic modes.

DISCUSSION
In summary, we have presented a highly scalable approach to deter-
ministically generate flying multipartite cat states in microwave re-
gime. By reflecting coherent-state photon pulses from a microwave 
cavity containing a superconducting qubit, we have successfully pre-
pared flying multipartite cat states of microwave photons containing 
up to four photonic modes. The existence of quantum entanglement 
in the multipartite cat states and in the qubit-cat hybrid states is ver-
ified through a full quantum state tomography of the qubit state and 
the multipartite photonic states. Multipartite cat states with improved 

Fig. 3. Localizable entanglement of multipartite cat states. The deduced local-
izable entanglement as a function of the number of photonic mode n. Localizable 
entanglement is calculated by projecting the photonic modes apart from the first 
and the last one to the eigenstates of the operator ​x  =  (a + ​a​​ †​ ) / ​√ 

_
 2 ​​ and calculating 

the negativities on the basis of the reduced bipartite density matrices. The results 
for even or odd cat states (corresponding to conditioned qubit state ∣0⟩ and ∣1⟩, 
respectively) are given in red or black, respectively. The scatter plots give the ex-
perimental results. The dotted lines are the theoretical results of the corresponding 
ideal states. The solid lines give the theoretical results considering the possible 
experimental loss and decoherence. The error bars are extracted from the SD of 
repeated measurements with a sampling number of 3 × 107.

Fig. 4. Quantum entanglement of Schrödinger's cat with a qubit. (A) The real 
part of the measured joint density matrix for the qubit-photon Schrödinger’s cat 
state. (B) The real part of the measured joint density matrix for the qubit-photon-
photon Schrödinger’s cat state, which is an entangled state of the qubit and bipartite 
flying cat state. The matrix elements of the corresponding ideal states are indicted 
with the transparent boxes. The fidelity of the flying Schrödinger’s cat states com-
pared to the corresponding ideal states are also labeled. The photonic part of the 
hybrid system is plotted in cat basis for convenience.
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fidelity and larger scale can be obtained by reducing the cavity loss 
and improving the qubit coherence. In addition, considering that 
error correction codes (32, 46, 47) can be implemented on those cat 
states, one could envision an extensive application of multipartite 
cat states in quantum technologies, including demonstration of various 
quantum metrology and quantum information processing protocols 
based on cat states (22–26, 31–33).

MATERIALS AND METHODS
Sample parameters
The superconducting qubit is made from an aluminum film on a 
sapphire substrate with standard microfabrication techniques. The 
qubit is placed at the center of a three-dimensional aluminum rect-
angular microwave cavity. The out-coupling rate of the cavity can 
be precisely tuned by adjusting the length of a one-dimensional 
transmission line extended into the cavity. The sample is cooled to 
T ~ 20 mK in a dilution refrigerator for measurements.

The energy relaxation time (T1) and coherence time (T2) for 
qubit excited state ∣1⟩ is about 20 and 6 s, respectively. The cavity 
dispersive shift is measured to be /2 = − 1.05 MHz. The cavity 
out-coupling rate is tuned to be r/2 = 2.23 MHz, and the internal 
loss rate is measured as i/2 = 0.22 MHz. The coupled system ful-
fills the optimal condition of tot ≈ 2 ∣  ∣. In Fig. 1C, one can see 
that at the bare frequency of the cavity (indicated by the dotted line), 
the reflection phase difference when the qubit is in ∣0⟩ and ∣1⟩ 
reaches , which agrees well with theoretical prediction based on 
our device parameters (the black curve). The qubit state readout 
fidelity in our experiment is determined to be [P(0|0) + P(1|1)]/2 = 
97.0%, where the readout error for the qubit in the ground state (or 
in the excited state) is measured to be D0 = 1 − P(0|0) = 2.69% [or 
D1 = 1 − P(1|1) = 3.27%].

The cavity reflection signal is amplified successively by a Josephson 
junction parametric amplifier (JPA) (48, 49), a high-electron-mobility 
transistor amplifier, and two microwave amplifiers at the room 
temperature before being acquired with a homodyne setup. The JPA is 
working in a phase-preserving mode with a gain of 16 dB around 
the cavity frequency, yielding an overall circuit detection efficiency 
1/(nnoise+1) = 20% with a noise photon number nnoise = 4.

Quantum state tomography of multipartite cat state
The quantum state of the itinerant photonic modes can be recon-
structed directly from the measured histograms of the complex am-
plitudes (38). For each of the photonic mode m, we measured the 
complex amplitude Sm = Im + iQm (m = 1,2, …, n), where n rep-
resents the number of photonic modes. The measured complex am-
plitude contains both the signal photons to be characterized and 
the noise.

First, we need to reconstruct the noise mode h. We prepare the 
signal photon state as a vacuum state and measure the complex 
amplitude Sm,vac. For each mode m, we record a two-dimensional 
histogram Dm,vac(I, Q) of the measured complex amplitudes. 
The histogram also represents the probability distribution of a 
positive operator–valued measure (POVM) set ​{​​m​ j,k​}​, where ​​​​m​ j,k​  = ​
​​ −1​∣ = ​I​m​ i  ​ + i ​Q​m​ i  ​​⟩​​​⟨​​ = ​I​m​ j  ​ + i ​Q​m​ j  ​∣​​; here, the subscript m indicates 
the photonic mode, and the superscripts j and k indicate the jth and 
kth bins of the histogram. With the measured probability distribu-
tion Dm,vac(I, Q) and the POVM set ​{​​m​ j,k​}​, we can reconstruct the 
noise state h with a conjugate-gradient accelerated projected-gradient 

(CG-APG) maximum likelihood estimation algorithm (39). The most 
likely noise state h given by the measured histogram is the one that 
maximizes the likelihood function

	​​ F(​​ h​​ ) = ​ ∑ 
j,k,m

​​​ ​D​ m,vac​​(I, Q ) ln(Tr( ​​m​ j,k​ ))​​	 (4)

In our experiment, the noise mode is reconstructed with a 
cutoff photon number of 44, and the reconstructed noise state is 
very close to a thermal state ​​​​ h​​ = ​∑ n=0​ ∞ ​​ ​ n​noise​ 

n  ​ / ​(1 + ​n​noise​ 
n  ​)​​ n+1​∣n​⟩​​​⟨​​n∣​​ with 

nnoise = 4.
To reconstruct the prepared n-partite cat state, we record the 2n-

dimensional histogram Dp(I, Q) = D(I1, Q1, I2, Q2 … , In, Qn). The his-
togram also corresponds to the probability distribution of the POVM 
set, {p}, where p = ⊗mm = S1 = I1 + iQ1S2 = I2 + iQ2 … Sn = In + iQn. 
In this case, ​​​ ​S​ m​​​​ = ​​​ −1​ ​D​ =​S​ m​​​​ ​​ h​​ ​D​=​S​ m​​​ 

† ​​ , with D = Sm = exp (a† − *a) 
as the displacement operator and h as the reconstructed density 
matrix of noise mode. Again, the most likely propagating photonic 
state cat can be reconstructed with the CG-APG maximum likelihood 
estimation algorithm by maximizing the likelihood function

	​ F(​​ cat​​ ) = ​∑ 
p
​ ​​ ​D​ p​​(I, Q ) ln(Tr(​​ cat​​ ​​ p​​ ))​	 (5)

In the experiment, we collect the complex amplitudes of the 
itinerant photonic modes with a sampling number of 3 × 107. As for 
the state reconstruction, we use a cutoff photon number of 8 for 
single-party, bipartite, and tripartite cat states and a cutoff photon 
number of 5 for quadripartite cat cases. Note that we use  = 0.72 
for the generation of multipartite cat states, a cutoff photon num-
ber of 5 is much larger than the average photon number of each 
mode ∣∣2 = 0.52, which indicates that photon number truncation 
is sufficient enough.

Joint tomography of Schrödinger’s cat states and a qubit
A joint quantum state tomography is applied to the entangled sys-
tem to characterize the quantum entanglement between the qubit 
and the flying cat (38). The basic idea is to measure the photon field 
when projecting the qubit state in different bases. To this aim, we 
perform the measurement in four different qubit bases by using dif-
ferent unitary qubit rotations Rb(b), instead of the /2 pulse in 
Fig. 1B, as R−y(0), R−y(/2), R−x(/2), R−y(); accordingly, the qubit 
is measured by Pauli matrices {I, x, y, z}.

We can calculate the moments ​〈 ​(​S​​ †​)​​ 
m

​ ​S​​ n​ 〉∣​​i​ 
0​​ and ​〈 ​(​S​​ †​)​​ 

m
​ ​S​​ n​ 〉∣​​i​ 

1​​ 
for the experimentally measured complex amplitudes S = I + 
iQ, where ​​​i​ 

0(1)​​ means that the specific moment is calculated with the 
complex amplitude S when the qubit is measured by Pauli matrix 
i(i = I, x, y, z) with a measurement result of ∣0⟩ (or ∣1⟩) (38).

The measured S contains both the reflected photonic modes a 
and the noise h. We can get photon state moments ​〈 ​(​a​​ †​)​​ 

m
​ ​a​​ n​ 〉∣​​i​ 

0​​ and 
​〈 ​(​a​​ †​)​​ 

m
​ ​a​​ n​ 〉∣​​i​ 

1​​ by removing the influence of the noise (38). The final 
qubit-photon joint moments 〈(a†)mani〉 can thus be calculated by 
​〈 ​(​a​​ †​)​​ 

m
​ ​a​​ n​ ​​ i​​ 〉  = ​ P​ 0​​ ​​ 0​​ 〈 ​(​a​​ †​)​​ 

m
​ ​a​​ n​ 〉∣​​i​ 

0​ + ​P​ 1​​ ​​ 1​​ 〈 ​(​a​​ †​)​​ 
m

​ ​a​​ n​ 〉∣​​i​ 
1​​, where P0(1) 

is the probability of the qubit state measured in ∣0⟩ (or ∣1⟩) under 
i and 0(1) is the eigenvalue of the measurement result for i. For I, 
0 = 1 = 1, while for other Pauli matrices, 0 = 1 and 1 = − 1. Last, 
by using the maximum-likelihood method with the log-likelihood 
function

 ​​L​ log​​  =  − ​ ∑ 
n,m,i

​​​ ​  1 ─ 
​​m,n,i​ 

2 ​  
 ​ ​∣〈 ​(​a​​ †​)​​ 

m
​ ​a​​ n​ ​​ i​​ 〉 − Tr [ ​​ q−cat​​ ​(​a​​ †​)​​ 

m
​ ​a​​ n​ ​​ i​​ ]∣​​ 

2
​​	 (6)
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the experimental state q−catt can thus be reconstructed, where m,n,i 
is the SD of 〈(a†)mani〉 obtained from repetitive measurements. 
For the entangled state between the qubit and two photons, we use 
the same method but using the moments of two photonic modes 
​〈​(​S​1​ †​)​​ 

m
​ ​S​1​ n​ ​(​S​2​ †​)​​ 

i
​ ​S​2​ j ​〉​. In the experiment, the complex amplitudes 

of the photonic modes for each of the four qubit bases are sampled 
3 × 107 times. We calculate the moments up to m + n = 6 (or m + n + 
i + j = 6) and use a cutoff photon number of 9 (7) for the reconstruc-
tion of the qubit and single-party cat (bipartite cat) entangled states.

Cat basis representation
As can be seen from the discussion on state tomography, the state 
space would be very large for the multipartite cat state in Fock basis. 
For example, the reconstruction of quadripartite cat state with a cut-
off photon number of 5 yields a state space dimension of 1296, which 
is inconvenient for visualization. In fig. S5, we plot the density matrix 
of even cat states in Fock basis, in which the nonzero matrix elements 
are already very blurred and hard to be compared. To have an intu-
itive and clear comparison between the experimental state and the 
ideal state, especially considering the fact that the multipartite cat 
state describes a Greenberger-Horne-Zeilinger-type entanglement 
of coherent states, we plot the density matrix obtained in Fock basis 
to a coherent state–based cat basis. The cat basis can be given as 
{{∣±1±2…±n⟩ = (∣1⟩ ± ∣ − 1⟩) ⊗ (∣2⟩ ± ∣ − 2⟩) ⊗ … ⊗ (∣n⟩ ± ∣ − n⟩)}|, 
where i(i = 1,2…, n) represents the ith coherent mode and n is the 
number of photonic modes.

It is worth noting that the cat basis is orthogonal but not com-
plete, which that means some population may leak out of the sub-
space resulting in Tr{cat} ≤ 1. For single-party even (odd) cat state, 
we estimate that a trace in the subspace is about 94% (92.5%), and 
for quadripartite even (odd) cat state, we estimate that a trace in the 
subspace is about 80.6% (73.6%). Considering the fact that we only 
use the cat basis for visualization, such a completeness of the cat basis 
representation is already enough to make an intuitive comparison 
between the experimental state and the ideal state.

Error budget
We have developed an error model for the cat state preparation pro-
cess (see section S4A for details), based on which we can make an 
error budget for the experimental cat states, as shown in the table S2, 
which includes the infidelity induced by cavity loss during the re-
flection process, the qubit decay/dephasing, and qubit state measure-
ment error.

From table S2, we could find that the cavity loss–induced error 
contributes a lot in the total infidelity of the prepared states, espe-
cially for multipartite cat states or cat states with a large size. A di-
rect way to improve the fidelity of the generated state is to reduce 
the cavity loss, which is crucial for the generation of multipartite cat 
states or cat states with a large size and a high fidelity. The internal 
loss rate of the cavity used in the experiment is i = 0.22 MHz, which 
may be induced by the surface defects of our cavity or by the coupled 
qubit, including substrate loss and mechanical instability. If i can 
be reduced by an order of magnitude to about 20 kHz, the cavity 
loss–induced error can be reduced by an order of magnitude from 
about 0.2 for single-party even cat and 0.37 for quadripartite even 
cat to about 0.01 for single-party case and 0.02 quadripartite case 
(see section S4B for details). Note that reducing i to around 20 kHz 
is doable considering that the state of the art cavity loss can be well 
controlled to below 1 kHz by chemical etching (50).

In table S2, one could find that the qubit decay/dephasing–induced 
infidelity increases with increasing number of parties, which is easy 
to understand considering the fact that the state preparation time 
gets longer with increasing number of parties, and thus the qubit 
suffers more decay and dephasing, leading to a cat state with more 
errors. In our experiment, the qubit state–induced error is dominated 
by qubit dephasing, because for our sample, T2 is closer to the ex-
perimental sequence duration and much shorter than T1.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abn1778
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