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ABSTRACT Halorubrum sp. strain BOL3-1 was isolated from Salar de Uyuni, Bolivia,
and sequenced using single-molecule real-time sequencing. Its 3.7-Mbp genome was an-
alyzed for gene content and methylation patterns and incorporated into the Haloar-
chaeal Genomes Database (http://halo.umbc.edu). The polyextremophilic character and
high-elevation environment make the microbe of interest for astrobiology.

Halorubrum sp. strain BOL3-1 is the first haloarchaeon from Bolivia to be cultured
and sequenced. It was isolated from salt samples from Salar de Uyuni, Depart-

ment of Potosí, Bolivia, the largest salt flat in the world and an environment
remarkable for its high elevation and high albedo and UV radiation exposure (1).
The environment is unique and of significant interest to the astrobiology commu-
nity due to its multiple extremes (2).

Stratified salt crust was sampled from the Salar in March 2015 at a remote site,
(20°33=28.58�S and 67°12=29.56�W [–20.5579389°, –067.2082111°]), 3,647 m above sea level.
Typical conditions are pH 7.3 to 7.6, �28% NaCl (wt/vol) concentration, and temperatures
of –15 to 22°C. Salt samples were dissolved in CM� medium (3), and growth was stimulated
under illumination at 37°C with shaking at 220 rpm (Innova 4230 refrigerated incubator
shaker; New Brunswick, NJ, USA). The enrichment culture was plated on CM� agar plates
and purified by 3 rounds of streaking. The isolated strain, BOL3-1, formed biofilms in liquid
culture, and colonies were bright red and translucent.

Nucleic acids were extracted using standard methods (3), and sequencing was per-
formed using the PacBio RS II platform. A SMRTbell sequencing library was prepared from
3 �g genomic DNA randomly sheared to 20 kb with a Megaruptor instrument (Diagenode,
Denville, NJ). The library was sequenced using a single-molecule real-time (SMRT) cell with
C4-P6 chemistry and a 360-min collection time. Sequencing reads were filtered (quality,
�0.80; length, �100 bp) and assembled de novo (98,158 reads with a mean subread length
of 3,908 bp) using RS_HGAP_Assembly.3 (4) in the SMRT Analysis 2.3.0 environment (min-
imum seed read length, 5,000 bp; minimum coverage for correction, 8�). Error correction
and closure were performed using RS_BridgeMapper.1, and methylation patterns were
determined using RS_Modification_and_Motif_Analysis.1 within SMRT Analysis using de-
fault settings (minimum modification quality value [QV], 30).

Genome annotation was performed in-house using EMBOSS version 6.6.0.0 (5),
GeneMark.hmm version 2 (6), and tRNAscan version 1.3 (7), as well as the NCBI
Prokaryotic Genome Annotation Pipeline (PGAP) build 3190 (8). The annotated genome
sequence was analyzed on the Haloarchaeal Genomes Database (HaloWeb version
r1555192846) (9). The 3,668,425-bp genome is GC rich (65.9%) and consists of a large
circular chromosome (66.8% GC content) and 3 plasmids, p163 (55.1% GC content),

Citation DasSarma P, Anton BP, DasSarma S,
Laye VJ, Guzman D, Roberts RJ, DasSarma S.
2019. Genome sequence and methylation
patterns of Halorubrum sp. strain BOL3-1, the
first haloarchaeon isolated and cultured from
Salar de Uyuni, Bolivia. Microbiol Resour
Announc 8:e00386-19. https://doi.org/10.1128/
MRA.00386-19.

Editor Kenneth M. Stedman, Portland State
University

Copyright © 2019 DasSarma et al. This is an
open-access article distributed under the terms
of the Creative Commons Attribution 4.0
International license.

Address correspondence to Shiladitya
DasSarma, sdassarma@som.umaryland.edu.

Received 3 April 2019
Accepted 18 April 2019
Published 9 May 2019

GENOME SEQUENCES

crossm

Volume 8 Issue 19 e00386-19 mra.asm.org 1

http://halo.umbc.edu
https://doi.org/10.1128/MRA.00386-19
https://doi.org/10.1128/MRA.00386-19
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:sdassarma@som.umaryland.edu
https://crossmark.crossref.org/dialog/?doi=10.1128/MRA.00386-19&domain=pdf&date_stamp=2019-5-9
https://mra.asm.org


p117 (54.8% GC content), and p13 (67.6% GC content) based on computer assembly.
Three complete rRNA operons (two on the chromosome and one on p117) and 57 tRNA
genes are present. The closest relatives based on 16S rRNA similarity (�97% identity)
are Halorubrum ezzemoulense and Halorubrum chaoviator (10, 11).

Genome annotation predicted 3,266 encoded proteins with a calculated mean
isoelectric point (pI) value of 4.58, a highly acidic proteome characteristic of
haloarchaea (12). The genome contains the great majority of conserved haloar-
chaeal groups (HOGs), including 775 core (cHOGs) and 77 signature (ucHOGs)
groups (12, 13). Expanded gene families common in haloarchaea include 9 origin
recognition complex (Orc/Cdc6) proteins, 4 TATA-binding and 7 TFB proteins, and
5 photolyase/cryptochrome family proteins (14). Genes encoding retinal proteins,
including bacteriorhodopsin, halorhodopsin, and sensory rhodopsin 2, were found.
Bacteriorhodopsin can be observed spectroscopically and constitutes a remotely
detectable biosignature (15). A catabolic gene cluster is present, with a GH-42
�-galactosidase likely responsible for o-nitrophenyl-�-D-galactopyranoside (ONPG)-
hydrolytic activity (16–18).

Over 100 transposase genes are present, suggesting a large number of insertion
sequences in the genome. There are 2 clustered regularly interspaced short palindromic
repeat (CRISPR) arrays (a type I-B CRISPR-associated protein, Cas5, on p163 and a type
I-B CRISPR-associated protein, Cas7/Csh2, on p117). The methylated DNA motifs and
the methyltransferases (MTases) predicted to be responsible for some of these proteins
are shown in Table 1.

Data availability. The Halorubrum sp. strain BOL3-1 genome sequence has been
deposited in GenBank with the accession numbers CP034692, CP034691, CP034690,
and CP034693 and is also available on HaloWeb (https://halo.umbc.edu/cgi-bin/
haloweb/haloweb.pl). The raw data are available in the NCBI Sequence Read Archive
with the accession number SRP175004.
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