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To improve the life quality of forearm amputees, prosthetic hands with high accuracy, and

robustness are necessary. The application of surface electromyography (sEMG) signals

to control a prosthetic hand is challenging. In this study, we proposed a time-domain

CNN model for the regression prediction of joint angles in three degrees of freedom

(3-DOFs, include two wrist joint motion and one finger joint motion), and five-fold

cross validation was used to evaluate the correlation coefficient (CC). The CC value

results of wrist flexion/extension motion obtained from 10 participants was 0.87–0.92,

pronation/supination motion was 0.72–0.95, and hand grip/open motion was 0.75–0.94.

We backtracked the fully connected layer weights to create a geometry plot for analyzing

the motion pattern to investigate the learning of the proposed model. In order to

discuss the daily updateability of the model by transfer learning, we performed a second

experiment on five of the participants in another day and conducted transfer learning

based on smaller amount of dataset. The CC results improved (wrist flexion/extension

was 0.90–0.97, pronation/supination was 0.84–0.96, hand grip/open was 0.85–0.92),

suggesting the effectiveness of the transfer learning by incorporating the small amounts

of sEMG data acquired in different days. We compared our CNN-based model with four

conventional regression models, the result illustrates that proposed model significantly

outperforms the four conventional models with and without transfer learning. The offline

result suggests the reliability of the proposed model in real-time control in different days,

it can be applied for real-time prosthetic control in the future.

Keywords: convolutional neural networks, geometry plot, regression model, surface electromyography, transfer

learning

INTRODUCTION

The human hand plays a crucial role in many activities of daily living (ADL), therefore, loss of
the upper extremity could significantly impact functional independence (National Academies of
Sciences, 2017). To support the ADL of amputees, prosthetic hands were developed, which can
mimic human-hand motions to complete activities. Several studies have investigated the possibility
of controlling the prosthetic hand using surface electromyography (sEMG) signals because the use
of sEMG signals can directly utilize human neural pathways to restore ADL function (Scheme and
Englehart, 2011). For abled people, hand movements occur due to the contraction and relaxation
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of the forearm muscles controlled by the brain. When the
forearm is lost, sEMG signals of the remaining muscle or
electroencephalography (EEG) signal can be considered as a
control signal for prosthetic hands. When compared to EEG
signals, sEMG signals have higher accuracy and reliability
(Scheme and Englehart, 2011; Farina et al., 2014; Xia et al., 2018).
However, the method of using bio-signals (such as EEG or sEMG
signals) to control a robotic hand is still a challenge.

Many studies considered using pattern recognition via
conventional machine learning methods, such as support vector
machine (SVM), to perform motion classification (Yoshikawa
et al., 2006; Angkoon et al., 2012). Some researches trained
regression predictors using deep learning methods, such
as recurrent neural networks (RNNs), convolutional neural
networks (CNN), even a combination of RNNs and CNNs
(recurrent convolutional neural networks, RCNN) (Atzori et al.,
2016; Wang et al., 2016; Hu et al., 2018; Xia et al., 2018).

Some researchers have used CNN-based models to perform
activity recognition and motion classification. Jiang and Yin
(2015) proposed a deep convolutional neural network (DCNN)
to learn the optimal features from activity images for motion
recognition, and obtained high recognition accuracy. Rehman
et al. (2018) found that CNN can be used to recognize sEMG
patterns for long-term classification even though the sEMG
signal is not stable. They extracted four time-domain features and
compared them with classical machine learning methods, such as
linear discriminant analysis (LDA), stacked sparse autoencoders
with features (SSAE-f), and SSAE with raw samples (SSAE-r).
CNN was found to be better. Huang and Chen (2019) proposed
a hybrid structure combining CNN with LSTM to form a
CNN–LSTMmodel and used the time-frequency domain feature
extracted from the EMG signal to classify hand movements. The
model was compared with the physical features of conventional
methods such as SVM with spectrogram. Ameri et al. (2019)
developed a regression-based CNN network for online EMG
estimation of wrist motions and compared them with SVM.
Bai et al. (2021) proposed a hybrid CNN-LSTM model that
effectively combines feature extraction and time series regression
for deep learning using sEMG to recognize hand gesture, the
experiment results shown that the EMG signal processed by Fast
Fourier Transform (FFT) as the characteristic value has better
performance, and complex gesture signals can be accurately
predicted. In addition to classifiers, CNN is also widely used in
regression analysis of hand motions. Koch et al. (2020) chose
RNNs to do hand movements regression from sEMG signal, the
results proved that even with the relatively simple networks the
hand gestures can be regressed quite accurately. Bao et al. (2021a)
proposed a CNN-LSTM framework named Deep Kalman Filter
Network (DKFN) to estimate wrist and finger kinematics using
sEMG, the results shown 0.6–0.8 R2 result of fingers kinematics
and 0.7–0.9 R2 of wrist kinematics. However, all the studies that
used CNN to do classification or regression analysis without
discussing the learning methodology of the model from sEMG
signals. Moreover, in sEMG pattern recognition, the model
accuracy decreases in another day due to the electrode shift
or skin impedance, therefore, updating the control system for
different day is significant.

Nowadays, modern researches start to use transfer learning
to deal with the possible changes in sEMG signals in different
days, because transfer learning requires only a short training
session to recalibrate the system for new sEMG signals. The new
source of information can be leveraged to build a more precise
and reliable classifier or regression model for a new dataset,
transfer learning allows the capture of more general and robust
features, so that the model is then able to use these general
features to build a more effective performance of a new sEMG
activity. Côté-Allard et al. (2017) combined CNN with transfer
learning to classify hand gestures from sEMG, and the model
was robust and achieved average classification accuracy of 97.81%
on seven gestures. Ameri et al. (2020) proposed an approach
based on CNNs with transfer learning to overcome the lack of
robustness to confounding factors in EMG pattern recognition-
based control, including CNN classification and regression
model. Thus, transfer learning not only has effect on classification
model, but also can be applied to regression prediction. (Bao
et al., 2021b) proposed a state-of-the-art transfer learningmethod
with regression supervised domain adaptation (SDA) for wrist
kinematics estimation using sEMG signal, effectively reduced the
burden of regular model re-training/recalibration under domain
shift effects. In our work, we considered to use transfer learning
for checking the proposed model robustness in different days.

Although it is difficult to discuss the weight of the CNN
layers for analyzing muscle anatomy and motion activation,
Stapornchaisit et al. (2019) used a topology graph to plot the
weight of the independence component (IC) to investigate the
relationship between the weight of each channel. Thus, we can
attempt an analysis of the movement area on both sides of the
human forearm by backtracking from the weight parameters in
the final layer of the proposed model.

In this research, we proposed a high-accuracy CNN-based
regression model to predict forearm joint angles include two
wrist motions and one finger motion, and discussed the
learnability and high stability of the proposed model for
amputees to update the parameters every day. In our experiment,
sEMG data and joint angles were collected from participants
at the same time as data. As for the sEMG signal, the muscle
activities which related to wrist motion and finger motion
are mixed, it is difficult to separate these motion. Thus,
we designed three degrees-of-freedom (3-DOFs, include wrist
flexion/extension and pronation/supination as wrist motions and
hand grip/open as finger motion) joint angles as the output of
the proposed CNN model based on multi-array sEMG input, the
output of the three joint angles will be sent to prosthetic hand
for controlling in the future. Then, we used the backtracking
method to create a geometry plot for muscle area analysis. We
designed a second experiment for smaller amount of dataset
and checked that whether transfer learning can improve the
regression prediction accuracy. We compared our model with
four conventional regression model with and without transfer
learning respectively, the conventional regression models are:
linear regression (LR), support vector regression (SVR), k-
nearest neighbors (KNN) and decision tree regression (DT),
and the model comparison results proved that proposed model
significantly outperforms conventional regression models. This
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TABLE 1 | Participant information.

Participant ID Age(years) Handedness Gender

S1 24 Right Male

S2 23 Right Male

S3 21 Right Male

S4 23 Right Female

S5 23 Right Male

S6 26 Right Male

S7 43 Right Male

S8 25 Right Male

S9 24 Right Male

S10 25 Right Male

paper shows the stability and superiority of the proposed model,
and we consider it can be applied for future real-time prosthetic
hand control.

MATERIALS AND METHODS

Participants
Ten right-handed participants (S1–S10) with intact limbs
participated in this study; they were nine males and one
female, aged 21–43. Data from the participants were acquired
at the Tokyo Institute of Technology, Japan. The information
of the participants is presented in Table 1. The study protocol
was approved by the ethics committee of the Tokyo Institute
of Technology and was conducted in accordance with the
Declaration of Helsinki. All participants were asked to read
the participant information sheet and provide written informed
consent to participate in the study.

sEMG Data Acquisition
We used a bipolar multi-array electrode with 32 channels
(Yasuharu et al., 2020) to acquire EMG signals (SMK Corp.,
SEIREN Co., Ltd.). Figure 1 shows the multi-array electrode
sleeve, the left and right figures show the wrist flexor and wrist
extensor sides, respectively. There are 40 electrodes (5× 8), each
five electrodes measure four channels (two electrodes are shared
by one channel), and one reference. The flexor side consists of 16
channels, including ch5–ch8, ch13–ch16, ch21–ch24, and ch29–
ch32. The extensor side consists of 16 channels, including ch1–
ch4, ch9–ch12, ch17–ch20, and ch25–ch28. The two sides are
arranged as a 4 × 4 matrix, and the channel numbers help us
to understand the position of each channel. The ADC resolution
of the multi-array electrode is 16 bit. The sEMG signal was sent
to PC by a Bluetooth module. We acquired raw sEMG signal
from this system that consists of a dataset in our experiment,
and lab streaming layer (LSL) was used to synchronize data.
Before the experiment, we use water to make the sensors and
participants’ skin perfectly fit, and check the sEMG signal quality.
We chose 500Hz as the sampling frequency (Yasuharu et al.,
2020) due to the limited signal transmission speed of Bluetooth
low energy, and we do not need to adjust the electrode location
for each participant.

Joint Angle Acquisition
Weused the PerceptionNeuronMotion Capture system (Noitom
Ltd., China) to collect joint angles when participants performed
specified motions. This system is a type of motion capture device
that is applied to movement analysis for film makers, game
developers, sports analysis, and biomechanics research related
to this work (Kim et al., 2019). In our work, we used only the
right hand and right forearm parts. Each participant was required
to wear the glove with motion capture markers (Figure 2B)
and complete calibration to build a skeleton model on the Axis
Neuron software provided by Noitom Corp. After successful
calibration, we can check the rotation angles by choosing the
specific name such as “RightHand,” etc. (Yuanhui, 2014) and axis
of rotation (X, Y, or Z axis).

While using the Axis Neuron, we chose the BVH data
type as the data format, which includes joint hierarchy and
movement data. The sensory data of each joint were stored in
the corresponding joint local coordination system, body joints
of Perception Neuron were arranged as tree structures, and
children joints were connected corresponding to their parent
joint (Chen et al., 2017). Each joint angle data in the BVH
data is calculated from the children joint coordination system
to the parent joint coordinate system by internally multiplying
the transformational matrix. Finally, the data are shown in
global coordinates.

Figure 2A shows the 3-DOFs movements in our study (right
hand): black dash line shows the DOF of wrist flexion (WF)
and wrist extension (WE); red dash line shows the DOF of
pronation (P) and supination (S); blue dash line shows the DOF
of hand grip (HG) and hand open (HO). WF/WE and P/S are
wrist motion, HG/HO is finger motion. Figure 2B shows the
required markers (the red points,: RightForeArm, RightHand,
and RightMiddle1) to acquire the joint angles, “RightHand”
marker was to acquire the joint angles of WF and WE motion,
“RightForeArm” marker was to acquire the joint angles of P and
S motion, and “RightHandMiddle1” marker was to acquire the
joint angles of HG and HOmotion.

According to the Neuron Coordinate document provided
by Noitom Ltd. and Aiuto Co. Ltd., Japan (Aiuto Co., Ltd.,
2020), the global coordinates of the BVH data are shown
in Figure 2B, where the green, red, and yellow axes are the
Z-axis, X-axis, and Y-axis, respectively. Thus, WF/WE joint
angles are obtained based on “RightHand” marker rotating
around the Z axis, P/S joint angles are obtained based on
“RightForeArm”marker rotating around the X axis, and HG/HO
joint angles are obtained based on “RightMiddle1” marker
rotating around the Z axis. The value of the angle is positive
when the rotation is counterclockwise and negative when the
rotation is clockwise. Therefore, the joint angles of WF, P,
and HG are positive angles, and that of WE, S, and HO are
negative angles.

The sampling rate of data collection from the Perception
Neuron Motion Capture system was 120Hz. During the
experiment, 3-DOF joint angles and sEMG signal were collected
at the same time and synchronized by LSL system. Figure 3 shows
an example of the synchronization between sEMG signal and
joint angles.
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FIGURE 1 | Multi-array electrode forearm sleeve (32 channels, right-handed). The red parts show the positions of 32 channels. Left: Wrist flexor side after wearing the

sleeve, includes ch5–ch8, ch13–ch16, ch21–ch24, and ch29–ch32. Right: Wrist extensor side after wearing the sleeve, includes ch1–ch4, ch9–ch12, ch17–ch20,

and ch25–ch28. The matrix represents the channel distribution on multi-array electrode sleeve and the number represents the channel number. Geometry plot for

motion analysis is based on the two matrices.

Experiment Protocol and Data Processing
Participants (Table 1) were asked to sit on a chair in front
of a screen. After calibrating the joint angles on Perception
Neuron Motion Capture system, we checked both the quality
of joint angles and sEMG signal. Before the experiment, each
participant underwent trial sessions to familiarize themselves
with the experimental process (Figure 4). After completing each
trial, the participants were asked to relax for approximately 2min
before the next trial to prevent fatigue.

For ensuring long-term stability that can be used in the real-
time control of a prosthetic hand, we must ensure high accuracy
and robustness in another day. We invited the 10 participants
to conduct experiment, and five of them were invited to do
the experiment again with smaller amount of dataset. Transfer
learning was applied to solve this problem, this process is called
the second experiment in this paper. In order to distinguish
the second experiment from the previous experiment (with 10
participants and larger dataset), we call the previous experiment
initial experiment.

During the initial experiment, we acquired sEMG signal
and joint angles at the same time. Each participant performed
10 trials, the following order of each trail shown as follows:
WF/WE twice, P/S twice, and HG/HO twice. At the beginning
of the experiment, participants performed their hand as a central

position (CP). The screen then displayed the movement to be
performed, and the participants had to rotate their forearm or
finger joint from the CP as per the displayed movements. For
each motion, participants rotated their hand to the maximum
angle that can be reached, and rotated it back to the CP. The
next motion is performed as per the following animation. For
example, for WF/WE, the order of motion should be as follows:
CP-WF-CP-WE-CP. Figure 2B shows a participant performing
the experiment and motions according to the animation on the
screen. The experimental paradigm was created using MATLAB
(The MathWorks, Inc., USA). The second experiment also used
the same experimental paradigm, totally 5 trials to reduce the
dataset amount.

After the data acquisition step, we used the filter proposed
in (Koike and Kawato, 1995) to process the absolute value of
the raw sEMG signal to the integrated EMG (IEMG) signal, and
normalized the IEMG signal from 0 to 1. Figure 3 shows the pre-
processed result of the raw sEMG signal and the synchronized
joint angle data (from participant S1). In Figure 3A, blue line is
the raw sEMG (ch10), and orange line is the filtered EMG signal.
Combining Figures 3A,B, we can see clear data synchronization
between EMG and angle data via LSL time stamps. Owing
to the difference in sampling rate between the filtered sEMG
signal and joint angle data, we resampled the sEMG signal
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FIGURE 2 | Illustration of joint angle data collection. (A) The 3-DOFs movements (right hand) in this study: black dash line shows the DOF of wrist flexion (WF) and

wrist extension (WE); red dash line shows the DOF of pronation (P) and supination (S); blue dash line shows the DOF of hand grip (HG) and hand open (HO). WF/WE

and P/S are wrist motion, HG/HO is finger motion. (B) Data collection with Perception Neuron Motion Capture Glove with 9 markers (right hand). The red point here

shows the focus markers we chose. While performing the experiment, we chose “RightForeArm” marker to acquire joint angles of pronation and supination (P/S),

“RightHand” marker to acquire joint angles of wrist flexion and wrist extension (WF/WE), and “RightHandMiddle1” to acquire joint angles of hand grip and hand open

(HG/HO) motion. The coordinate here shows the BVH global coordinates, red axis is X axis, yellow axis is Y axis, and green axis is Z axis. WF/WE angles are obtained

(Continued)
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FIGURE 2 | based on “RightHand” marker rotating around the Z axis; P/S angles are obtained based on “RightForeArm” marker rotating around the X axis; and

HG/HO angels are obtained based on “RightMiddle1” marker rotating around the Z axis. Counterclockwise rotation shows positive angle and clockwise rotation

shows negative angle, i.e., WF, P, and HG angles are positive values, and WE, S and HO angles are negative values.

FIGURE 3 | EMG signal with joint angle data (participant S1). (A) Pre-processed sEMG signal with raw sEMG signal. The data is obtained from ch10. Blue line

represents raw sEMG signal, orange line represents filtered EMG signal before the normalization. The horizontal axis represents the duration time of one trial, vertical

axis represents the amplitude of sEMG signal. (B) Collected 3-DOF joint angle data using Perception Neuron Motion Capture system.

FIGURE 4 | Experiment paradigm for one trial. In each trial, participant should start from central position (CP), perform wrist flexion (WF) and wrist extension (WE) two

times, pronation (P) and supination (S) two times, and hand grip (HG) and hand open (HO) two times. After each motion, they should move their forearm to CP and

then perform the next motion. The screen displays the next motion to be performed.
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FIGURE 5 | Proposed CNN-based regression model. (A) Model structure. This model includes two layers: convolutional layer and fully connected (FC) layer. The input

matrix is 500ms time-domain EMG signal in 32 channels, as a 60 × 32 image. Here, the image is the filtered EMG signal from a participant performing the WF motion.

In the convolutional layer, there are six 60 × 1 filters, stride = 1, padding = 0, and activation function is tanh. The output after convolutional layer is six 1 × 32 feature

maps, then go through FC layer directly to get three joint angles as 3 × 1 vector as output of this model. (B) Details description of FC layer. After the six feature maps

were sent to FC layer. They connect end to end to become a 192 × 1 sequence. Each red point shows one transposed feature map with 32 × 1 represents a neuron.

The sequence performs dot multiplication on three different weight (W) and sum the corresponding bias (b) to obtain different joint angles. Blue dashed line represents

W1 and b1, which is related to WF/WE joint angle, green dashed line represents W2 and b2, which is related to P/S joint angle, and purple dashed line represents W3

and b3, which is related to HG/HO joint angle.

data from 500Hz to 120Hz to match angle data from
perception neuron.

To aggregate as dataset, we used a window of 500ms to

segment sEMG data and joint angles, and the ideal dataset should
be a 60 × 32 matrix corresponding to a 1 × 3 vector with
3-DOFs joint angles. Hence, we calculated the mean value of
joint angles as target angles in the dataset. The interval of the

sliding window is 100ms, which means a 400ms overlap of the
data. After segmenting all the 10 trials of EMG data and joint
angle data, for the initial experiment, we randomly combined the

10 trials data into five groups of datasets to perform five-fold
cross validation. Then, the 10 trials data were aggregated into
five groups of time-domain datasets. For the second experiment,
there are 5 trails, one trial data is considered as a group with a
total of five groups for the five-fold CV.

CNN-Based Regression Model
CNN is the main architecture of deep learning for a multi-array
of data, such as images, signals, and languages. CNN works on
the local receptive field, shared weights, and pooling (Le, 2015).
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In this work, we proposed a regression model for joint angle
estimation based on CNN (Figure 5A). This model includes two
layers: a convolutional layer and a fully connected (FC) layer.
Similar to the conventional two-dimensional (2D) CNN, the
input is a time-domain matrix data, which we regard as a 2D
image. The input size is 60× 32, where 60 represents the number
of input sample that is 500ms (the sampling rate of the processed
EMG signals and joint angles are 120Hz); 32 represents the
number of channels.

In the convolutional layer, we designed the architecture as
a channel-wise CNN (CW-CNN), which was mentioned in
(Sakhavi et al., 2018), Discussion section will discuss the choice
of the convolutional layer. There are six channel-wise filters, and
each filter size is 60×1 in order to compress the time period
dimension from 60 to 1. The outputs of the convolutional layer
are six 1× 32 vector feature maps such that we can use backtrack
to easily analyze each channel. The activation function in this
layer is a tanh function, without any padding and max pooling
layer, and with a stride size of 1.

After the convolutional layer, the feature maps directly go to
the FC layer (Figure 5B). There are six 1 × 32 feature maps,
which are transposed and connected end-to-end to become a 192
× 1 vector. There are three groups of weight (W) and bias (b) in
this layer, each of which can be used to calculate one joint angle.
The 192× 1 vector input was used to obtain different joint angle
outputs using (1).

Anglei=WT
i ·fm+bi (1)

where i is the joint number and i= 1,2,3;Anglei is the joint angle;
Angle1 is the WF/WE joint angle; Angle2 is the P/S joint angle;
Angle3 is the HG/HO joint angle; fm is the feature map, which
is a fully connected feature map with a size of 192×1; and Wi is
the FC layer weight. Among them, W1 is related to the WF/WE
joint, W2 is related to the P/S joint, and W3 is related to the

HG/HO joint.Wi = {w
j
i}, where j= 1,2,. . . ,6 corresponds to one

feature map fmj with 32 weight numbers, and bi is a bias. After
the FC layer, the output of the regression model is a 3× 1 vector,
which includes three joint angles:WF/WE, P/S, andHG/HO. The
reason to choose the 3-DOFs angles as model output is that, in
the future control of prosthetic hand, the three joint angles will
be regarded as control command and sent to the three motors
respectively in prosthetic hand directly, so that to rotate each
motor to the corresponding angular position.

For the proposed CNN-based model, each trial was
individually trained to use k-fold cross-validation (k-fold
CV) (Stone, 1974; Rodríguez et al., 2010). Cross validation
is used to evaluate the predictive performance of a model,
particularly the performance of the trained model on new data,
which can reduce overfitting to a certain extent. Further, more
effective information can be obtained from limited data. The
k-fold CV reduces the variance by averaging the results of k
different group trainings; hence, the performance of the model is
less sensitive to the division of data. In this study, k = 5, i.e., we
trained and tested the dataset using a five-fold CV.

To evaluate the model using five-fold CV, we use the
correlation coefficient (CC), which is used to statistically measure

the strength of the relationship between two variables (Taylor,
1990). For example, in machine learning, CC is used to measure
the relationship strength between the estimated angle series and
measured angle series in a dataset. CC values range between−1.0
and 1.0, a correlation of 1.0 shows a perfect positive correlation
and−1.0 shows a negative correlation; CC= 0.0 shows no linear
relationship between the two series. Therefore, if we want to
train an ideal rotation angle predictor model, we should obtain
the CC result as approximately 1.0, i.e., for the predictions and
measurements to be positively correlated at a high level. The
equation of CC is shown in (2).

CC =

∑n
i=1

(

Xi−X̄
)

(Yi−Ȳ)
√

∑n
i=1

(

Xi−X̄
)2

√

∑n
i=1

(

Yi−Ȳ
)2

(2)

where X and Y are two series variables and n is the number of
samples. In this study, the dataset was divided into five-folds.
In every iteration, the proposed regression model was learned
using four-folds. The remaining fold was tested to calculate
performance indicators such as CC. Thus, we obtained five
evaluation values after the five-fold CV of a motion pattern, and
the average of the five results of each fold was calculated to obtain
the final testing result (Diamantidis et al., 2000; Sakhavi et al.,
2018), as shown in (3).

CC5=
1

5

5
∑

k=1

CCk (3)

Geometry Plot of FC Layer Weight
The geometry plot shows the weight of the feature map
(Stapornchaisit et al., 2019), which has a significant contribution
to the different forearm motions in the FC layer. Here, the
weights of the FC layer were separated into two parts and
distributed corresponding to channels (Figure 1) representing
the wrist flexor side and wrist extensor side, respectively. As
previously mentioned, in the FC layer, the size of weight Wi(i =

1, 2, 3) is a 192×1 vector and each w
j
i corresponds to one feature

map fmj, which has 32 weight numbers corresponding to the
channels. Thus, a high or low value of weight indicates the
importance of the channels for specific forearm movements. All
six feature maps contribute to the computation of joint angles
with the FC layer weight. To check the motion pattern using
weight, we can separate the FC layer weight into six 32× 1 weight
parts corresponding to feature maps and perform superposition
calculation as a 32 × 1 vector. We then arrange the 32 weight
numbers based on the 32 channels positions as the expected
geometry plot. To analyze the WF/WE motion, we plotted a
geometry plot based on W1; for P/S, we used W2; and for
HG/HO, we usedW3 (see Results Section and Figure 6).

RESULTS

Five-Fold Cross Validation Results
The model used for training was created using pytorch1.3.1,
GeForce RTX 2080 GPU, and CUDA10.1. For the training, we
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FIGURE 6 | Geometry plot of participant S1. Each group of geometry plot shows flexor side (left) and extensor side (right). The color bar shows the weight normalized

from −1 to 1. White color shows the channel does not contribute to motions, red color shows 0–1 and contributes to positive joint angles (WF, P, HG), and blue color

shows −1–0 and contributes to negative joint angles (WE, S, HO). The circles show the motion pattern position: green circle shows the motion pattern corresponding

to positive joint angles, and purple circle shows the motion pattern corresponding to negative joint angels. Under the geometry plot, the matrix shows the motion

pattern color with channel index.

TABLE 2 | CC results of five-fold cross validation (mean CC ± std).

Initial Experiment Second Experiment

WF/WE P/S HG/HO WF/WE P/S HG/HO

S1 0.9298 ± 0.0121 0.9500 ± 0.0259 0.8849 ± 0.0410 0.9746 ± 0.0089 0.9189 ± 0.0273 0.9183 ± 0.0292

S2 0.8928 ± 0.0269 0.9266 ± 0.0405 0.9413 ± 0.0465 - - -

S3 0.8721 ± 0.0311 0.8628 ± 0.0164 0.8229 ± 0.0488 - - -

S4 0.8525 ± 0.0457 0.8556 ± 0.0311 0.8484 ± 0.0186 - - -

S5 0.8755 ± 0.0298 0.7235 ± 0.0459 0.7765 ± 0.0331 - - -

S6 0.9017 ± 0.0271 0.8563 ± 0.0406 0.8915 ± 0.0485 0.9210 ± 0.0243 0.8434 ± 0.0712 0.9298 ± 0.0443

S7 0.9087 ± 0.0355 0.9323 ± 0.0169 0.7589 ± 0.0105 0.9247 ± 0.0106 0.9647 ± 0.0080 0.8864 ± 0.0310

S8 0.8636 ± 0.0178 0.9392 ± 0.0269 0.8086 ± 0.0152 0.9050 ± 0.0372 0.9507 ± 0.0259 0.8577 ± 0.0404

S9 0.8617 ± 0.0210 0.8223 ± 0.0213 0.8519 ± 0.0164 - - -

S10 0.8799 ± 0.0231 0.8445 ± 0.0191 0.8540 ± 0.0186 0.9107 ± 0.0272 0.9464 ± 0.0281 0.8665 ± 0.0398

Mean 0.8838 ± 0.0270 0.8713 ± 0.0284 0.8439 ± 0.0297 0.9272 ± 0.0216 0.9248 ± 0.0321 0.8918 ± 0.0369

* “-” means this participant did not participate in the second experiment.

used the Adam optimizer to update the model parameters to
minimize the loss function and mean-square error (MSELoss)
as our loss function. The learning rate was 0.001. In the initial
experiment, the training epoch was 15; For second experiment
dataset, training epoch was 5 for transfer learning.

The result of the five-fold CV was evaluated using the CC.
The mean CC values of all participants are listed in the left
part (initial experiment) of Table 2, and Figure 7 shows the box
plot corresponding to Table 1. An example of the comparison
between the estimated joint angles using the proposed regression
model and measured joint angles via the Perception Neuron
Motion Capture system are plotted in Figure 8, where the red
solid line represents the measured angles and green dashed line
indicates the estimated angles. This figure shows the prediction
result of S1, CC = 0.9465 for WF/WE joint angles, CC =

0.9686 for P/S joint angles, and CC = 0.9074 for HG/HO
joint angles.

We invited the participant S1, S6, S7, S8 and S10 to complete
the second experiment. The second experiment was conducted
two months after the initial experiment. We used the trained
model to test the new dataset directly to check the mean test
CC, we called this procedure as Direct Model Testing. As we
expected, the mean CC values are lower than the CC value in
initial experiment respectively (Figure 9, red bar), this is because
the magnitude and quality of the sEMG signal often differ grately
in another day. Then, we used the trained model and fixed the
convolutional layer, using transfer learning to check the model
via five-fold CV. The average CC results are listed in the right
part (second experiment) of Table 2. A comparison of the mean
CC results in initial experiment, direct model testing and second
experiment is shown in Figure 9, blue bar shows the mean
CC value in initial experiment, red bar shows the direct model
testing result, and the yellow bar shows the mean CC value in
second experiment. An example of the comparison between the
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FIGURE 7 | Box plot of five-fold CV results of all the participants according to Table 2. The red box is the CC result of WF/WE joint angles, the green box is the CC

result of P/S joint angles, and the blue box is the CC result of HG/HO joint angles.

estimated joint angles using the proposed regression model and
measured joint angles via Perception Neuron Motion Capture
are plotted in Figure 10, where the red solid and green dashed
lines represent the measured and estimated angles, respectively.
The Figure 10 shows the prediction result of S1, CC= 0.9793 for
WF/WE joint angles, CC = 0.9553 for P/S joint angles, and CC
= 0.9573 for HG/HO joint angles.

Model Performance Comparison
In order to highlight the advantages of proposed CNN-based
regression model in joint angles prediction based on EMG signal,
this model was compared with four conventional regression
model: linear regression (LR), support vector regression (SVR),
k-nearest neighbors (KNN) and decision tree regression (DT).
We compared these five regression models with and without
transfer learning, and the results were shown as Figures 11,
12. We will discuss the model performance comparison in the
Section Model comparison.

Figure 11 shows the average CC results of the five regression
models applied to each participant, the top figure is the
comparison result of initial experiment (without using transfer
learning; 10 participants), the bottom figure is the result of
second experiment (with transfer learning; five participants). The
results show that for any participant, whether transfer learning
was applied or not, the proposed model outperformed the four
conventional regression models.

Figure 12 is the comparison result between the five regression
models, the vertical axis is the average CC of all participants,
Figure 12A is the result of initial experiment (without using
transfer learning; 10 participants) and Figure 12B is the result
of second experiment (with transfer learning; five participants),
average CC and standard deviation are shown as mean ± std

format. We can find that for all participants, proposed CNN
regression model outperformed than the other four conventional
regression models, and the standard deviation of proposed CNN
model is smaller and stable.

Geometry Plot Results
Table 2; Figure 7 show that the proposed regression model
accurately predicts the joint angles in the three DOFs of
forearm motion. Therefore, we investigated the accurate model
performance learnt directly from the filtered EMG signal and if
the muscle activity can be analyzed from geometry plot. Different
muscle areas perform different motions; therefore, we backtrack
from the FC weight to create a geometry plot. In this section, we
use the trained model trained obtained from all participants to
find the correlation motion pattern. The corresponding result of
participant S1 are shown in Figure 6 (result of all 10 participants
can be found in Supplementary Material), each geometry plot
includes two parts: the left side denotes the wrist flexor side
and right side denotes the wrist extensor side. The color bar
ranges from −1 to 1, the blue part shows −1–0, i.e., the area
contributes to negative joint angles (WE, S, HO); the red part
shows 0–1, i.e., the area contributes to positive joint angles (WF,
P, HG); and the white part is 0, i.e., the area has no contribution
to the corresponding motion. The green circle shows positive
joint angles such as WF, P, and HG, and the purple circle shows
negative joint angles such as WE, S, and HO.

DISCUSSION

We proposed a CNN-based regression model for real-time
prediction of joint angle of wrist and hand motion using sEMG
signals. We used the CC value to evaluate the model training
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FIGURE 8 | Testing result of participant S1. Top: WF/WE joint; Middle: P/S joint; Bottom: HG/HO joint. Red solid line is measured joint angles using Perception

Neuron Motion Capture system. Green dashed line is estimated joint angles using proposed regression model. This result shows CC = 0.9465 for WF/WE joint

angles, CC = 0.9686 for P/S joint angles, and CC = 0.9074 for HG/HO joint angles.

effect for 10 participants in initial experiment and explore the
learnability of this model by directly using EMG signals. Further,
we backtracked the FC layer weight to create a geometry plot for
the wrist flexor and wrist extensor sides, and checked the area
of the muscles for the corresponding motions. We hope that the
model can be robust and applied in different day, participant
S1, S6, S7, S8 and S10 were invited to repeat our experiment
for smaller number of datasets as second experiment. Firstly, we
tested the new dataset directly using the existing trained model
to prove the prediction accuracy reduced in another day. Then,
we applied transfer learning, fixed the first layer, updated the
FC layer parameters to train the new smaller dataset to check
the testing CC result and the geometry plot, so that to verify
an improvement in the testing CC result. We also compared
proposed CNN model with four conventional regression model
(LR, SVR, KNN and DT) to prove the superiority of the
proposed model. The results showed the model can be used
in different day with small number of sEMG data using
transfer learning.

Convolutional Layer Design
In this study, we proposed a model with two layers: a
convolutional layer and an FC layer. The function of the FC
layer is to flatten the feature maps into a single vector; hence,
the key point in designing the CNN-based regression model is
the convolutional layer. Sakhavi et al. (2018) considered three

types of convolution kernel for linear mixture of EEG signal
input, including CW-CNN, channel mixing CNN (CM-CNN),
and channel-wise convolution with channel mixing (C2CM).
According to Sakhavi et al. (2018) research, the difference
between CW-CNN, and CM-CNN and C2CM is that CW-CNN
does not demonstrate channel mixing. Channel mixing leads to
a widened network, and without channel mixing, the receptive
field of the network is emphasized.

The process of skeletal muscle contraction and relaxation can
be expressed as follows: the electrical signals from the brain reach
the nerve endings, and the action potentials are transmitted to
the cell membranes of the nerve endings. A series of chemical
changes occur to change the conformation of tropomyosin and
expose muscle movement. The binding site of the protein and
myosin, and head of myosin is activated generating power to
swing the head and slide the thin filaments. Since the arrival of
electrical signals at the neurons to contract or relax a muscle, a
time delay should be generated at times. Thus, the input data in
our study is a linear mixture of 32 EMG channels with temporal
dimension, and we hope that the time period input can provide
sufficient information of the sEMG signal and muscle force
pattern that occur during the time delay.

The channel-wise filter (CW-CNN) designed in the
convolutional layer can reduce the temporal dimension to one-
dimensional feature maps, including 32 channels information.
Thus, the channels corresponding to each number from the
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FIGURE 9 | Mean CC result of participant S1, S6, S7, S8 and S10. Blue bar shows the mean CC result in initial experiment (15 epochs); Red bar shows the mean CC

result of direct model testing, that is to use the trained model in initial experiment to test on the new dataset directly; Yellow bar shows the mean CC result in second

experiment, which fixed the first layer and only to train FC layer (five epochs).

feature maps are independent of each other. Further, because
the temporal dimension is reduced, we obtained the muscle
force pattern from each channel using such a channel-wise
convolution kernel. Unlike the CW-CNN proposed in Sakhavi
et al. (2018), which was used to process the EEG signal, we used
a one-dimensional convolution kernel to obtain the muscle force
pattern, which is called as a force pattern filter (FP filter).

Five-Fold Cross Validation
In the initial experiment, we used the five-fold CV to train and
test the proposed model. For each participant, we created five
groups of datasets, we trained the four groups and tested them on
the remaining dataset. Hence, there were five CC results for each

participant. Equation (3) was used to calculate the average values
of the CC of different participants for joint WF/WE, joint P/S,
and joint HG/HO. Table 2 left part (initial experiment) shows
the five-fold CV results of all participants in the form of mean
± std. This result is plotted in Figure 7. After checking the raw
sEMG signal from each participant, the qualities of the sEMG
signal of S1, S2 and S8 are the best, S3, S4, S6, S7, S9 and S10
are slightly noisy, and sEMG signal quality of S5 is the worst and
noisy channels are more than that of the other four participants.
Therefore, we inferred that several noisy channels confuse our
model in predicting P/S joint angles and HG/HO joint angles,
which contain more inner muscle sEMG signals, and hence are
more difficult to predict than the WF/WE joint angles. We can
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FIGURE 10 | A testing result of participant S1. Red solid line is measured joint angles using Perception Neuron Motion Capture system. Green dashed line is

estimated joint angles using proposed regression model. This result shows CC = 0.9793 for WF/WE joint angles, CC = 0.9553 for P/S joint angles, and CC = 0.9573

for HG/HO joint angles.

further conclude that with a less noisy sEMG signal as input, the
proposed regression model can perform very well in predicting
the three important DOF joint angles. Figure 8 shows one of
the testing results obtained for the five-fold CV of S1. The top
figure shows the WF/WE joint, middle figure shows the P/S
joint, and bottom figure shows the HG/HO joint. We found
that the predicted joint angles met our expectations. When the
participant performed hand grip and open motion, the WF/WE
joint showed small angles and vice versa. Further, the HG/HO
joint showed a smaller angle when performing wrist flexion and
extension motion, which is appropriate because WF/WE and
HG/HO have common muscle areas. The participants S1, S6, S7,
S8 and S10 with relatively high-quality sEMG signals (Figure 3
shows the raw sEMG signal of S1 from one of the channels)
participated in the second experiment.

While the second experiment, with the same experimental
paradigm (Figure 4), we obtained five trials dataset, and each
trial data was regarded as one group of datasets to continue with
the five-fold CV training and testing. If we used a trained model
for prosthetic hand control, the prediction accuracy decreases
in another day. Furthermore, even for the same participant, the
quality of the sEMG signal always changes, with the existing
trained model, the testing result in another day should be worse;
hence, amputees should train the model to calibrate the control
system before using the prosthetic hand. We used the existing

model to do transfer learning, the first layer (convolutional
layer) was fixed, and the testing CC result of the five-fold
CV of the five participants is shown in Table 2, where the
mean CC of the five participants of the WF/WE, P/S, and
HG/HO joints was 0.9272 ± 0.0216, 0.9248 ± 0.0321, and
0.8918± 0.0369, respectively.

Figure 9 shows the corresponding result, the blue bar is the
mean testing CC result of S1, S6, S7, S8 and S10 in initial
experiment from 10 trial dataset and trained using five-fold CV;
the red bar is the testing CC result in Direct Model Testing,
which means to test the existing trained model on new dataset
directly; the yellow bar is the testing result of S1, S6, S7, S8
and S10 in second experiment, fixed the convolutional layer and
trained FC layer in five epochs, as shown in the right part of
Table 2. When compared to the blue bar, which indicates the
initial experimental result, the red bars show that the mean CC
value of the participants in Direct Model Testing lower than
in Initial Experiment, WF/WE joint CC reduced to 0.4963 ±

0.1278 from 0.8967 ± 0.0239, P/S joint CC reduced to 0.4350
± 0.1284 from 0.9044 ± 0.0259, HG/HO joint CC reduced to
0.4693 ± 0.1991 from 0.8396 ± 0.0268. This result is in line
with our expectations. With small number dataset and only
five epochs, the mean CC results are improved, the yellow bars
show that, compared to the red bars which indicates Direct
Model Testing, WF/WE joint CC reaches to 0.9272 ± 0.0321,
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FIGURE 11 | The performance comparison of each participants using five regression models (Proposed CNN, LR, SVR, KNN, DT). Top: Comparison result of initial

experiment (without transfer learning; 10 participants); Bottom: Comparison result of second experiment (with transfer learning; five participants).

P/S joint CC reaches to 0.9248 ± 0.0321, HG/HO joint CC
reaches to 0.8918 ± 0.0369. We can find that with smaller
dataset and only 5 trials, the model can keep the high CC
value every day, and even higher than before. Let us compare
yellow bar (second experiment) to blue bar (initial experiment),
average CC of WF/WE joint, P/S joint and HG/HO joint were
improved. The Figure 10 shows a testing result of the five-
fold CV of S1 in second experiment, top figure shows WF/WE
joint, middle figure shows P/S joint, and bottom figure shows
HG/HO joint.

Then we will discuss the reason why using transfer
learning can improve the performance (Figure 9). In the initial
experiment, parameters from both FP filter and FC layer were
trained from the 10 trails datasets of each participant, the
parameters of the model include the information of all of the
dataset. As we discussed in Section convolutional layer design,
reference to CW-CNN (Sakhavi et al., 2018), the proposed FP
filter designed in the first convolutional layer can be used to
obtain the muscle force pattern from each channel, namely, the
feature map extracted from the EMG signal input should be
force pattern, and different people have their own force pattern.
In the second experiment, if we fix the convolutional layer (FP
filter) and only update FC layer parameters, the model still
contains the previous 10 trial dataset information, and the FC
layer parameters can adapt the model to the new data set. From
the perspective of the entire training process, it is equivalent
to adding a new dataset to the original dataset, totally 15 trial

datasets. Therefore, this approach can ensure that in the daily
update training, although there is only less training dataset, the
model parameters always contain the training information of
all previous datasets. The overall training dataset is constantly
superimposed. The prediction result will become better, and
it will also be more conducive to amputees to update the
training daily.

Model Comparison
To confirm the proposed CNN model performs well, we
compared it with four conventional regression models (LR, SVR,
KNN and DT). Figure 11 shows the results of each participants
using different regression model with error bars, top figure is
the initial experiment result (without transfer learning), bottom
figure is the second experiment result (with transfer learning);
Figure 12 shows the results of the model comparison on all
participants with transfer learning (Figure 12A) and without
transfer learning (Figure 12B). Both Figures 11, 12 show that the
proposed model outperforms the four conventional models in
the dataset of 10 participants. The comparison results also prove
that the proposed model performs better in another day using
transfer learning with even small amount of dataset and fewer
training epoch. When measuring muscle activity, the magnitude
and quality of the signal often differ greatly depending on the
contact resistance between the electrode and the skin. Therefore,
in the trained model, there is a problem that the estimation
accuracy of the data on another day is lowered. In order to solve
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FIGURE 12 | The performance comparison of the five regression models (Proposed CNN, LR, SVR, KNN, DT). (A) Initial experiment (without transfer learning; 10

participants); (B) Second experiment (with transfer learning; five participants). Statistical differences were calculated using Student’s t test with Benjamini and

Hochberg false discovery rate (BHFDR) correction for multiple comparison.

this problem, we aimed to improve the estimation accuracy even
with a small amount of data on new day. The average CC still
shows the highest compared to the four traditional regression
model with transfer learning (Figure 12B).

As presented in Figure 12, the statistical analysis was
performed to show the proposed CNN shows significantly
higher performance than the conventional methods. Statistical
differences were calculated using Student’s t test with Benjamini
and Hochberg false discovery rate (BHFDR) (Benjamini and
Hochberg, 1995) correction for multiple comparisons. From
Figure 12A, the CC value for the proposed CNN is 0.8803 ±

0.0247, is significantly higher than LR (p = 0.021 < 0.05),
SVR (p = 0.0016 < 0.01) and KNN (p = 0.0337 < 0.05);
From Figure 12B, the CC value for CNN is 0.9133 ± 0.0175, is
significantly higher than LR (p = 0.0044 < 0.01), SVR (p =

0.0004 < 0.01), KNN (p = 0.031 < 0.05), and DT (p = 0.015 <

0.05). In our CNN model, we only used one convolutional layer
to make the model have better performance than conventional
regression models, instead of using multiple convolutional layers
or more complex deep learning models to achieve high-precision

predictions, which makes regression prediction for joint angles
with higher efficiency.

Motion Pattern
In this study, we assumed that the proposed regression model
can obtain the corresponding motion pattern through the sEMG
signal of different channels on the wrist muscle. After the
FP filter in convolutional layer, the feature maps include the
force pattern information of the participant, then the FC layer
interacts directly with the feature maps to calculate the joint
angle output, we thought that it should be motion pattern.
Actually, the motion pattern showed as geometry plot in different
muscle area conforms to anatomy. Figure 6 shows the geometry
plot of participant S1, and the participants’ geometry plots can
be checked from Supplementary Material. Each geometry plot
includes the flexor side (left) and extensor side (right). In the
actual multi-array electrode sleeve, the left border of the flexor
side is connected to the right border of the extensor side, and
the right border of the flexor side is connected to the left
border of the extensor side. The WF/WE geometry plot was
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FIGURE 13 | Forearm and Hand anatomy for motion pattern analysis. (A) Anatomy of brachioradialis which related to WF motion, pronator teres which related to P

motion, and flexor digitorum superficialis (FDS) which related to HG motion (left hand) (GetBodySmart2021, 2021); (B) Anatomy of anconeus which related to WE

motion (left hand) (GetBodySmart2021, 2021); (C) anatomy of supinator related to S motion (left hand) (Kenhub, 2021).

constructed using W1 from FC layer and those of the P/S and
HG/HO usingW2,W3, respectively. The circles show the motion
pattern position; the green circle shows the motion pattern
corresponding to the positive joint angles and purple circle shows
the motion pattern corresponding to negative joint angles. In
the geometry plot, the matrix shows the motion pattern color
with the channel index. The geometry plots of the participants
(Figure 6; Supplementary Material) show that all participants
show similar motion patterns, although the channels are not the
same, and the adjacent area can display the muscle activity. This
is because the different sizes of the participant’s forearm and
dislocation of the multi-array electrode sleeve may lead to this
result. Using the anatomy of the forearm (Figure 13), the motion
patterns can be discussed as follows.

• WF/WE joint: WhenWF/WEmotion is performed, both sides
showWF orWEmotion patterns. This is an example ofmuscle
contraction and muscle relaxation during muscle activity. S1
and S2 show almost the same motion pattern, and Table 2

shows that the two participants demonstrate best CC results
with the WF motion occurring on channels 13, 21, 29, and
28 near channel 24, while WE motion occurs on channels
6, 14, 12, 20, 25, and 26. S3–S10 show similar patterns but
near the above area. For S5, channel 17 is the adjacent area
of channel 24; hence, it is a similar motion pattern when
compared with the WF pattern shown in S1 and S2 (in this
pattern, S3 and S4 shown in channels 15 and 16 represent
dislocation of the sleeve).

• P/S joint: When P/S motion is performed, both sides show
wrist pronation or supination motion pattern, which is an
example of muscle contraction and muscle relaxation during
muscle activity. The P/S motion generated from deep layer
muscle is compared to WF/WE. The motion pattern may not

be representing the correct anatomy of the P/S motion activity
in the forearm; however, they show a similar motion pattern.

• HG/HO joint: The difference between the previous motions
(WE/WF and P/S) is that HG/HO motion is generated from
forearmmotion and deeper muscles that lead to finger motion
(we can regard hand grip and open as finger motion). The
geometry plot shows that the FC layer weights of each
participant are quite different. However, we can find a similar
motion pattern area from Supplementary Material.

Moreover, according to human anatomy (Figure 13) and
comparing with Figure 6, we can discuss the motion pattern
using the anatomy of the forearm muscles:

• The WF motion produced by the brachioradialis of the
forearm (Figure 13A) and WE motion produced by the
anconeus of the forearm (Figure 13B) correspond to the area
of channels 13, 21, 29, and 28 (brachioradialis) and the area
of channels 25 and 26 (anconeus), respectively. By comparing

Figure 6 with Figures 13A,B, we found that the motion
pattern is correct. We may consider another pattern area, such

as channels 23, 24, 15, 16, and 6, owing to muscle contraction

and relaxation. When we perform the WF and WE motion,
these aforementioned areas show have motion activity.

• P motion produced by pronator teres of the forearm

(Figure 13A) and S motion produced by the supinator of the

forearm (Figure 13C) correspond to the area near channel
22 and 30 (pronator teres), and the area of channels 13, 21,
and 29 (supinator), respectively. Comparing Figure 6 with
Figures 13A,C show that themotion patterns are similar to the
anatomy results. Because P/S motion contains the interactive
movement between two bones, the motion generates the
muscle activity on the opposite side, such as channels 17, 18, or
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25 (P) and channels 16 or 11 (S). Thus, we consider the motion
patterns to be appropriate.

• HG motion is produced mainly by the flexor digitorum
superficialis (FDS, Figure 13A) and muscles that produce WF,
such as brachioradialis. Similar to HG, the HO motion is a
complicated motion produced by manymuscles, including the
anconeus area of the WE. The FDS corresponds to the area
around channels 14 and 15 or the adjacent channels. Figure 6
shows that the motion patterns of the HG of participant S1 are
near the FDS area. The patterns occur in the area near channels
24 and 16 (near the WF pattern area). It is difficult to evaluate
the motion pattern of HO, but the HO motion pattern shows
the area mainly on the extensor side. When the HO motion
was performed, these areas showmotion activity; thus, we infer
that the motion pattern is appropriate.

Limitation of Our Work
In this work, we used a window of 500ms to segment sEMG
signal data flow as CNN input for offline analysis, and we got
high CC result after training the regression model using such
window length. However, we did not apply it for real-time
control. In real-time control, the estimation window lengths
should range from 50ms to 400ms (Hargrove et al., 2009), 500ms
window might generate delay, we will reduce the window size in
our next topic.

CONCLUSION AND FUTURE WORK

In this study: (1) We proposed a CNN-based regression model
to estimate 3-DOFs joint angles (WF/WE and P/S as wrist
motion, and HG/HO as finger motion) based on sEMG signal,
and it performed the highest when we compared it to another
regression models; (2) We used transfer learning with small
amount of new dataset to make the model can be calibrated in
another day. The model comparison result shows that, compared
to LR, SVR, KNN and DT, proposed CNN model significantly
performs higher than conventional models with and without
transfer learning; (3) We tried to find the reason why the
proposed model can learn the motion information from muscle,
so we design the convolutional filter as CW-CNN filter to obtain
force pattern as feature maps, and we tracked back to check the
geometry plots to analyze the motion patterns.

In our future work, we would use this model to predict the
mentioned 3-DOFs joint angles (WF/WE, P/S and HG/HO)
in real time and send the predicted joint angles to the

prosthetic hand control system to achieve real-time control of the
prosthetic hand.
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