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Summary

Aging is a major driving force underlying dementia, such as that caused by Alzhei-

mer’s disease (AD). While the idea of targeting aging as a therapeutic strategy is not

new, it remains unclear how closely aging and age-associated diseases are coupled

at the molecular level. Here, we discover a novel molecular link between aging and

dementia through the identification of the molecular target for the AD drug candi-

date J147. J147 was developed using a series of phenotypic screening assays mim-

icking disease toxicities associated with the aging brain. We have previously

demonstrated the therapeutic efficacy of J147 in several mouse models of AD.

Here, we identify the mitochondrial a-F1-ATP synthase (ATP5A) as a target for

J147. By targeting ATP synthase, J147 causes an increase in intracellular calcium

leading to sustained calcium/calmodulin-dependent protein kinase kinase b

(CAMKK2)-dependent activation of the AMPK/mTOR pathway, a canonical longev-

ity mechanism. Accordingly, modulation of mitochondrial processes by J147 pre-

vents age-associated drift of the hippocampal transcriptome and plasma

metabolome in mice and extends lifespan in drosophila. Our results link aging and

age-associated dementia through ATP synthase, a molecular drug target that can

potentially be exploited for the suppression of both. These findings demonstrate

that novel screens for new AD drug candidates identify compounds that act on

established aging pathways, suggesting an unexpectedly close molecular relationship

between the two.
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1 | INTRODUCTION

Although great efforts toward AD drug discovery have been made in

recent years, there is currently an impasse with only one new AD

therapeutic approved since 2004 (Cummings, Morstorf, & Zhong,

2014). While most AD drugs are the result of target-based screens, a

lack of credible drug targets apart from amyloid-b and tau has limited

the search. Phenotypic screens provide an alternative drug discovery

strategy that does not require a priori knowledge of a target. Because

age is the greatest risk factor for AD, we developed a unique pheno-

typic screening paradigm specifically designed to recapitulate several

of the most common age-associated central nervous system (CNS)

toxicities using cell culture models (Prior et al., 2014). We identified a

synthetic compound called J147 that is neuroprotective in all of these

assays (Chen et al., 2011) and promotes the division of neuronal pre-

cursor cells in vivo and in vitro (Prior et al., 2016). Behaviorally, it

enhances memory and restores cognition in APPswe/PS1DE9 and

the rapidly aging senescence-accelerated mouse prone (SAMP8)

dementia mouse models (Currais et al., 2015; Prior, Dargusch, Ehren,

Chiruta, & Schubert, 2013; Morley, Armbrecht, Farr, & Kumar, 2015).

Here, we identify the mitochondrial a-F1 subunit of ATP synthase

(ATP5A) as a high affinity molecular target of J147, a protein previ-

ously studied in the context of aging (Chin et al., 2014). Therefore,

our analysis not only identifies a new AD drug target but also causally

connects metabolic regulation, aging, and dementia through a single

molecular drug target.

2 | RESULTS

2.1 | Target identification

Three independent approaches were used to initially identify and then

confirm the molecular target of J147. First, we used an unbiased small

molecule target identification approach called drug affinity responsive

target stability (DARTS) (Lomenick, Jung, Wohlschlegel, & Huang,

2011) to detect putative binding partners. Lysates from the HT22 hip-

pocampal nerve cell line were incubated with vehicle, 10 or 50 lM

J147 for 15 min before treating with pronase to degrade unbound

protein complexes. A band containing proteins preserved by J147

treatment following protein electrophoresis was identified, and mass

spectrometry (MS) analysis determined that ATP5A was the most

enriched putative target relative to controls (Figure 1a, red arrow, Fig-

ure S1). ATP5A is a catalytic subunit of the mitochondrial ATP syn-

thase complex responsible for the synthesis/hydrolysis of ATP.

To confirm ATP5A as the molecular target of J147, we per-

formed several additional experiments. First, we incubated HT22

cells and mouse subventricular zone (SVZ) tissue lysates with a

biotinylated derivative of J147, BJ147, and used LC/MS/MS to iden-

tify coprecipitating proteins. Consistent with the DARTS experiment,

a strong enrichment of mitochondria-associated proteins was present

in the streptavidin pull-down fraction from the BJ47-incubated sam-

ples. The only protein that was reproducibly identified in both the

pull-down and DARTS experiments was ATP5A, while other mito-

chondrial proteins involved in ion flux and transport such as inositol

1,4,5-triphosphate receptor 3 (IP3R3), members of the solute carrier

family 25 (SLC25a3-5), and voltage-dependent anion channel (VDAC)

were only present in the pull-down (Figure 1b). Importantly, the

amount of ATP5A was greatly reduced in BJ147-precipitated lysates

incubated with excess unlabeled J147 as a binding competitor (Fig-

ure 1c).

The most highly enriched protein in both the DARTS and affinity

precipitation experiments was ATP5A. Therefore, we asked whether

the activity of the ATP synthase complex is modulated by J147.

First, we tested J147’s effect on ATP synthase enzyme kinetics in

isolated bovine heart mitochondria. A dose–response curve is shown

after 1 hr of J147 incubation (Figure 2a) that indicates saturating

partial inhibition (23.6 � 3.4%) of ATP synthase activity by J147

with an EC50 of 20 nM. Importantly, this inhibition is only partial,

even at saturating concentrations of J147. These results demon-

strate that J147 binds to and partially inhibits the activity of the

mitochondrial ATP synthase.

We next determined whether the intracellular localization of

J147 in HT22 cells was consistent with a mitochondrial target by

confocal fluorescent microscopy using BJ147. An imaging time

course demonstrated that J147 colocalized with the mitochondrial

marker cytochrome C oxidase IV (COXIV) (Figure 2b, Table S1).

Localization of J147 was rapid, occurring within 10 min. Thus, both

biochemical and localization experiments support ATP5A as a target

of J147.

2.2 | J147 targets mitochondrial bioenergetics

ATP synthase couples the production or hydrolysis of ATP to the

transport of H+ ions across the inner mitochondrial membrane, mak-

ing it a direct regulator of mitochondrial polarity (Dwm). We tested

J147’s effect on Dwm using JC1, a ratiometric cationic dye. A signifi-

cant dose-dependent increase in mitochondrial membrane potential

is observed within 1 hr of J147 treatment (Figure 2c), an effect con-

sistent with the regulation of ATP synthase activity (Perry, Norman,

Barbieri, Brown, & Gelbard, 2011). To independently confirm that

targeting the a-subunit of ATP synthase affects its activity and thus

Dwm, we performed siRNA-targeted knockdown of ATP5A (Fig-

ure 2d) and found a similar increase in Dwm when taken as percent

oligomycin-induced hyperpolarization (Figure 2e). ATP5A siRNA-trea-

ted cells displayed reduced capacity for hyperpolarization after oligo-

mycin addition.

Changes in ATP synthase activity occur concomitantly with the

production of reactive oxygen species (ROS) (Laura Formentini,

S�anchez-Arag�o, S�anchez-Cenizo, & Cuezva, 2012). Although tradi-

tionally thought of as being detrimental, new evidence suggests that

inhibition of ATP synthase can elicit a retrograde, ROS-mediated

prosurvival response (Laura Formentini et al., 2012). Both J147

treatment and ATP5A knockdown caused a significant increase in

superoxide levels within the mitochondria (Figure 2f,g).
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In the elderly and in patients with AD, mitochondrial dysfunction

leads to reduced levels of ATP which may contribute to disease pro-

gression (Reddy et al., 2012; Zhang, Rissman, & Fend, 2015). J147

increased ATP levels in HT22 cells within 4-6 hr of treatment (Fig-

ure 2h) without affecting the rate of glycolysis (Figure S2). Further-

more, ATP5A siRNA-targeted knockdown similarly increased whole

cell ATP levels in these cells (Figure 2i) without affecting protein

levels or composition of other oxidative phosphorylation (oxphos)

components (Figures S3 and S4).

2.3 | ATP synthase inhibition protects from
neurotoxic insults

We next asked whether inhibiting ATP synthase activity elicits a sim-

ilar neuroprotective response as seen with J147 in our age-asso-

ciated toxicity screens that were the basis for J147 development

(Prior et al., 2013). If so, modulating ATP synthase activity either by

siRNA-targeted knockdown of ATP5A or overexpression of its

endogenous inhibitor, ATPase inhibitor factor 1 (IF1), should protect

in models of amyloid proteotoxicity, glutamate-induced glutathione

depletion (oxytosis), and iodoacetic acid (IAA)-induced energy deple-

tion. First, we tested protection against amyloid proteotoxicity using

human MC65 neuronal cells conditionally expressing the C99 frag-

ment of amyloid precursor protein (APP) under the control of a

tetracycline (tet) promoter. Upon induction, C99 is processed to pro-

duce Ab polymers and this leads to cell death, an effect that is

blocked by J147 (Chen et al., 2011). Similarly, ATP5A knockdown

also prevented intracellular amyloid-induced cell death in MC65 cells

(Figure 3a).

Next, we tested the neuroprotective effects of ATP5A knock-

down in toxicity models of oxytosis and energy depletion. Oxytosis

occurs when high levels of extracellular glutamate block cystine

import resulting in glutathione depletion and cell death (Tan, Schu-

bert, & Maher, 2001), while IAA irreversibly inhibits the glycolytic
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enzyme glyceraldehyde 3-phosphate dehydrogenase to induce

energy loss (Maher, Salgado, Zivin, & Lapchak, 2007). We have pre-

viously shown that J147 protects HT22 cells from both oxytosis and

IAA toxicity (Chen et al., 2011). Knockdown of ATP5A phenocopies

the protection conferred by J147 in both assays (Figure 3b,c). As

expected if the target of J147 is ATP5A, cell viability is not further
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improved by J147 treatment in ATP5A siRNA-targeted knockdown

cells (Figure 3a,d,e).

To corroborate the neuroprotection induced by ATP5A knock-

down, we overexpressed a constitutively active, pH-insensitive

mutant (H49K) of the endogenous inhibitor of ATP synthase, IF1

(Figure 3f) in HT22 cells. IF1 binds to the catalytic F1-portion of

ATP synthase and inhibits its activity (Garc�ıa-berm�udez & Cuezva,

2016). Similar to J147 and ATP5A knockdown, IF1-overexpression

significantly protected HT22 cells from glutamate and IAA-induced

toxicity (Figure 3g).

Together, these data demonstrate that modulating ATP synthase

activity, whether by siRNA-mediated knockdown of ATP5A or IF1
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overexpression, phenocopies the neuroprotective effects of J147 in

aging-associated and AD-like toxicities, and further support ATP5A

as the molecular target for J147.

2.4 | J147 and ATP5A modulate AMPK/mTOR
signaling

As age is the greatest risk factor for AD, interventions that slow

aging or extend health span might serve as potential therapies that

delay disease onset (Currais, 2015). Recent studies have highlighted

a role for ATP synthase in the regulation of mTOR and lifespan

extension in flies and worms (Chin et al., 2014; Sun et al., 2014).

Inhibition of mTOR via activation of AMPK is a canonical longevity-

associated pathway (Johnson, Rabinovitch, & Kaeberlein, 2013). Acti-

vation of AMPK is achieved through phosphorylation of threonine

(Thr) 172 on the a-subunit, lowering activity of some ATP-consum-

ing pathways while promoting ATP synthesis through others such as

fatty acid oxidation. Therefore, we asked whether J147 modulated

AMPK/mTOR signaling via ATP synthase.

We monitored AMPK/mTOR activity using site-specific

phosphorylation antibodies against proteins involved in this pathway.

In Figure 4a, two different cell types were used to assay the activity

of the AMPK/mTOR pathway following treatment with J147. In

mouse HT22 (left panel) and human MC65 neuronal cells (right

panel), there is a clear, time-dependent activation of AMPK (pAMPK)

by J147. AMPK phosphorylation of raptor at Ser792 is critical for

AMPK-mediated inhibition of mTOR. An increase in raptor Ser792

phosphorylation was observed in both cell types treated with J147

(Figure 4a). Raptor-mediated inhibition of mTORC1 activity reduces

unnecessary ATP expenditure by decreasing S6 kinase activity result-

ing in reduced protein translation. AMPK-mediated phosphorylation

of acetyl-CoA carboxylase (ACC1) promotes energy production by

reducing fatty acid synthesis and increasing b-oxidation of fatty acids

(Hardie, Ross, & Hawley, 2012). J147 decreases S6 activity and

increases ACC1 phosphorylation in both cell types. These data show

that the AMPK/mTOR signaling pathway, known to promote aging,

is downstream of J147 target engagement. Importantly, siRNA-

mediated knockdown of ATP5A in MC65 cells (Figure 4b) pheno-

copied the effects of J147 on AMPK/mTOR signaling (Figure 4b-f).

J147 caused an increase in AMPK phosphorylation despite mod-

estly increasing ATP levels, suggesting an alternative mode of AMPK

activation to that of sensing the AMP:ATP ratio. The only known

alternative in the brain is calcium/calmodulin-dependent protein

kinase kinase b (CamKK2) activation of AMPK (Racioppi & Means,

2012), suggesting Ca2+-mediated activation of AMPK by J147.

Therefore, we asked whether J147 might regulate CamKK2 activity

by modulating resting Ca2+ homeostasis. Measurement of cytosolic

Ca2+ upon J147 treatment in HT22 cells revealed a dose-dependent

increase in cytosolic Ca2+ levels (Figure 5a). To determine whether

CamKK2 mediates J147 activation of AMPK, we treated rat cortical

neurons with J147 and a potent inhibitor of CamKK2, STO-609.

STO-609 prevented J147-mediated activation of AMPK and its

downstream signaling effectors, ACC1, S6, and raptor (Figure 5b),

thereby identifying CamKK2 as key mediator of the modulation of

AMPK/mTOR signaling by J147 (statistics shown for 30 min and

4 hr time points in Figure S5). An AMPK knockout (KO) fibroblast

cell line was used to further examine the role of AMPK in J147 sig-

naling. We found a significant decrease in J147-mediated protection

by J147 in the oxytosis assay in the KO cells as compared to WT

cells (Figure 5c).

2.5 | J147 attenuates age-associated decline and
extends lifespan

Our results thus far demonstrate that J147 protects from age-asso-

ciated brain toxicities in cell culture models via interaction with ATP

synthase and subsequent modulation of the AMPK/mTOR pathway.

We therefore asked whether AMPK signaling is activated by J147 in

SAMP8 mice, an accelerated aging and sporadic dementia model,

and whether the J147-induced physiological changes in these mice

are consistent with delayed aging. Hippocampi from mice fed J147

for 6 months, starting at 3 months of age, were isolated and used

for Western blot analysis of AMPK (Currais et al., 2015). J147 signif-

icantly increased the phosphorylation of AMPK in the old SAMP8

mice, so that the phosphorylation more closely resembled that of

young mice (Figure 6a).

As J147 appears to target a canonical aging pathway, we next

asked whether J147 treatment delayed signatures of aging. Recently,

it has been shown that aging progressively destabilizes the transcrip-

tome, resulting in a drift in mRNA transcript levels away from those

observed in young animals (Rangaraju et al., 2015). As some longev-

ity mechanisms dramatically suppress age-associated transcriptional

drift and preserve a youthful transcriptome phenotype (B Rangaraju

et al., 2015), we asked whether J147 had a similar effect. Analysis of

hippocampal gene expression data from 3- and 10-month-old

SAMP8 mice confirmed that transcriptional drift variance increased

with age across the entire transcriptome (Figure 6b). However, treat-

ment with J147 attenuated age-associated transcriptional drift,

reducing its variance by ~6% (p < 10�10) and preserving a more

youthful transcriptional profile. Interestingly, the expression of IF1,

the endogenous inhibitor of ATP synthase, was significantly down-

regulated in aged SAMP8 mice (young/old fold change = 0.18;

*p < .05), suggesting that a loss in the regulated control of ATP syn-

thase activity occurs during the aging process.

Because J147 targets mitochondrial ATP synthase, we then asked

whether J147 specifically suppressed the age-associated drift of gene

transcripts involved in mitochondrial functions. Indeed, J147 dramati-

cally suppressed transcriptional drift of transcripts encoding mito-

chondrial components of both carnitine metabolism and ATP

synthesis-coupled proton transport (Figure 6c). Carnitine is critical for

maintaining mitochondrial function and ATP synthesis as it is required

for the transport of long chain fatty acids into the mitochondria,

resulting in their oxidation and production of acetyl-CoA for entry into

the tricarboxylic acid cycle (TCA cycle) (Bratic & Larsson, 2013). We

have previously shown that J147 reduces the age-associated accumu-

lation of acylcarnitine in old SAMP8 mice that manifest AD-like
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pathology (Currais et al., 2015). This suggests that modulating ATP

synthase activity may restrain the age-associated loss of orchestrated

gene expression involved in coordinating mitochondrial bioenergetics.

Similar to assessing transcriptional drift, metabolic drift analyses

can be used to monitor the aging of the metabolome. Because mito-

chondria are essential for maintaining metabolic homeostasis, we
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asked whether J147 had a protective effect on metabolic drift simi-

lar to its effect on the transcriptome. We performed targeted meta-

bolomics on brain and plasma extracts from 3- and 10-month-old

SAMP8 control or J147-treated mice (Currais et al., 2015). No signif-

icant differences in the drift of the brain metabolome were observed

between old and young animals. However, we did detect a substan-

tial metabolomic drift in plasma metabolites, an effect that was

attenuated by J147 treatment (Figure 6d). Together, these analyses

demonstrate that J147 treatment stabilizes the hippocampal tran-

scriptome and plasma metabolome against age-associated drift

observed in SAMP8 mice.

Due to its effect on AMPK/mTOR signaling and suppression of

transcriptional/metabolic drift, we then asked whether J147 could

extend lifespan using Drosophila. In these experiments, 100 nM and

2 mM J147 administered in the food starting at 1 week of age

increased longevity, extending median lifespan by 9.5% and 12.8%,

respectively (Figures 6e and S6). In addition, the effects of J147 on

ATP levels observed in vitro were recapitulated in vivo (Figure 6f),

where a significant increase in ATP levels in Drosophila heads was

detected in a short-term feeding paradigm of 100 nM J147 for 48 hr.

3 | DISCUSSION

In this study, we show that J147, an AD drug candidate identified

by phenotypic screening that has shown benefits in animal models

of AD, acts via the mitochondrial protein ATP5A, a subunit of ATP

synthase, to promote cell survival and reduce specific changes asso-

ciated with aging. The identification of a drug target affecting aging

as well as age-associated cognitive decline strongly suggests that

aging and dementia are closely related on a molecular level, perhaps

more so than previously thought (Bredesen, 2014).

Mitochondria regulate a variety of metabolic signaling pathways

and are involved in programs of cell survival and death (Galluzzi, Kepp,

& Kroemer, 2012). They are uniquely poised to integrate calcium sig-

nals with energy metabolism (Mart�ınez-Reyes & Cuezva, 2014). Within

the past two decades, mounting evidence has suggested a causal rela-

tionship between mitochondrial dysfunction and AD (Picone, Nuzzo,

Caruana, Scafidi, & Di Carlo, 2014). Therefore, proper metabolic con-

trol is critical for mounting a successful response to the toxic stresses

afflicting the aging brain and may provide alternatives to the amyloid

pathway for AD-targeted therapeutic interventions.
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While our kinetic data demonstrating ~20% inhibition of ATP

synthase activity suggest an allosteric regulation by J147, it does not

exclude involvement of other protein binding partners. Interestingly,

the mitochondrial-associated proteins VDAC, Slc25a, and IP3R3

were also identified in BJ147-pull-down samples from HT22 cells

and SVZ tissue. These proteins (Baines, 2009), along with ATP

synthase (Bernardi, Rasola, Forte, & Lippe, 2015), have been impli-

cated in the composition of the mitochondria permeability transition

(mPT) pore responsible for executing cell death programs during

lethal conditions of stress via mitochondrial Ca2+ efflux. This has led

to the idea of targeting the mPT pore as a potential therapy for neu-

rodegeneration (Rao, Carlson, & Yan, 2014). However, the only
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protein shared between the DARTS and pull-down experiments was

ATP5A, and its knockdown prevented cell death in the oxytosis,

IAA-and Ab-induced toxicity models used as screening assays for the

development of J147. These data suggest that ATP5A is the primary

target mediating J147’s effects against neurotoxicity.

Recently, a specific in vivo role for ATP synthase inhibition in

the protection of brain neurons against excitotoxic damage was

demonstrated through the generation of a conditional mouse model

expressing the human form of mutant ATPase inhibitory factor 1

(hIF1) which leads to sustained inhibition of ATP synthase (L For-

mentini et al., 2014). Our results demonstrating an increase in IF1-

mediated protection in our toxicity assays corroborate the neuropro-

tective effect seen with ATP5A siRNA-mediated knockdown and

support the idea that ATP synthase inhibition is neuroprotective.

The observation that J147 increased cytosolic Ca2+ levels likely

explains the activation of CamKK2 and led us to investigate the role

of CamKK2 in AMPK phosphorylation. Ca2+/CaM-mediated activa-

tion of CamKK2 leads to AMPK activation in the brain (Racioppi &

Means, 2012). Inhibition of CamKK2 with STO609 abolished the

effects of J147 on AMPK activation. Although it is not clear how

inhibition or knockdown of ATP5A leads to compartmental changes

in Ca2+ levels, it is not surprising given that Ca2+ flux from the mito-

chondria relies on H+ pumping and concomitant regulation of Dwm by

ATP synthase (Brookes, Yoon, Robotham, Anders, & Sheu, 2004).

Importantly, AMPK was required to mediate J147 protection, again

indicating a direct role for AMPK in J147’s mechanistic pathway. Fur-

thermore, ATP5A siRNA-mediated knockdown not only phenocopies

the neuroprotective effects of J147 in vitro, but also recapitulates

the increase in ROS, Dwm, and ATP in HT22 neuronal cells.

AMPK is considered to be an energy sensor inhibiting anabolic

processes that consume energy and promoting catabolic processes

that produce energy (Inoki, Kim, & Guan, 2012). Therefore, we asked

whether the aforementioned pathways were affected both in vitro

and in vivo by J147 treatment. In cell culture, J147 activated

AMPK/mTOR signaling via increased phosphorylation of the down-

stream target ACC1. Importantly, modulation of ATP synthase activ-

ity via siRNA-targeted knockdown of ATP5A phenocopied the J147

effect on AMPK/mTOR targets. Furthermore, Western blot analysis

on hippocampal lysates from J147-treated SAMP8 mice indicated

that AMPK is activated in vivo. Collectively, these data argue that

J147-mediated neuroprotection elicited by targeting ATP synthase

may regulate both metabolism and aging.

As recent studies have demonstrated a role for reduced ATP syn-

thase activity in promoting lifespan extension in worms and flies via

inhibition of mTOR signaling (Chin et al., 2014; Sun et al., 2014), we

asked whether J147 could extend lifespan in drosophila. In these

experiments, J147 extended median lifespan up to 12.5%. As lifespan

extension studies are much more difficult to perform in mice, we next

asked whether J147 affects the aging phenotype in SAMP8 mice using

a recently developed transcriptional drift analysis that detects age-

associated changes at the molecular level (Rangaraju et al., 2015). We

examined hippocampal gene expression and targeted metabolomic

data of J147-treated and untreated old SAMP8 mice. J147 treatment

from a young age stabilized the hippocampal transcriptome as well as

the plasma metabolome against age-associated increases in drift vari-

ance suggesting a biologically younger transcriptome and metabolome.

Stabilization was most profound on processes associated with mito-

chondrial metabolism. Because J147 was identified based on its ability

to protect cells from old age-associated neurotoxicities in vitro, these

results strongly imply that aging and age-associated dementia are

much more closely related than previously assumed and may share

common drug targets. If the close relationship between preventing

aging and dementia observed for J147 holds true for other genetic tar-

gets identified in aging research, these pathways would provide a new

source of AD drug targets that are desperately needed.

4 | EXPERIMENTAL PROCEDURES

4.1 | Cell lines

Mouse hippocampal HT22 and human MC65 neuronal cells were

propagated as previously described (Davis & Maher, 1994; Sopher,

Fukuchi, Kavanagh, Furlong, & Martin, 1996). MC65 cells were a

generous gift of Dr. Sopher Primary cortical neurons were prepared

from embryonic day 17 Sprague-Dawley rats as described (Chen

et al., 2011). Induction of intracellular amyloid toxicity in MC65

human neuronal cells (human) was performed as described previ-

ously (Chen et al., 2011). AMPK knockout (K.O.) fibroblasts were

from Ruben Shaw (Salk Institute).

4.2 | Cell viability and acute toxicity

Cell viability was determined by MTT assays in 96-well plates (Davis

& Maher, 1994). Oxytosis, iodoacetic acid (IAA), and Ab toxicity

assays were performed as previously reported (Prior et al., 2014).

4.3 | Transcriptome/metabolome drift analysis

Senescence-accelerated mouse prone 8 (SAMP8) mice were acquired

from Harlan Laboratories (U.K.) and used as previously described for

whole transcriptome and metabolomics analysis (Currais et al.,

2015). Young (3 months) and old (10 months) male SAMP8 mice

were fed with either control diet or chow containing J147 (~10 mg/

kg per day) (Currais et al., 2012). Transcriptional drift analysis was

performed as previously described (Rangaraju et al., 2015) with the

exception that we removed expressed genes below the 20th per-

centile. Experiments were performed in accordance with the US

Public Health Service Guide for the Care and Use of Laboratory Ani-

mals and protocols approved by the Salk Institute IACUC.

4.4 | Darts

HT22 cells were treated with 10 and 50 lm J147 15 min. Cells were

lysed using M-PER (Pierce, 78503) with the addition of protease

inhibitors and phosphatase inhibitors (Roche, 11697498001 and

4906845001). Lysates were cleared at 14,000 RPM for 15 min,
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adjusted with M-PER to equivalent protein levels and digested with

Pronase (Roche, 10165921001) for 10 min at room temperature.

The digests were separated by SDS-PAGE and visualized by Coo-

massie blue staining. Unique bands in J147-treated samples (repre-

senting putative protein targets spared from proteolysis) as

compared to matched control lanes were excised, trypsin-digested,

and subjected to MS, then searched using ScaffoldTM Proteome Soft-

ware 2.0. Significant identifications were required to have at least

two peptides with Sequest Xcorr values of 2.0.

4.5 | J147 pull-downs

Biotin-J147 was used in pull-down experiments. HT22 cells and

adult male mice subventricular zone brain samples were lysed in lysis

buffer (20 mM HEPES, 50 mM KCl, 20 mM MgCl2, 20 mM Na2MoO4,

0.1% NP40) on ice. Lysates were precleared with streptavidin mag-

netic beads (Pierce, 88816), followed by incubation at 4°C overnight

with 10 lM J147 or Biotin-J147 with and without J147 (100 lM).

The following day, the bead-J147 complexes were washed, eluted

with sample buffer, and run on an SDS-PAGE gel. Whole lanes for

each condition were cut into 12 pieces and the proteins from each

submitted for protein identification.

4.6 | Immunofluorescent staining

HT22 cells were plated on glass coverslips in 24-well plates. The fol-

lowing day, cells were treated with 20 lM Biotin-J147 (BJ147) for

various times. Cells were immunostained as previously described

(Prior et al., 2016) using anti-COXIV (1:500, Cell Signaling, 4844).

4.7 | Complex V activity assay

Complex V activity was assayed using the MitoTox OXPHOS Com-

plex V Activity Kit (Abcam, ab109907) per the manufacturer’s

instructions. An inactive derivative of J147, CAD120 (100 nM) and

DMSO were used as negative controls and oligomycin (10 lM)

(Sigma, 75351) as a positive control.

4.8 | Western blot

Western blots were performed as previously described (Currais et al.,

2014). Antibodies used were as follows: APP C-terminal (Sigma,

A8717), ATP5A (Abcam, 14748), Total Oxphos Rodent antibody

cocktail (ab110413), pAMPK (Cell Signaling, 2535), AMPK (Cell Sig-

naling, 2793), pS6 (Cell Signaling, 4858), S6 (Cell Signaling, 2317),

pRaptor (Cell Signaling, 2083), raptor (Cell Signaling, 2280), pACC1

(Cell Signaling, 11818), ACC1 (Cell Signaling, 4190), and Actin

(BD Transduction LaboratoriesTM, 4125). Horseradish peroxidase-

conjugated secondary antibodies: goat anti-rabbit, goat anti-mouse

(1:5,000, Bio-Rad, 1706516, 1721019). The CamKK2 inhibitor STO-

609 (Cayman 15325) was used at 1 lg/ml. NativePAGE Western

blots were performed according to manufacturer’s protocol (Thermo-

Fisher Scientific, BN1001).

4.9 | ROS and membrane potential measurements

Superoxide (Molecular Probes, MitoSox M36008) and mitochondrial

membrane polarity (Molecular Probes, JC-1 T3168) experiments

were performed according to the manufacturer’s instructions. J147

was added to cells for at least 1 hr before the addition of dyes. JC1

(1 lg/ml) and MitoSox (2.5 lM) were added to cells for 45 and

15 min, respectively at 37°C. Fluorescent measurements were imme-

diately read on a Spectramax M5 plate reader (Molecular Devices).

JC-1 monomer and aggregate fluorescence were measured indepen-

dently. Oligomycin (10 lM) and FCCP (10 lM) (Sigma, C2920) were

used as positive and negative controls.

4.10 | Cytosolic calcium measurements

Fluo-4, AM (Molecular Probes, F14201) was used according to the

manufacturer’s instructions to measure mitochondrial and cytosolic

Ca2+ levels, respectively. HT22 cells were plated at 5x103 cells/well

in 96-well plates in FluoroBrite DMEM and grown overnight. The fol-

lowing day, J147 was added for 6-8 hr prior to addition of calcium

dyes. For calcium ionophore experiments, A23187 (Tocris 1234) and

ionomycin (Cayman 10004974) were added at the indicated concen-

trations along with J147 for 1 hr. Pluronic F-127 (Molecular Probes,

P6866) was used to assist in Fluo-4 dispersion and used at a final

concentration of 0.02%. Fluo-4 (2.5 lM) was added to cells for a total

of 45 min, the first 20 min at RT and the last 25 min at 37°C. Fluo-

rescence was either measured on a Spectramax M5 plate reader or

by flow cytometry. FloJo software was used for analysis and results

were reported as geometric mean fluorescence intensity.

4.11 | ATP

ATP measurements were carried out according to the manufacturer’s

instructions (Molecular Probes A22066). For ATP measurements in

drosophila, heads were extracted and homogenized in 6 M guanidine

HCl and ATP measurements were carried out according to manufac-

turer’s instructions (Sigma, FLAA).

4.12 | Transfections

For transfections, 2.5 lg of the H49K-hIF1 (Laura Formentini et al.,

2012) and 2.5 lg GFP-encoding control plasmid were transfected

using Lipofectamine 3000 Reagent (Invitrogen L3000001) for 6-8 hr

and grown overnight. siRNA transfections were carried out using

50 nM ATP5A siRNA and 50 nM control siRNA (Santa Cruz sc-60228

and sc-37007) using RNAiMAX reagent (Invitrogen 13778).

4.13 | Drosophila stocks, culturing conditions, and
lifespan analysis

The Canton-S and w1118 lines have been described previously, and

F1 offspring from crosses between the two strains (w1118/+) were

used in this study (Ratliff et al., 2015). Male flies were collected and
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aged in same-sex cohorts (25 flies per vial) on standard laboratory

media (agar, molasses, yeast, cornmeal, propionic acid, nipagin). Start-

ing at 1 week of age, flies were placed on to standard fly media

(control) or vials containing standard media containing 0.1 or 2 lM

J147. Flies were maintained at 25°C on a 12-hr:12-hr light:dark cycle

for the duration of the study. Mortality data were used to generate

Kaplan–Meier longevity curves.

4.14 | Statistical analysis

For the SAMP8 mouse studies, statistical analysis was carried out

using one-way ANOVA followed by Tukey–Kramer multiple compar-

isons posts hoc test. Statistical significance was assessed by analysis

of variance (ANOVA) and Student’s t test where appropriate. A p

value of <.05 was considered significant. GraphPad Prism 6 was used

for statistical analysis.
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