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Abstract Precise coordination of synaptic connections ensures proper information flow within

circuits. The activity of presynaptic organizing molecules signaling to downstream pathways is

essential for such coordination, though such entities remain incompletely known. We show that

LRP4, a conserved transmembrane protein known for its postsynaptic roles, functions

presynaptically as an organizing molecule. In the Drosophila brain, LRP4 localizes to the nerve

terminals at or near active zones. Loss of presynaptic LRP4 reduces excitatory (not inhibitory)

synapse number, impairs active zone architecture, and abolishes olfactory attraction - the latter of

which can be suppressed by reducing presynaptic GABAB receptors. LRP4 overexpression

increases synapse number in excitatory and inhibitory neurons, suggesting an instructive role and a

common downstream synapse addition pathway. Mechanistically, LRP4 functions via the conserved

kinase SRPK79D to ensure normal synapse number and behavior. This highlights a presynaptic

function for LRP4, enabling deeper understanding of how synapse organization is coordinated.

DOI: 10.7554/eLife.27347.001

Introduction
Multiple levels of synaptic organization ensure accurate, controlled information flow through neuro-

nal circuits. Neurons must first make an appropriate number of synaptic connections with their post-

synaptic partners. Each of these synaptic connections must have appropriate strength that can be

modified by plasticity and homeostasis as a result of experience and activity changes. Further, there

must be an appropriate balance between excitatory and inhibitory synapses. Finally, recent work has

shown that these connections also occupy precise locations with regards to the three-dimensional

structure of the synaptic neuropil. Indeed, circuit models for diverse neuronal ensembles fail to reca-

pitulate functional patterns unless these aspects are accounted for (Kim et al., 2014; Vlasits et al.,

2016). The misregulation of any one of these organizational parameters can result in neurodevelop-

mental disorders and intellectual disabilities like autism (Mullins et al., 2016), epilepsy

(Bonansco and Fuenzalida, 2016), and other synaptopathies (Grant, 2012). Revealing the molecular

mechanisms that ensure all of these facets are achieved is a critical step in understanding circuit

assembly and function.

Synaptic organizers like Neurexins / Neuroligins, Teneurins, protein tyrosine phosphatases (PTPs),

leucine rich repeat transmembrane proteins (LRRTMs), and Ephrin / Eph receptors, among others,

ensure the proper number, distribution, and function of synaptic connections (Hruska and Dalva,

2012; Mosca, 2015; Siddiqui and Craig, 2011; Südhof, 2008; Takahashi and Craig, 2013; de Wit

and Ghosh, 2016). Loss-of-function mutations in these key synaptogenic molecules have deleterious

structural, functional, and organizational consequences for synapses and circuits. At the vertebrate
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neuromuscular junction, one of these critical organizers is LRP4. There, it forms a receptor complex

with MuSK in muscle fibers to promote clustering of acetylcholine receptors in response to motoneu-

ron-derived agrin (Zhang et al., 2008; Kim et al., 2008; Weatherbee et al., 2006). Muscle LRP4

can also function as a retrograde signal with an unknown motoneuron receptor to regulate presyn-

aptic differentiation (Yumoto et al., 2012). In these roles, the known functions from LRP4 are over-

whelmingly postsynaptic. However, a number of lines of evidence suggest a broader role, beyond

postsynaptic, for LRP4. First, motoneuron-derived LRP4 can regulate presynaptic differentiation,

demonstrating a role for neuronal LRP4 (Wu et al., 2012). Second, in the vertebrate central nervous

system (CNS), agrin is not essential for synapse formation (Daniels, 2012) though LRP4 can regulate

synaptic plasticity, development, and cognitive function (Gomez et al., 2014; Pohlkamp et al.,

2015), through functioning in astrocytes in some cases (Sun et al., 2016). In this vein, the Drosophila

genome contains an LRP4 homologue, but no clear agrin or MuSK homologues (Adams et al.,

2000), so any role for LRP4 there must be agrin-independent.

Here, we show in the Drosophila CNS that LRP4 is a presynaptic protein that regulates the num-

ber, architecture, and function of synapses. LRP4 functions largely through the conserved, presynap-

tic SR-protein kinase, SRPK79D. LRP4 and SRPK79D interact genetically and epistatically, as

SRPK79D overexpression can suppress lrp4-related phenotypes. Unexpectedly, this role for LRP4

occurs preferentially in excitatory neurons, as impairing lrp4 in inhibitory neurons has no effect. As

little is known about the presynaptic determinants (save neurotransmitter-related enzymes and trans-

porters) of excitatory versus inhibitory synapses, this may suggest a new mode for distinguishing

such synapses from the presynaptic side. Thus, LRP4 may represent a conserved synaptic organizer

that functions presynaptically, cell autonomously, and independently of agrin to coordinate synapse

number and function.

eLife digest The connections between nerve cells, called synapses, often malfunction in disease,

injury and during aging, and to understand how this happens we first need to know how they work

normally. At a synapse, one nerve cell sends a signal to the other. The signal is a chemical

substance, which binds to specialized proteins called receptors on the receiving nerve cell. At

excitatory synapses, the chemical signal activates the receiver; at inhibitory synapses, it does the

opposite. Communication at synapses typically only goes in one direction because the sender and

receiver at a synapse are not interchangeable; they contain different molecules that support their

distinct roles.

To complicate matters, the same molecule may sometimes be present on both sides of a synapse

with a different role in each. Moreover, not all synapses exist between two nerve cells; some

synapses also form between nerve cells and muscle fibers to control the movement of the muscles.

Mosca et al. set out to identify new players involved in forming synapses, and to identify differences

in the formation of nerve cell-to-nerve cell versus nerve cell-to-muscle connections.

Mosca et al. were interested in particular in a protein called LRP4. In mammals, LRP4 is largely

present on the muscle side of nerve cell-to-muscle synapses, where it acts as a receptor for a

chemical signal called Agrin. However, fruit flies — which lack Agrin – also possess the gene for

LRP4, suggesting that it has other roles too. Mosca et al. now show that LRP4 is present in the nerve

cell-to-nerve cell synapses found in the fruit fly’s brain. Further experiments reveal that fruit fly LRP4

plays an important role on the sender side of these synapses. Reducing the amount of LRP4 in the

fruit fly brain reduces the number of excitatory, but not inhibitory, synapses. This suggests that fruit

fly LRP4 may help regulate the formation of excitatory synapses.

Understanding how synapses form, and the differences between excitatory and inhibitory

connections, could provide new insights into disorders of impaired synapse formation such as

schizophrenia. LRP4 has also been implicated in disorders, such as amyotrophic lateral sclerosis

(ALS) and myasthenia gravis, in which impaired communication between nerves and muscles causes

muscles to weaken. Improved understanding of how synapses work may lead to better drugs to

treat these disorders.

DOI: 10.7554/eLife.27347.002
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Results

LRP4 is a synaptic protein expressed in excitatory neurons
We identified CG8909 as the fly LRP4 homologue (Figure 1—figure supplements 1 and 2A), which

is predicted to be a single-pass transmembrane protein whose domain organization resembles that

of mammalian LRP4 (Figure 1A). Drosophila LRP4 shares 38% identity with human LRP4 overall, 61%

identity within the LDL-repeat containing extracellular portion, and 28% identity in the intracellular

tail. Consistent with previous expression data from whole-brain microarrays (Chintapalli et al.,

2007), we determined that LRP4 was expressed throughout the adult brain using antibodies against

the endogenous protein (Figure 1B–C) or an lrp4-GAL4 transgene that expresses GAL4 under the

lrp4 promoter and visualized with either Syt-HA (Figure 1D) or an HA epitope-tagged LRP4 (Fig-

ure 1—figure supplement 2C). All methods revealed similar patterns of expression in the antennal

lobes (Figure 1 and Figure 1—figure supplement 2C–E), optic lobes, and higher olfactory centers

including the mushroom body and the lateral horn (Figure 1B,D). Antibody specificity was validated

by the complete loss of signal in a deletion (see below) of the lrp4 coding region (Figure 1C). We

further investigated LRP4 in the antennal lobe, the first olfactory processing center in the Drosophila

CNS, which has emerged as a model circuit for studying sensory processing (Wilson, 2013) and

whose synaptic organization was recently mapped at high resolution (Mosca and Luo, 2014).

LRP4 was enriched in the synaptic neuropil of the antennal lobe (Figure 1B). As this neuropil is

made up of processes from multiple classes of olfactory neurons, all of which make presynaptic con-

nections there, we used intersectional strategies with lrp4-GAL4 to identify which neurons expressed

lrp4. These approaches revealed lrp4 expression in both olfactory receptor neurons (ORNs; Fig-

ure 1—figure supplement 2D) and projection neurons (PNs; Figure 1—figure supplement 2E).

Because of the observed neuropil expression of LRP4 (Figure 1B–C), we sought to examine the

localization of LRP4 with regards to a known synaptic protein, the active zone scaffolding component

Bruchpilot (Wagh et al., 2006). However, due to the density of CNS neuropil, colocalization analyses

using light level microscopy have inherently low resolution. Therefore, we applied expansion micros-

copy (Chen et al., 2015) to the Drosophila CNS to improve the resolution of colocalization analysis.

This technique uses isotropic expansion of immunolabeled tissue (Tillberg et al., 2016) while main-

taining the spatial relationship between protein targets and allowing for enhanced resolution with

confocal microscopy. Using protein-retention expansion microscopy (proExM), we obtained

reliable, ~4 fold isotropic expansion of Drosophila CNS tissue (Figure 1—figure supplement 3). To

specifically examine the relationship between LRP4 and active zones only in ORNs, we expressed

HA-tagged LRP4 and Brp-Short-mStraw using the pebbled-GAL4 driver (Sweeney et al., 2007).

LRP4-HA expressed using lrp4-GAL4 localizes to similar regions as LRP4 antibody staining

(Figure 1B and Figure 1—figure supplement 2C), suggesting the fidelity of this transgene. Within

individual expanded glomeruli of proExM-treated brains, LRP4 and Brp localized to similar regions

(Figure 1E) and, when examined at high magnification, LRP4 localized either coincidentally with Brp

(Figure 1F, arrowhead) or to the space adjacent to active zones (Figure 1F, arrow). This combination

of active zone and periactive zone localization is similar to that of known synaptic organizers

(Jepson et al., 2014; Li et al., 2007; Mosca et al., 2012). Thus, LRP4 is a synaptic protein that local-

izes to nerve terminals.

Given widespread expression throughout the brain, we sought to identify the cell types that

express LRP4. To accomplish this, we used lrp4-GAL4 driven mCD8-GFP as this approach, in addi-

tion to labeling similar neuropil regions as the antibody, also highlighted the cell bodies of lrp4-posi-

tive cells. We co-stained brains for various cellular and neuronal-subtype markers and quantified the

overlap between cells positive for lrp4-expression and expression of these various labels. Nearly all

lrp4-positive cells observed (99.5%) expressed the neuronal marker ELAV (Robinow and White,

1988) (Figure 1G), indicating that these cells were neurons. Few (0.4%) expressed the glial marker

Repo (Xiong et al., 1994) (Figure 1H). The majority of lrp4-positive cells (59.1%) also expressed

choline acetyltransferase (ChAT; Figure 1I), a marker for cholinergic excitatory neurons. We also

observed partial overlap between lrp4-positive neurons and vGlut (22.4%; Figure 1J), the vesicular

transporter for glutamate. In the fly brain, glutamatergic neurons can be either excitatory or inhibi-

tory (Liu and Wilson, 2013). Interestingly, there was little overlap (0.3%) between lrp4 and GABA,

the major inhibitory neurotransmitter in Drosophila (Figure 1K). Thus, LRP4 is expressed at synaptic
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Figure 1. LRP4 is a synaptic protein expressed in excitatory neurons. (A) Domain structure of Drosophila LRP4. Numbers indicate amino acids. EXT,

extracellular side. INT, intracellular side. (B) Representative confocal image stack of a control Drosophila brain stained with antibodies against

endogenous LRP4 (green) and Bruchpilot (inset, magenta) demonstrating expression throughout the brain. (C) Representative confocal image stack of

an lrp4dalek null brain stained with antibodies against LRP4 (green) and Brp (inset, magenta) demonstrating antibody specificity. (D) Representative

confocal image of a Drosophila brain expressing UAS-Syt-HA via lrp4-GAL4 and stained with antibodies to HA (D, green) and N-Cadherin (inset,

magenta). The expression pattern resembles that of endogenous LRP4, supporting the specificity of lrp4-GAL4. (E) Representative single slice within a

single antennal lobe glomerulus of a brain processed for expansion microscopy (proExM) expressing LRP4-HA and Brp-Short-mStraw in all ORNs via

pebbled-GAL4 and stained with antibodies to HA (E, E”, green) and mStraw (E’-E”, magenta). LRP4 localizes to synaptic neuropil regions. (F) High

magnification image of the region bounded by dashed lines in (E) and stained as above. Arrows indicate LRP4-HA localization adjacent to / not directly

overlapping with Bruchpilot-Short. Arrowheads indicate overlapping LRP4-HA and Brp-Short localization. (G–K) Representative high magnification

confocal stack images of neuronal cell bodies surrounding the antennal lobe in animals expressing UAS-mCD8-GFP via lrp4-GAL4 and stained for

antibodies against GFP (G-K, green) and other cell-type markers (G’-K’, magenta). Merge channels (G’’–K’’) show colocalization of lrp4 with the

neuronal marker ELAV (G’’) but not the glial cell marker Repo (H’’). Neurons positive for lrp4 show colocalization with choline acetyltransferase (ChAT,

Figure 1 continued on next page
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terminals of a subset of excitatory cholinergic neurons and a subset of glutamatergic neurons that

may be excitatory or inhibitory, but is excluded from inhibitory GABAergic neurons.

Perturbing presynaptic LRP4 changes ORN synapse number
As both the expression and localization of LRP4 were consistent with the protein serving a synaptic

role, we sought to determine whether disrupting its function in excitatory neurons would affect syn-

apse number. To image these connections, we expressed fluorescently tagged synaptic markers

(Fouquet et al., 2009; Leiss et al., 2009; Mosca and Luo, 2014) and used previously established

methods to estimate the number of active zones and postsynaptic receptor puncta (Mosca and Luo,

2014) in olfactory neurons in antennal lobe glomeruli (Figure 2A). These methods show stereotyped

active zone numbers and densities in ORNs and can reveal the function of synaptic proteins in medi-

ating these aspects (Mosca and Luo, 2014). Further, measurements from these methods are consis-

tent with our own electron microscopy (Mosca and Luo, 2014) as well as results from ultrastructural

reconstructions of all synapses in individual glomeruli (Tobin et al., 2017) demonstrating their utility.

To perturb LRP4 function, we created a null mutation (lrp4dalek) using the CRISPR-Cas9 system

(Gratz et al., 2013) that removed the entire coding region (Figure 1—figure supplement 2A–B).

lrp4dalek mutants were viable with a slightly reduced body size.

In ORN axon terminals projecting to the VA1v glomerulus in males (Figure 2B), lrp4dalek mutants

(Figure 2C,H) showed a 31% reduction in the number of puncta for Brp-Short, an active zone

marker, compared to control adults (Figure 2B,H). This phenotype was recapitulated when we

expressed any of four independent transgenic RNAi constructs against lrp4 only in ORNs

(Figure 2D,H, and Figure 2—figure supplement 1), demonstrating that LRP4 functions presynapti-

cally in regulating active zone number. These changes were independent of glomerular volume: lrp4

loss-of-function had no effect on neurite volume (Figure 2H and Figure 2—figure supplement 1).

Though the intensity of Brp-Short puncta across some genotypes trended slightly downward, it did

not reach statistical significance (data not shown). We also observed that lrp4 disruption (using

lrp4dalek mutants and presynaptic RNAi expression) caused a quantitatively similar reduction of active

zone numbers in VA1v ORN axon terminals in females in this sexually dimorphic glomerulus (Fig-

ure 2—figure supplement 2), and in ORN axon terminals projecting to the VA1d, DA1, DL4, and

DM6 glomeruli (Figure 2—figure supplement 3). This suggests that lrp4 phenotypes are not spe-

cific to particular glomeruli. Beyond Brp-Short, we observed similar phenotypes with an independent

presynaptic marker, DSyd-1 (Owald et al., 2012), that is also punctate at ORN terminals

(Mosca and Luo, 2014) (Figure 2—figure supplement 4).

We further examined the consequences of lrp4 disruption on the number of Da7 acetylcholine

receptor puncta in PN dendrites postsynaptic to the ORN axon terminals imaged above. Loss of lrp4

decreased Da7-EGFP puncta numbers by 29% compared to controls (Figure 2F–G,I). This deficit

was also independent of neurite volume (Figure 2I and Figure 2—figure supplement 2), again dem-

onstrating that lrp4 perturbation phenotypes did not result from decreased neuronal projection size.

Further, both the presynaptic active zone and postsynaptic acetylcholine receptor phenotypes were

quantitatively similar. While likely that the postsynaptic AChR number decreases concomitantly with

Figure 1 continued

I’’), and the vesicular glutamate transporter (vGlut, J’’), but little to no colocalization with the inhibitory neurotransmitter GABA (K’’), suggesting that

lrp4-positive cells are largely excitatory neurons. The percentage of GFP-positive cells that are ALSO positive for the cell-type specific marker are as

follows: Elav = 99.50 ± 0.19% overlap; Repo = 0.38 ± 0.18% overlap; ChAT = 59.13 ± 2.48% overlap; vGlut = 22.38 ± 1.28% overlap; GABA = 0.25 ±

0.16% overlap. For all cases, n = 8 animals, � 200 cells per animal. Values = mean ± s.e.m. Scale bars = 50 mm (B–D), 150 mm (B-D, insets), 25 mm (E–F),

10 mm (G–K).

DOI: 10.7554/eLife.27347.003

The following figure supplements are available for figure 1:

Figure supplement 1. Sequence alignment of Drosophila, mouse, and human LRP4 homologues.

DOI: 10.7554/eLife.27347.004

Figure supplement 2. LRP4 reagents and patterns of LRP4 expression.

DOI: 10.7554/eLife.27347.005

Figure supplement 3. Validation of expansion microscopy in Drosophila.

DOI: 10.7554/eLife.27347.006
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Figure 2. LRP4 perturbation in excitatory neurons alters synapse number. (A) Schematic diagram of the fly brain

with major regions labeled and the olfactory regions examined in this study shaded in red (AL, antennal lobe) or

yellow (LH, the lateral horn). Olfactory receptor neurons (ORNs, black), excitatory projection neurons (ePNs, red),

and local interneurons (LNs, brown) are indicated. White dashed lines represent a glomerulus. Magnification: the

antennal lobe region with the three glomeruli examined here highlighted: DA1 (green), VA1d (blue), and VA1v

(purple). (B–E) Representative high magnification confocal stack images of VA1v ORN axon terminals in the VA1v

glomerulus of males expressing Brp-Short-mStraw and stained with antibodies against mStraw (red) and

N-Cadherin (blue). Loss of lrp4 (lrp4dalek) and RNAi against lrp4 expressed only in ORNs (ORN lrp4IR-2) show fewer

Brp-Short-mStraw puncta while LRP4 overexpression in ORNs (ORN LRP4 OE) increases the number of Brp-Short-

mStraw puncta. (F–G) Representative high magnification confocal maximum intensity projections of DA1 and VA1d

Figure 2 continued on next page
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the presynaptic active zone number (which is controlled by presynaptic LRP4), we cannot exclude an

additional postsynaptic role for LRP4 (see Discussion). However, it is evident that the loss of LRP4

reduces synapse number as assayed both pre- and postsynaptically.

The above experiments demonstrated the necessity of presynaptic LRP4 in ensuring the proper

number of synaptic connections. However, with known presynaptic organizers like Neurexin, overex-

pression results in added boutons (Li et al., 2007) and active zones (Craig and Kang, 2007). To test

for LRP4 sufficiency in synapse addition, we overexpressed HA-tagged LRP4 presynaptically in other-

wise wild-type ORNs. LRP4 overexpression increased the number of Brp-Short puncta by 30%

(Figure 2E,H, and Figure 2—figure supplement 2); this increase was also independent of neurite

volume (Figure 2h and Figure 2—figure supplements 2–3) as the glomeruli remained the same

size. Thus, there is a direct relationship between presynaptic LRP4 expression and synapse number

in excitatory neurons: removing LRP4 reduces, while overexpressing LRP4 increases, synapse

number.

Ultrastructural analysis reveals LRP4 regulates active zone number and
structure
Though light level analyses accurately report fold-changes in synapse number (Chen et al., 2014;

Mosca and Luo, 2014), we sought to independently confirm and extend our analyses using electron

microscopy. Using transmission electron microscopy (TEM) on the fly antennal lobe, we quantified

synapse number in putative ORN terminals based on morphology (Rybak et al., 2016; Tobin et al.,

2017) in both control (Figure 3A) and lrp4dalek (Figure 3B) adult brains. T-bar profiles were evident

in both genotypes, but were reduced in number by 31% in mutant terminals (Figure 3C), which

exactly matched the reduction observed by Brp-Short puncta measurements (Figure 2H). Terminal

perimeter was slightly but significantly increased in lrp4dalek terminals (Figure 3D), resulting in a 36%

reduction in T-bar density when compared to control (Figure 3E). These results are consistent with

those observed via confocal microscopy, and demonstrate that LRP4 is necessary for the proper

number of synapses in putative ORN terminals of the antennal lobe.

Brp-Short assays alone cannot distinguish between normal and impaired active zones. We there-

fore examined the ultrastructural morphology of individual active zones to determine if LRP4 had an

additional role in the biogenesis of the T-bar itself. In both control (Figure 3F–H) and lrp4

(Figure 3I–K) terminals, we observed single (Figure 3F–I), double (Figure 3G,J), and triple T-bars

(Figure 3H,K) suggesting that LRP4 is not absolutely required for T-bar formation and some ele-

ments of organization. However, whereas irregular T-bars in control animals were rare (<5% of total

T-bars), the majority of T-bars in lrp4 mutants displayed one or more defects (Figure 3L–Q), includ-

ing immature T-bars that lacked tops (Figure 3L), detached T-bars (Figure 3M), misshapen T-bars of

varying configurations and aggregations (Figure 3N–P), and multiple T-bars beyond those observed

Figure 2 continued

PN dendrites in males expressing Da7-EGFP, a tagged acetylcholine receptor subunit. Loss of lrp4 (lrp4dalek) also

results in fewer Da7-EGFP puncta. (H) Quantification of Brp-Short-mStraw puncta (red, left axis) and neurite

volume (black, right axis) in VA1v ORNs. (I) Quantification of Da7-EGFP puncta (green, left axis) and neurite

volume (black, right axis). ****p<0.0001; ***p<0.001; ns, not significant. Statistical comparisons in 2H (one-way

ANOVA with correction for multiple comparisons) are with control. Statistical comparisons between two samples

are done via Student’s t-test. Error bars represent mean ± s.e.m. n (antennal lobes) is noted at the bottom of each

column. Scale bars = 10 mm.

DOI: 10.7554/eLife.27347.007

The following figure supplements are available for figure 2:

Figure supplement 1. Representative antennal lobe images for genetic lrp4 manipulations.

DOI: 10.7554/eLife.27347.008

Figure supplement 2. lrp4 perturbation in females affects synapse number.

DOI: 10.7554/eLife.27347.009

Figure supplement 3. lrp4 RNAi reduces synapse number in multiple glomeruli.

DOI: 10.7554/eLife.27347.010

Figure supplement 4. lrp4 RNAi reduces Syd1 puncta in presynaptic ORN terminals.

DOI: 10.7554/eLife.27347.011
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Figure 3. Loss of LRP4 causes defects in T-bar number and morphology. (A–B) Representative transmission

electron micrographs of putative ORN terminal in Control (A) and lrp4dalek (B) adult antennal lobes. Loss of lrp4

results in fewer observed T-bar profiles (asterisk) and a larger terminal perimeter. Scale bar = 1 mm. (C)

Quantification of T-bar profiles per terminal in Control and lrp4dalek terminals. Loss of LRP4 results in a 31%

reduction of T-bars. (D) Quantification of terminal perimeter in Control and lrp4dalek adults. Mutant terminals have

a 13% greater perimeter than control terminals. (E) Quantification of the T-bar density per mm of terminal

perimeter. Loss of LRP4 causes a 36% reduction in T-bar density when the increased terminal perimeter is

accounted for. For (C–E), Control has n = 5 animals, 2688 terminals and lrp4dalek has n = 3 animals, 3123 terminals.

Figure 3 continued on next page
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in control animals (Figure 3Q). Thus, in addition to controlling the number of synapses, LRP4 is also

required for individual active zones to assume normal morphology, attach to the membrane, and

have proper spacing. Thus, LRP4 has multiple, critical roles in central synapse formation.

LRP4 is not required for inhibitory neuron synapse number
The preferential expression of lrp4 in excitatory but not inhibitory neurons (Figure 1) suggests that it

promotes synapse addition specifically in excitatory neurons. To test this, we used Brp-Short to

examine synapse number in GABAergic inhibitory neurons projecting to the antennal lobe using the

GAD1-GAL4 driver (Ng et al., 2002). Though GAD1-positive neurons project throughout the anten-

nal lobe (Mehren and Griffith, 2006), we restricted our analyses to the DA1 glomerulus, where we

observed reductions in excitatory synapses (Figure 2—figure supplements 3–4) following LRP4 dis-

ruption. When LRP4 function was impaired using the lrp4dalek mutant or RNAi in these neurons, syn-

apse number was unaffected (Figure 4A–B,D). Thus, the reduction of synapse number under LRP4

loss-of-function conditions appeared specific for excitatory neurons.

Interestingly, when LRP4 was overexpressed in inhibitory neurons, we observed a 35% increase in

synapse number without an accompanying change in neurite volume, similar to what we observed

for excitatory neurons (Figure 4C–D). This suggests that, while inhibitory GABAergic neurons do not

normally utilize LRP4 to regulate synapse number, they possess the downstream machinery neces-

sary for LRP4 to function in adding synapses. Thus, when LRP4 is exogenously expressed in these

cells, it can co-opt this machinery for synapse addition. As such, excitatory and inhibitory neurons

likely use distinct cell surface synaptic organizers (LRP4 for excitatory neurons) that converge on

common mechanisms for synapse addition.

Excitatory, but not inhibitory, olfactory projection neurons also require
LRP4 to ensure proper synapse number
Though we initially restricted our analyses to the antennal lobe, we also observed lrp4 expression

throughout the brain, including two higher order olfactory neuropil: the mushroom body and the lat-

eral horn (Figure 1B–D). To determine whether LRP4 could also serve as a synaptic organizer in

these brain regions, we examined the effects of lrp4 perturbation on both excitatory and inhibitory

synapses in the lateral horn (LH, Figure 5A), a higher order olfactory center involved in innate olfac-

tory behavior (Heimbeck et al., 2001). We used Mz19-GAL4 to label projection neurons whose den-

drites and cell bodies are restricted to the antennal lobe region, but whose axon terminals make

excitatory synapses in the lateral horn (Berdnik et al., 2006). To label inhibitory synapses, we used

the Mz699-GAL4 driver, which is expressed in inhibitory projection neurons (iPNs) whose dendrites

project to the antennal lobe and whose axons project to the lateral horn (Lai et al., 2008;

Liang et al., 2013). Mz699-GAL4 also labels a small subset of third-order neurons that project den-

drites largely void of presynaptic terminals to the ventral lateral horn (Liang et al., 2013). Thus, we

consider synaptic signal labeled by Mz699-GAL4 as being contributed mostly by iPNs.

In lrp4 mutants, the number of excitatory lateral horn synapses was reduced by 40%, consistent

with a role for LRP4 in synapse formation (Figure 5B–C,F). PN perturbation of lrp4 using RNAi

reduced synapse number similarly to the loss-of-function allele, demonstrating a presynaptic role for

lrp4 in these neurons (Figure 5F and Figure 5—figure supplement 1). These changes were inde-

pendent of neurite volume, which remained unaffected (Figure 5F). Perturbation of lrp4 in Mz699-

Figure 3 continued

The number of terminals measured is listed below the genotype. ****p<0.0001. Statistical comparisons (two-tailed

Student’s t-test) are done between genotypes. Error bars represent mean ± s.e.m. (F–H) Representative

transmission electron micrographs of individual T-bar profiles (asterisk) in control adults. Single (F), double (G), and

triple (H) profiles are readily visible. (I–Q) Representative transmission electron micrographs of individual T-bar

profiles in lrp4dalek adults. As in control flies, single (I), double (J) and triple (K) T-bar profiles were visible. The

majority of T-bars, however, demonstrated morphology defects including those that lacked table tops (L), were

detached from the membrane (M–N), were misshapen (N–P), and profiles containing four or more connected

T-bars (Q). These all represent morphological defects that are not observed (or very rarely observed) in control

adults. Scale bar = 200 nm.

DOI: 10.7554/eLife.27347.012
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Figure 4. Effects of LRP4 perturbation on inhibitory neuron synapse formation. (A–C) Representative high

magnification confocal maximum intensity projections of GAD1-positive inhibitory neurons, which project to the

DA1 glomerulus (dashed line), in males expressing Brp-Short-mStraw and stained with antibodies against mStraw

(red) and N-Cadherin (blue). Due to the proximity of inhibitory neuron cell bodies to the antennal lobe, saturated

somatic signal is observed. Loss of lrp4 (lrp4dalek) does not affect puncta number but overexpression of LRP4

(GAD1 LRP4 OE) increases Brp-Short puncta. (D) Quantification of Brp-Short-mStraw puncta (red, left axis) and

neurite volume (black, right axis) in GAD1 neurons. Neither loss of lrp4 nor RNAi against lrp4 expressed in

inhibitory neurons affects puncta number or neurite volume. ****p<0.0001; ***p<0.001; ns, not significant.

Figure 4 continued on next page
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positive iPNs, however, had no effect on the number of synapses (Figure 5D–E,G, and Figure 5—

figure supplement 1) despite a slight reduction in neurite volume in lrp4dalek mutants (Figure 5G).

Despite a lack of a loss-of-function phenotype, we observed an increase in synapse number when we

overexpressed LRP4-HA in Mz699-positive neurons (Figure 5G and Figure 5—figure supplement

1). Thus, the results of lrp4 perturbation on excitatory and inhibitory synapses in the lateral horn

resembled those of the antennal lobe, suggesting a general role for LRP4 in promoting excitatory

synapse number.

LRP4 is required for normal olfactory attraction behavior
Given the role for LRP4 in the specific regulation of excitatory synapse number, we sought to deter-

mine whether the consequences of LRP4 disruption were accompanied by functional changes in

behavior. We examined fly attraction to the odorant in apple cider vinegar using a modified olfac-

tory trap assay (Larsson et al., 2004; Potter et al., 2010) (Figure 6A), an ethologically relevant

assay that requires flight and/or climbing to follow odorant information within a larger arena

(Min et al., 2013). As presynaptic LRP4 regulates ORN synapse number, we used RNAi against lrp4

expressed selectively in all ORNs using pebbled-GAL4 to assess olfactory attraction. Control flies

bearing a single copy of pebbled-GAL4 or one of four different lrp4 RNAi transgenes alone exhib-

ited a strong preference for apple cider vinegar (Figure 6B). Flies bearing both transgenes (and

thus, reduced lrp4 expression) exhibited a near complete abrogation of attractive behavior and were

no longer able to distinguish the attractive apple cider vinegar from a water control (Figure 6B).

Movement, wall climbing, and flight were still observed in these flies (data not shown), suggesting

that this was not due to widespread defects in motion, consistent with our selective perturbation of

LRP4 function in ORNs. Thus, presynaptic LRP4 in ORNs is necessary for normal olfactory attraction

behavior.

A complete loss of olfactory attraction was unexpected for a manipulation that reduced synapse

number by ~30%. One potential explanation is that, while the remaining 70% of synapses were

detected by the Brp-Short assay, they were functionally impaired. This would be consistent with the

myriad of morphology defects observed in lrp4 mutant T-bars via TEM (Figure 3I–Q). In Drosophila,

olfactory information flow is regulated by presynaptic inhibition by local GABAergic interneurons

onto excitatory ORNs via the GABAA and GABABR2 receptors (Olsen and Wilson, 2008;

Root et al., 2008). If the remaining synapses were indeed weakened by the loss of LRP4, reducing

inhibition onto those ORNs might suppress the behavioral phenotype. To test this hypothesis, we

inhibited the GABABR2 receptor in ORNs using RNAi, which by itself did not affect the olfactory

attraction behavior (Figure 6B). Simultaneous knockdown of GABABR2 and lrp4, however, markedly

suppressed the behavioral phenotype associated with lrp4 knockdown alone (Figure 6B). This

manipulation did not suppress the morphological phenotype, however, as the reduction in Brp-Short

puncta was still apparent (1297 ± 25.62 puncta, n = 39 antennal lobes for Or47b-GAL4 > UAS-lrp4IR2

+ UAS-mCD8-GFP vs. 1191 ± 48.91 puncta, n = 12 antennal lobes for Or47b-GAL4 > UAS-lrp4IR2 +

UAS-GABABR2IR, p>0.2). These results suggest that olfactory attraction behavior requires a proper

level of net excitatory drive in the antennal lobe circuit and that defects caused by weakened excit-

atory synapses can be compensated for by reducing inhibition.

SRPK79D interacts with, and requires, LRP4 for ORN terminal
localization
To understand how LRP4 could regulate excitatory synapse number and olfactory behavior, we

investigated the mechanism by which it functions. In examining lrp4dalek mutant larvae and larvae

where lrp4 was specifically knocked down in all neurons using RNAi, we observed impaired localiza-

tion of active zone material (Figure 7A–C). Under normal circumstances, the active zone marker

Bruchpilot (Wagh et al., 2006) and the synaptic vesicle marker Synaptotagmin I (DiAntonio et al.,

Figure 4 continued

Statistical comparisons (one-way ANOVA with correction for multiple comparisons) are with control. Error bars

represent mean ± s.e.m. n (antennal lobes) is noted at the bottom of each column. Scale bars = 10 mm.
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Mosca et al. eLife 2017;6:e27347. DOI: 10.7554/eLife.27347 11 of 29

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.27347.013
http://dx.doi.org/10.7554/eLife.27347


Figure 5. LRP4 perturbations similarly affect higher order olfactory centers. (A) Schematic diagram of the fly brain

with major regions labeled and the olfactory regions examined in this study shaded in red (AL, antennal lobe) or

yellow (LH, the lateral horn). Excitatory projection neuron (ePN, dark red) and inhibitory projection neuron (iPN,

teal) axons are indicated. Magnification: the lateral horn region with the regions innervated by excitatory Mz19-

positive projection neuron axons (ePNs, dark red) and inhibitory Mz699-positive projection neuron axons (iPNs,

teal) examined here highlighted. (B–C) Representative high magnification confocal maximum intensity projections

of Mz19-GAL4 positive PN axon terminals in the lateral horn in males expressing Brp-Short-mStraw and mCD8-

GFP and stained for antibodies against mStraw (red), GFP (green), and N-Cadherin (blue). Loss of lrp4 (B, lrp4dalek)

Figure 5 continued on next page
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1993) were barely detectable in larval transverse nerves (Figure 7A), due to their proper trafficking

to or maintenance at synaptic sites. However, in lrp4dalek mutants, Bruchpilot improperly accumu-

lated in the transverse nerves (Figure 7B). This kind of accumulation is rarely observed in wild type,

but is also most notably associated with loss of SRPK79D (Figure 7C), a conserved serine-arginine

protein kinase that localizes to NMJ terminals and negatively regulates premature active zone

assembly before Bruchpilot reaches the fly NMJ (Johnson et al., 2009; Nieratschker et al., 2009).

In both lrp4 and srpk79D mutants, Brp accumulation was not accompanied by focal accumulations of

Synaptotagmin I, indicating that axonal trafficking is not generally impaired (Figure 7A–C)

(Gindhart et al., 1998; Johnson et al., 2009; Nieratschker et al., 2009). Because of the similarity in

the transverse nerve phenotypes and the role of SRPK79D at peripheral synapses, we hypothesized

that LRP4 and SRPK79D could operate together in the CNS to regulate synapse number.

As SRPK79D antibodies are not available, we utilized Venus-tagged SRPK79D transgenes to

examine CNS localization. When expressed only in VA1v ORNs, venus-SRPK79D localized to axon

terminals and overlapped with Brp-Short, demonstrating localization with and adjacent to CNS

active zones (Figure 7D). This was reminiscent of LRP4-HA localization in ORNs (Figure 1F) so we

turned to proExM to more precisely assess the spatial relationship between SRPK79D and LRP4. In

the ORNs of expanded individual glomeruli, LRP4-HA and venus-SRPK79D exhibited coincident and

adjacent localization (Figure 7E). However, SRPK79D was expressed more broadly throughout

ORNs, suggesting that only a subset of SRPK79D colocalizes with LRP4. This may indicate both

LRP4-dependent and -independent roles for SRPK79D. We also examined this synaptic localization

in lrp4dalek mutants: loss of lrp4 reduced synaptic SRPK79D levels by ~50% (Figure 7F–H). This

reduction was specific for SRPK79D, as the staining for other markers, like the general neuropil label

N-Cadherin, was unaffected (Figure 7F–H). These results demonstrate that LRP4 is necessary for the

proper localization and / or expression of SRPK79D and suggest that SRPK79D might act down-

stream of LRP4 to regulate synapse number.

Due to their spatial proximity, we next employed proximity ligation assays (PLA) to determine

whether LRP4 and SRPK79D are spatially close enough to interact. PLA uses oligonucleotides conju-

gated to secondary antibodies (Greenwood et al., 2015; Söderberg et al., 2006): if the epitopes

are sufficiently close (30–40 nm), the oligonucleotides can be ligated together and detected using a

fluorescent probe. The result can be observed using confocal microscopy and preserve, to a high

degree, the spatial localization of the proteins involved. PLA has been used to examine protein-pro-

tein interactions at the NMJ (Wang et al., 2015) but not, to our knowledge, in the CNS. To examine

this, we co-expressed venus-SRPK79D and LRP4-HA in all ORNs using pebbled-GAL4

(Sweeney et al., 2007), stained both targets with oligonucleotide-conjugated secondary antibodies

and performed PLA assays (Figure 7I–J and Figure 7—figure supplement 1). As expected, both

proteins localize to the axon terminals of ORNs. When either is expressed singularly (Figure 7—

Figure 5 continued

reduces synapse number compared to control (A). (D–E) Representative high magnification confocal maximum

intensity projections of Mz699-GAL4 positive inhibitory projection neuron (iPN) axon terminals in the lateral horn in

males expressing Brp-Short-mStraw and mCD8-GFP and stained for antibodies against mStraw (red), GFP (green),

and N-Cadherin (blue). Loss of lrp4 (E, lrp4dalek) does not affect synapse number compared to control (D). (F)

Quantification of Brp-Short-mStraw puncta (red, left axis) and neurite volume (black, right axis) in Mz19-positive

excitatory projection neurons. Loss of lrp4 and RNAi against lrp4 expressed in those neurons reduces puncta

number but leaves neurite volume unaffected. The similar reduction in puncta number between mutants and PN-

specific RNAi reveals the cell autonomous nature of the lrp4 phenotype. (G) Quantification of Brp-Short-mStraw

puncta (red, left axis) and neurite volume (black, right axis) in Mz699-positive inhibitory projection neurons. Neither

loss of lrp4 nor lrp4 RNAi expressed in those neurons affects puncta number, similar to inhibitory neurons in the

antennal lobe. Loss of lrp4 reduces neurite volume by 11% but RNAi does not. Overexpression of LRP4 in these

neurons (LRP4 OE) results in a 28% increase in the number of Brp-Short puncta. ****p<0.0001; **p<0.01; ns, not

significant. Statistical comparisons (one way ANOVA with correction for multiple comparisons) are with control.

Error bars represent mean ± s.e.m. n (lateral horns) is noted at the bottom of each column. Scale bars = 10 mm.

DOI: 10.7554/eLife.27347.014

The following figure supplement is available for figure 5:

Figure supplement 1. Representative lateral horn images for LRP4 genetic manipulations.

DOI: 10.7554/eLife.27347.015
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figure supplement 1A–B) or the probes are not added (Figure 7I), no PLA signal is observed. How-

ever, in the presence of both transgenes and the appropriate probes (Figure 7J and Figure 7—fig-

ure supplement 1C–D), we detected positive signal indicating that the proteins were close enough

to interact. The PLA signal represented a subset of LRP4 or SRPK79D staining patterns, suggesting

that there are roles independent of the other for each protein. Taken together, this data suggests

that LRP4 interacts with SRPK79D to maintain SRPK79D localization at the synapse.

SRPK79D overexpression suppresses LRP4 phenotypes
The interaction with, and reliance on LRP4 for synaptic SRPK79D localization suggested that the two

function together. If so, we would expect that the two would display phenotypic similarity and inter-

act in the same genetic pathway. We observed phenotypic similarity in larval nerves (Figure 7A–C),

but we further sought to study this at CNS synapses. To test the interactions between LRP4 and

SRPK79D with respect to effects of synapse number, we conducted loss-of-function, genetic interac-

tion, and genetic epistasis experiments between genetic perturbations of both. First, reducing

srpk79D function presynaptically using an established RNAi (Johnson et al., 2009) expressed in

VA1v ORNs resulted in a 15% reduction in the number of Brp-Short puncta compared to control

Figure 6. Loss of presynaptic LRP4 abolishes olfactory attraction behavior. (A) Cartoon of the olfactory trap. (B) Quantification of preference index [(# of

flies in odor vial – # of flies in control vial) / total # of flies] between apple cider vinegar (odor) and water (ctrl). Genotypes are indicated below. Control

flies with only a GAL4 or UAS-RNAi transgene demonstrate high preference for the attractive odorant in apple cider vinegar. Flies expressing lrp4 RNAi

in ORNs have this attraction abrogated. Flies expressing RNAi against GABABR2 in ORNs still display robust attractive behavior while concurrent

expression with lrp4 knockdown largely suppresses the loss of attractive behavior. To ensure an equivalent number of transgenes in each genotype,

UAS-mCD8-GFP was included (not listed) to control for potential transgenic dilution. ****p<0.0001; **p<0.01; *p<0.05; ns, not significant. Statistical

comparisons (one-way ANOVA with correction for multiple comparisons) are with control unless otherwise noted. Error bars represent mean ± s.e.m. n

(cohorts of 25 flies tested) is noted at the bottom of each column.

DOI: 10.7554/eLife.27347.016
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Figure 7. LRP4 is required for normal synaptic SRPK79D localization in the CNS. (A–C) Representative images of

larval transverse nerves stained with antibodies to Bruchpilot (Brp, green), Synaptotagmin I (Syt I, red), and HRP

(blue). Loss of lrp4 (B, lrp4dalek) and srpk79d (C, srpkatc) result in improper axonal accumulations of Brp. This is not

a general trafficking defect, as Syt I is absent from focal accumulations. (D) Representative high magnification

confocal slice of VA1v ORNs expressing Brp-Short-mStraw and venus-SRPK79D and stained with antibodies to

mStraw (red), GFP (green), and N-Cadherin (blue). SRPK79D largely colocalized with Brp-Short-mStraw but Brp-

Short-positive / SRPK79D-negative and Brp-Short-negative / SRPK79D-positive puncta were also observed (D’’). (E)

Representative confocal slice within a single antennal lobe glomerulus of a brain expressing venus-SRPK79D and

Figure 7 continued on next page
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(Figure 8A–B,E). Thus, SRPK79D is required for normal CNS synapse number. We further sought to

understand if LRP4 and SRPK79D interacted genetically. To examine this, we performed a transhe-

terozygote genetic interaction assay. When single copies of either lrp4 or srpk79D were removed,

there was no evident phenotype (Figure 8—figure supplement 1B–C,E). However, when one copy

of each was concurrently removed, we observed a significant reduction in Brp-Short puncta (Fig-

ure 8—figure supplement 1D–E). This suggests that the two function in the same genetic pathway

and may work together to ensure proper synapse number. Given the reduction in synaptic SRPK79D

present in lrp4 mutants, we examined whether these reduced SRPK79D levels are the root cause of

its synapse reduction. We overexpressed SRPK79D in presynaptic ORNs either in control or lrp4dalek

mutant backgrounds. Presynaptic overexpression of SRPK79D in VA1v ORNs partially suppressed

the synaptic phenotype associated with the lrp4dalek mutation, resulting in 92% of the normal num-

ber of synapses (Figure 8A,C–E), whereas overexpression of SRPK79D in a wild-type background

had no effect (Figure 8E). Finally, we sought to determine whether srpk79D was required for the

increase in Brp-Short puncta associated with LRP4 overexpression (Figure 2H). When LRP4 was over-

expressed concurrently with srpk79D RNAi, the phenotype resembled that of srpk79D RNAi alone

(Figure 8E). This suggests that LRP4 requires SRPK79D to mediate its overexpression phenotype,

likely by functioning through SRPK79D to increase the number of synapses. Combined, these indi-

cate that LRP4 and SRPK79D closely interact presynaptically in the same genetic pathway to ensure

the proper number of excitatory synapses.

In light of the synapse number defects, we also examined the functional consequences of

srpk79D perturbation on olfactory behavior. Flies expressing srpk79D RNAi in all ORNs demon-

strated a nearly complete abrogation of attraction behavior (Figure 8F) that was indistinguishable

from the lrp4 RNAi phenotype. In light of the suppression of the synapse number phenotype, we

also examined whether SRPK79D overexpression could suppress the lrp4 loss-of-function behavioral

phenotype. Control flies bearing the pan-ORN pebbled-GAL4 or the SRPK79D overexpression trans-

gene alone exhibited strong attraction towards apple cider vinegar (Figure 8F). Further, SRPK79D

overexpression in all ORNs did not affect this robust attraction. Driving both SRPK79D overexpres-

sion and lrp4 RNAi in all ORNs, however, resulted in a partial suppression of the behavioral pheno-

type associated with lrp4 RNAi (Figure 8F). As the synaptic level of SRPK79D is positively regulated

by LRP4 and SRPK79D overexpression suppresses the morphological and functional phenotypes

associated with lrp4 loss-of-function, SRPK79D is likely a key downstream effector of LRP4 in regulat-

ing synapse number and thus, normal olfactory attraction behavior.

Figure 7 continued

LRP4-HA in all ORNs, processed for proExM, and stained with antibodies to venus (green), HA (red), and

N-Cadherin (blue). Distinct regions of overlap between venus-SRPK79D and LRP4-HA (E”) are observed, though

this represents a subset of venus-SRPK79D localization. (F–G) Representative high magnification confocal

maximum intensity projections of VA1v ORN axon terminals expressing venus-SRPK79D in control (F) and lrp4dalek

(G) backgrounds and stained with antibodies to GFP (green) and N-Cadherin (blue, inset). Loss of lrp4 results in

reduced synaptic SRPK79D. (H) Quantification of venus-SRPK79D (green, left axis) and N-Cadherin fluorescence

(blue, right axis). SRPK79D fluorescence is markedly reduced in lrp4dalek animals, but N-Cadherin staining is

unaffected, demonstrating specificity. (I–J) Representative high magnification single confocal slices of the antennal

lobe where all ORNs are expressing venus-SRPK79D and LRP4-HA via the pebbled-GAL4 driver and the brains

subsequently processed using proximity ligation assays to determine whether the two proteins were close enough

to interact. The brains were stained with antibodies to venus (green) and HA (blue) and PLA-specific probes (red)

to detect proximity ligation events. When PLA-specific probes are not added, no signal is observed (I”) but when

present, positive PLA signal (J”) indicates close physical proximity between LRP4-HA and venus-SRPK79D. Positive

PLA signal represents a subset of SRPK79D or LRP4 expression, as in (E). **p<0.01; ns, not significant. Statistical

comparisons (one-way ANOVA with correction for multiple comparisons) are with control unless otherwise noted.

Error bars represent mean ± s.e.m. n (antennal lobes) is noted at the bottom of each column. Scale bars = 10 mm

(A–D,I–J), 25 mm (E), 20 mm (F–G), 33 mm (F-G insets).

DOI: 10.7554/eLife.27347.017

The following figure supplement is available for figure 7:

Figure supplement 1. Proximity ligation assays reveal LRP4 and SRPK79D interactions.

DOI: 10.7554/eLife.27347.018
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Figure 8. SRPK79D and LRP4 genetically interact to control synapse morphology and function. (A–D) Representative high magnification confocal

maximum intensity projections of VA1v ORN axon terminals in males expressing Brp-Short-mStraw and stained with antibodies to mStraw (red) and

N-Cadherin (blue). Presynaptic RNAi against srpk79D (srpk RNAi) reduces the number of puncta, but less so than loss of lrp4 (lrp4dalek). Presynaptic

overexpression of SRPK79D in an lrp4dalek background (lrp4dalek + SRPK) restores puncta number to control levels. (E) Quantification of Brp-Short-

Figure 8 continued on next page
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Discussion
Understanding how synaptic organizers regulate the number and function of synapses in the CNS is

a central goal of molecular neurobiology. This study identifies LRP4 as a synaptic protein whose

expression may be preferential for excitatory neurons in the Drosophila CNS (Figure 1). Though

well-known as the postsynaptic agrin receptor at the mouse NMJ (Kim et al., 2008; Zhang et al.,

2008), here we describe an agrin-independent, presynaptic role for LRP4. In the Drosophila CNS,

LRP4 functions presynaptically to regulate the number of active zones in presynaptic ORNs (Fig-

ures 2–3) and acetylcholine receptor clusters in the PNs postsynaptic to those ORNs (Figure 2).

Moreover, LRP4 also controls the morphology of individual active zones: lrp4 mutant T-bars exhibit

striking defects in patterning and biogenesis (Figure 3). These defects are specific for excitatory

neurons, as inhibitory neuron synapses in the antennal lobe remain unaffected (Figure 4). Overex-

pression of LRP4, however, can increase synapse number cell autonomously in both excitatory and

inhibitory neurons (Figures 2–4), suggesting that both share common mechanisms for synapse addi-

tion. The role for LRP4 further extends to higher order olfactory neuropil in the lateral horn (Fig-

ure 5), suggesting that it may serve a general role in synaptic organization. Underscoring the

functional importance of LRP4, its perturbation in excitatory ORNs abrogated olfactory attraction

behavior (Figure 6). The suppression of the behavioral phenotype by reducing presynaptic inhibition

onto ORNs further suggests that a proper level of excitatory drive is important for functional circuit

output. To mediate both morphological and behavioral effects, LRP4 likely functions through

SRPK79D, a conserved SR-protein kinase whose loss-of-function phenotypes resemble those of lrp4

(Figures 7–8), whose synaptic localization depends on LRP4 (Figure 7), who interacts genetically

with and is physically in proximity to LRP4 (Figures 7–8), and whose overexpression suppresses the

phenotypes associated with loss of lrp4 (Figure 8).

LRP4 as a synaptic regulator that distinguishes excitatory from
inhibitory presynaptic terminals
Coordination of excitation and inhibition is critical to proper circuit function. Imbalances in excitation

and inhibition lead to epileptic states (Badawy et al., 2012) and social dysfunction (Yizhar et al.,

2011), and may also underlie many autism spectrum disorders (Mullins et al., 2016; Nelson and

Valakh, 2015). The mechanisms that maintain this balance are incompletely understood, though

likely involve multiple aspects including the number of each type of neuron, their firing rates, release

probabilities, synaptic strength, and neurotransmitter receptor sensitivities. Such regulation likely

requires distinguishing excitatory from inhibitory neurons at both pre- and postsynaptic levels. Excit-

atory and inhibitory synapses are identified postsynaptically by distinct neurotransmitter receptor,

scaffolding protein, and adhesion molecule repertoires (Craig and Kang, 2007; Sheng and Kim,

Figure 8 continued

mStraw puncta. Note that overexpression of SRPK79D in an otherwise wild-type background has no gain-of-function effects on puncta number. Further

srpk79D function is needed to enable the LRP4 overexpression-induced increase in synaptic puncta number. n (antennal lobes) is noted at the bottom

of each column. (F) Quantification of preference index in the olfactory trap assay. Flies overexpressing SRPK79D in ORNs show strong attractive

behavior, while ORNs expressing RNAi against lrp4 or srpk79D abrogate attraction to apple cider vinegar. This phenotype can be suppressed by

concurrent overexpression of SRPK79D. UAS-mCD8-GFP (not listed) was used to ensure equivalent numbers of transgenes in each genotype. n (cohorts

of 25 flies tested) is noted at the bottom of each column. (G) A model for LRP4 function at olfactory synapses. At wild-type axon terminals, LRP4 in

presynaptic ORNs (orange) interacts with a putative postsynaptic partner (blue), resulting in SRPK79D (beige) retention at the terminal and a full

complement of active zones (black T). Here, the putative ligand is depicted as having a postsynaptic PN source, but alternate sources (such as glia or

local interneurons) are also possible. In the absence of LRP4, less synaptic SRPK79D is present and active zone number is reduced. The size of the

terminal itself does not change but the synapse number (i.e., number of active zones) within that terminal space is reduced. Further, T-bar defects like a

floating T-bar can also be seen. SRPK79D overexpression in an lrp4 mutant restores synaptic SRPK79D and active zone number, despite the absence of

LRP4. Thus, the LRP4 largely functions in synaptic organization through downstream SRPK79D. ****p<0.0001; ***p<0.001; ns, not significant. Statistical

comparisons (one-way ANOVA with correction for multiple comparisons) are with control unless otherwise noted. Error bars represent mean ± s.e.m. n

(antennal lobes for E, cohorts of 25 flies tested for F) is noted at the bottom of each column. Scale bars = 10 mm.

DOI: 10.7554/eLife.27347.019

The following figure supplement is available for figure 8:

Figure supplement 1. lrp4 and srpk79D interact genetically to control Brp-Short puncta number.

DOI: 10.7554/eLife.27347.020
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2011; Ziv and Fisher-Lavie, 2014). Postsynaptic factors like Neuroligin 2 (Graf et al., 2004),

Gephyrin (Choii and Ko, 2015), and Slitrk3 (Takahashi et al., 2012) organize inhibitory GABAergic

synapses while LRRTMs organize excitatory synapses (Siddiqui et al., 2013; de Wit et al., 2009,

2013). Thus, postsynaptic regulation can occur by differential modulation of these factors. Little is

known, however, about the presynaptic identifiers of excitatory versus inhibitory neurons. Recent

work identified Punctin / MADD-4 as a determinant of excitatory versus inhibitory neuromuscular

synapses in C. elegans, though as a secreted factor that functions via postsynaptic interaction

(Maro et al., 2015; Pinan-Lucarré et al., 2014; Tu et al., 2015). Further, Glypican4 can localize to

excitatory presynaptic terminals and interact with LRRTM4 (de Wit et al., 2013) but its synaptogenic

activity is also provided by astrocytes (Allen et al., 2012) and thus is not neuronal specific. Proteo-

mic comparisons (Biesemann et al., 2014; Boyken et al., 2013) suggest few differences beyond

those pertaining to neurotransmitter synthesis enzymes and transporters. But these components

may not be sufficient to distinguish presynaptic excitatory from inhibitory neurons. In the Drosophila

olfactory system, for example, glutamate can be inhibitory when its postsynaptic partners express

glutamate-gated chloride channels (Liu and Wilson, 2013). This suggests that pre- and postsynaptic

regulators may exist to distinguish excitatory and inhibitory synapses, though it is unclear what those

presynaptic regulators might be.

Our data suggests that LRP4 may be a candidate presynaptic organizer specific for excitatory

connections. LRP4 is expressed in a subset of excitatory cholinergic neurons, excluded from inhibi-

tory GABAergic neurons, and expressed in a subset of glutamatergic neurons that may be excitatory

or inhibitory (Figure 1). Though we cannot rule out inhibitory neuron expression in the case of the

glutamatergic subset, the phenotypes associated with LRP4 perturbation are consistent with an

excitatory neuron-specific role. Thus, LRP4 may not only serve an identifying role at excitatory synap-

ses, but also a functional one. Loss of lrp4 results in fewer excitatory synapses but has no effect on

inhibitory synapses. However, both excitatory and inhibitory neurons show increased synapse num-

ber with lrp4 overexpression (Figures 2 and 4–5). This shared competency suggests that both neu-

rons contain machinery that can be engaged downstream of LRP4 (or the cell surface) to add

synapses. Thus, proteins like LRP4 may represent identifiers of excitatory or inhibitory terminals that

function by engaging common mechanisms to add synapses.

LRP4 function across evolution
At the mouse NMJ, LRP4 is the well-established postsynaptic receptor for motoneuron-derived

Agrin (Kim et al., 2008; Zhang et al., 2008, 2011) and regulates synapse formation

(Weatherbee et al., 2006) and maintenance (Barik et al., 2014). However, additional roles for LRP4

exist at the level of the presynaptic motoneuron. A retrograde signal composed of LRP4 from the

postsynaptic muscle interacts with an unknown receptor in the motoneuron (Yumoto et al., 2012) to

regulate presynaptic differentiation. Thus, at the mouse NMJ, postsynaptic LRP4 has both cell-auton-

omous and non-cell autonomous roles. In addition, presynaptic LRP4 has been implicated to regu-

late acetylcholine receptor clustering via MMP-mediated proteolytic cleavage (Wu et al., 2012).

In the mouse CNS, LRP4 regulates synaptic physiology (Gomez et al., 2014; Pohlkamp et al.,

2015), learning and memory, fear conditioning, and CA1 spine density (Gomez et al., 2014).

Though CNS LRP4 most commonly associates with postsynaptic densities (Tian et al., 2006), it also

fractionates with synaptophysin-positive membranes (Gomez et al., 2014). Indeed, the observed

CNS phenotypes have not been localized to a particular pool of LRP4. Our identification of Drosoph-

ila LRP4 as a key player in CNS synaptogenesis, however, posits a cell-autonomous presynaptic role.

While we cannot rule out an additional, perhaps concurrent, postsynaptic role, our work is the first

to demonstrate clear cell-autonomous presynaptic functions for LRP4. Indeed, LRP4 is expressed in

PNs and may localize to PN dendrites within the antennal lobe (Figure 1—figure supplement 2). In

such a case, it could function either presynaptically, at dendrodendritic presynapses (Rybak et al.,

2016; Tobin et al., 2017) or as a postsynaptic factor. Moreover, as the Drosophila genome lacks

clear Agrin and MuSK homologs, this suggests a synaptic function of LRP4 that evolutionarily pre-

cedes Agrin and MuSK recruitment to vertebrate NMJ synaptogenesis.

It remains open whether this presynaptic function is conserved in the mammalian CNS and, if so,

what signal LRP4 receives. In Drosophila, the signal cannot be Agrin and in the mammalian CNS,

Agrin is not essential for CNS synapse formation (Daniels, 2012). Thus, the Agrin-independence of

CNS LRP4 may be conserved across systems. Moreover, our finding that LRP4 promotes excitatory,
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but not inhibitory, synapse formation and function is consistent with reduced excitatory but normal

inhibitory input in hippocampal CA1 neurons of lrp4 mutant mice (Gomez et al., 2014). Moreover,

we find that LRP4 in the Drosophila CNS functions through the SR-protein kinase SRPK79D. Impaired

srpk79D function reduces synapse number and overexpression can suppress the functional and mor-

phological defects associated with lrp4 loss (Figures 7–8). This kinase is evolutionarily conserved

(Johnson et al., 2009) and the three mammalian homologues (Zhou and Fu, 2013) are widely

expressed in the mouse brain (Lein et al., 2007), including in the hippocampus. From yeast to

human, SRPKs regulate spliceosome assembly and gene expression (Zhou and Fu, 2013) but have

not been studied in mammalian synapse formation. It will be interesting to test if these kinases also

function in the mammalian CNS. Combined, however, these commonalities suggest a basic conser-

vation between invertebrate and vertebrate systems for future study.

Connecting LRP4 and human disease
Recent work implicated LRP4 in both amyotrophic lateral sclerosis (ALS) and myasthenia gravis (MG),

two debilitating motor disorders with a worldwide prevalence of ~1/5000. Distinct ALS and MG pop-

ulations are seropositive for LRP4 autoantibodies (Tsivgoulis et al., 2014; Tzartos et al., 2014) and

double seronegative for Agrin or MuSK, suggesting that seropositivity is not a byproduct of general-

ized NMJ breakdown. Further, injection of LRP4 function-blocking antibodies into mice recapitulates

MG (Shen et al., 2013). Beyond peripheral symptoms, cognitive impairment (besides that as fronto-

temporal dementia) also occurs in a subset of ALS patients (Ringholz et al., 2005). Thus, under-

standing the roles of LRP4 in the peripheral and central nervous systems has marked clinical

significance. Our identification of an evolutionarily conserved kinase, SRPK79D, as a downstream tar-

get of LRP4 signaling may offer a window into those roles. As SRPK79D overexpression suppresses

the behavioral and the synaptic phenotypes of lrp4 loss (Figure 8), if it functions similarly in the

mammalian CNS, SRPKs could be a target for therapeutics. Further investigation of how LRP4 func-

tions in the CNS will provide new insight not only into the cognitive aspects of these debilitating

motor disorders, but also into the fundamental aspects of excitatory synapse formation.

Materials and methods

Generation of lrp4 CRISPR mutants
The lrp4 mutation was designed following published methods (Gratz et al., 2013). Two lrp4-specific

chimeric RNAs (chiRNA) were cloned into the pU6-BbsI-chiRNA vector as follows - A1, correspond-

ing to an optimal PAM site 2 bp 5’ of the start ATG (using primers: 5’ CTTCGGCGAGTTTGTGTACA

TGTC 3’ and 5’ AAACGACATGTACACAAACTCGCC 3’ with a phosphate at the 5’ end) and A2, cor-

responding to an optimal PAM site 34 bp 3’ of the TAG stop codon (using primers 5’ CTTCGAA

TCGGTAAATGGTTTCAG 3’ and 5’ AAACCTGAAACCATTTACCGATTC 3’). Both the A1 and A2

chiRNA plasmids (250 ng / mL) and a pHsp70-Cas9 plasmid (500 ng / mL) were injected into

MB03015 embryos (stock BL23835) to produce lrp4 deletions. MB03015 flies bear a Minos-based Mi

{ET1} insertion (Bellen et al., 2011) between exons 5 and 6 of the lrp4 open reading frame; adults

with the insertion are marked by expression of a GFP reporter in the eye. Successful events were

screened for by the loss of GFP: as the PAM sites were distant from and flanking the insertion, loss

of fluorescence likely indicated removal of the intervening sequences (the lrp4 coding region). Five

such lines (representing identical events) were recovered and homozygous viable stocks established:

the allele was named dalek due to the ‘extermination’ of the lrp4 gene, and in homage to the classic

villains of ‘Doctor Who’. Loss of lrp4 was assessed using genomic DNA prepared from control and

lrp4dalek adults using the QIAgen DNeasy Blood and Tissue Kit (QIAgen, Valencia, CA). Genomic

PCR bands corresponding to exon 2 (534 bp using primers 5’ TGTATTCCACGAACCTGGGTATG 3’

and 5’ CAAAATGCAGCGCCCATTGTT 3’) and the exon 7–8 junction (615 bp using primers 5’ AGTC

TTGATGGTAGCAATAGGCAT 3’ and 5’ CTCTGGTAGATTTTGACACTG 3’) revealed the absence of

both regions in lrp4dalek. The lrp4dalek deletion was further confirmed by the presence of a 315 bp

‘Flank’ band (with some background bands present only with the lrp4dalek deletion) representing the

connection of sequences from the 5’ and 3’ UTRs (amplified by primers 5’ AACAGAATCGGAACAG-

CAGTT 3’ and 5’ GAGCTTTAACAGGACACGTTT 3’) not present in control samples (see Figure 1—
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figure supplement 2B). Finally, antibody staining (see below) revealed the elimination of LRP4 signal

in the lrp4dalek allele, suggesting the creation of a null allele.

Cloning of LRP4 cDNA and transgene construction
An adult Drosophila cDNA library was made according to manufacturer’s protocol using the GeneR-

acer Kit (ThermoFisher Scientific, Catalog #L150201, Waltham, MA). From the library, the lrp4 cDNA

was amplified using the forward primer 5’ CACCATGTATTTGACAGCCTTT 3’ and the reverse primer

5’ TGTGATAGTCGAGAGCGT 3’ (without the endogenous Stop codon) and cloned directly into the

pENTR vector using the pENTR/D-TOPO Cloning Kit (ThermoFisher Scientific, Catalog #K240020,

Waltham, MA). Complete cDNA clones were verified by sequencing. UAS-LRP4-HA was made by

recombining pENTR-LRP4 with pUAST-attB-Gateway-3xFLAG-3xHA29 via LR clonase. The resultant

pUAST-attB-LRP4-3xHA-3xFLAG was transformed into the FC31 landing site 86Fb on the 3rd chro-

mosome using standard methods.

Production of LRP4 antibodies
Custom antibodies were made by Pierce Custom Services (ThermoFisher, Rockford, IL) against the

C-NKRNSRGSSRSVLTFSNPN peptide corresponding to residues 1921–1939 of the intracellular side

of LRP4. Rat antisera were Ig-purified and then used at a dilution of 1:200 on adult brains. The speci-

ficity of the antibody was verified by the absence of signal in the lrp4dalek mutant.

Alignment of LRP4 homologues
The Drosophila melanogaster (CG8909; accession AAF48538.1), Mus musculus (accession

NP_766256.3), and Homo sapiens (accession NP_002325.2) LRP4 sequences were obtained from

NCBI. CLUSTALW alignment was performed using PSI/T-Coffee for transmembrane proteins (http://

tcoffee.crg.cat/apps/tcoffee/do:tmcoffee) and expressed graphically using ESPript3.0 (http://espript.

ibcp.fr/ESPript/ESPript/).

Drosophila stocks and transgenic strains
All controls, stocks, and crosses were raised at 25˚C. Mutants and transgenes were maintained over

balancer chromosomes to enable selection in adult or larval stages. The GMR90B08-GAL4

(Pfeiffer et al., 2008) line was used to examine lrp4 expression (referred to as lrp4-GAL4). Four

UAS-RNAi lines against differing regions of lrp4 were also identified: UAS-lrp4-RNAi 1 (v29900,

Vienna Drosophila Resource Center), UAS-lrp4-RNAi 2 (v108629, Vienna Drosophila Resource Cen-

ter), UAS-lrp4-RNAi 3 (JF01570, Harvard TRiP Collection), UAS-lrp4-RNAi 4 (JF01632, Harvard TRiP

Collection). The following GAL4 lines enabled tissue-specific expression: Or47b-GAL4 (VA1v ORNs)

(Vosshall et al., 2000), Or67d-GAL4 (DA1 ORNs) (Kurtovic et al., 2007), Or88a-GAL4 (VA1d ORNs)

(Vosshall et al., 2000), AM29-GAL4 (DL4 and DM6 ORNs) (Endo et al., 2007), Mz19-GAL4 (DA1,

VA1d, DC3 PNs) (Jefferis et al., 2004), Mz699-GAL4 (inhibitory projection neurons that project to

the lateral horn) (Lai et al., 2008; Liang et al., 2013), GAD1-GAL4 (GABAergic inhibitory neurons)

(Ng et al., 2002), pebbled-GAL4 (all ORNs) (Sweeney et al., 2007). The following UAS transgenic

lines were used as either reporters or to alter gene function: UAS-Syt-HA (Robinson et al., 2002),

UAS-Brp-Short-mStraw (Fouquet et al., 2009), UAS-DSyd1-GFP (Owald et al., 2010), UAS-Da7-

GFP (Leiss et al., 2009), UAS-mCD8-GFP (Lee and Luo, 1999), UAS-3xHA-mtdT (Potter et al.,

2010), UAS-FRT-Stop-FRT-mCD8-GFP (Hong et al., 2009), UAS-Dcr2 (Dietzl et al., 2007), UAS-

GABABR2-RNAi (Root et al., 2008), UAS-srpk79D-RNAi (Johnson et al., 2009), UAS-venus-

SRPK79D-#28 (Johnson et al., 2009), UAS-venus-SRPK79D-#1A (Johnson et al., 2009). Intersec-

tional analyses were done using the eyFLP3.5 construct (Chotard et al., 2005) which expresses FLP

in ORNs, but not PNs and GH146-FLP (Hong et al., 2009), which expresses in 2/3 of all olfactory

PNs but not ORNs. The srpk79Datc allele (Johnson et al., 2009) was used to remove srpk79D

function.

Immunocytochemistry
Adult brains were dissected at 10 days post eclosion as previously described (Mosca and Luo,

2014; Wu and Luo, 2006). Third instar larvae were dissected as previously described (Mosca and

Schwarz, 2010). The following primary antibodies were used: mouse antibody to Bruchpilot (1:40,
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DSHB, Catalog #mAbnc82, Iowa City, IA) (Laissue et al., 1999), rabbit antibody to Synaptotagmin I

(1:4000) (Mackler et al., 2002), rat antibody to N-Cadherin (1:40, DSHB, Catalog #mAbDN-EX #8,

Iowa City, IA) (Iwai et al., 1997), rat antibody to HA (1:100, Roche, Catalog #11867423001, Basel,

Switzerland), mouse antibody to choline acetyltransferase (ChAT) (1:100, DSHB, Catalog #mAb-

ChAT4B1, Iowa City, IA) (Takagawa and Salvaterra, 1996), mouse antibody to ELAV (DSHB,

mAb9F8A9, 1:100) (O’Neill et al., 1994), rabbit antibody to GABA (1:200, Sigma-Aldrich, Catalog

#A2052, St. Louis, MO), mouse antibody to Repo (1:100, DSHB, Catalog #mAb8D12, Iowa City, IA)

(Alfonso and Jones, 2002), rabbit antibody to vGlut (1:500) (Daniels et al., 2008), rabbit antibody

to dsRed (1:250, Clontech, Catalog #632496, Mountain View, CA), chicken antibody to GFP (1:1000,

Aves Labs, Catalog #GFP-1020, Tigard, OR), Alexa647-conjugated goat antibody to HRP (1:100,

Jackson ImmunoResearch, Catalog #123-605-021, West Grove, PA). Alexa488-, Alexa568-, and

Alexa647-conjugated secondary antibodies were used at 1:250 (ThermoFisher Scientific and Jackson

ImmunoResearch, Various Catalog #s). CF633-conjugated secondary antibodies were used at 1:250

(Biotium). FITC-conjugated secondary antibodies were used at 1:200 (Jackson ImmunoResearch,

Catalog #703-095-155, West Grove, PA).

Proximity ligation assay
Brains were processed as described and stained using rabbit anti-GFP antibodies at 1:500 (Thermo-

Fisher Scientific, Catalog #A-11122, Waltham, MA) with FITC-conjugated secondary antibodies and

mouse anti-HA antibodies at 1:250 (Sigma-Aldrich, Catalog #A2095, St. Louis, MO) with Alexa647-

conjugated secondary antibodies, leaving the red channel open. For PLA, we used the DuoLink

Mouse Rabbit in situ PLA kit (Sigma-Aldrich, Catalog #DUO92101, St. Louis, MO). Following the last

wash after secondary antibody incubation, the brains were incubated in the anti-mouse and / or anti-

rabbit PLA probes at a 1:5 dilution for 2 hr at 37˚C. Brains were then washed thrice for 10’ each with

Wash Buffer A, and incubated in Ligation solution (1:40 ligase in ligation buffer) for 1 hr at 37˚C.
Brains were washed in Wash buffer A for three times at 10’ each and then incubated in Amplification

solution (1:80 dilution of polymerase in Amplification buffer) for 2 hr at 37˚C. Finally, brains were

washed three times for 10’ each in Wash Buffer B, and incubated in SlowFade overnight before

mounting. Controls without Probes went through the identical process as those with probes, but

with water substituted for the probes themselves in the first PLA step. Brains were imaged as

described via confocal microscopy.

Imaging, synaptic quantification and image processing
All images were obtained using a Zeiss LSM510 Meta laser-scanning confocal microscope (Carl Zeiss,

Oberkochen, Germany) using either a 40 � 1.4 NA PlanApo or a 63 � 1.4 NA PlanApo lens. Images

of synaptic puncta (Brp-Short-mStraw or Da7-GFP) and neurite membrane (mCD8-GFP, 3xHA-

mTDT) were imaged, processed and quantified as previously described (Mosca and Luo, 2014) with

the following adjustments: images of synaptic puncta in the lateral horn (Mz19-GAL4, Mz699-GAL4,

Figure 5, Figure 5—figure supplement 1) were imaged at 63X, with an optical zoom of 2. Mz19

and Mz699 images were processed with a spot size of 0.6 mm and neurite volume calculated with a

smoothing of 0.2 mm and a local contrast of 0.5 mm.

Images were processed and figures prepared using Adobe Photoshop CS4 and Adobe Illustrator

CS4 (Adobe Systems, San Jose, CA). For antibody staining comparisons between genotypes, sam-

ples were imaged and processed under identical conditions. Fluorescence intensity was measured

with ImageJ (NIH, Bethesda, MD).

Electron microscopy
Transmission electron microscopy was performed on 10 day old adult control and lrp4dalek male

brains as previously described (Mosca and Luo, 2014). Putative ORN terminals were identified

based on morphology (Rybak et al., 2016; Tobin et al., 2017) and quantified as described

(Mosca and Luo, 2014). Terminal perimeter was measured using ImageJ (NIH, Bethesda, MD) and

used to calculate T-bar density. All quantification was done with the user blind to the genotype.
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Expansion microscopy
Protein retention expansion microscopy (Tillberg et al., 2016) was modified for use with Drosophila

brain tissue. Fixed and antibody-labeled brains were treated with 100 mg / mL acryloyl-X, SE (Ther-

moFisher Scientific, Catalog #A20770, Waltham, MA) overnight at room temperature and then

embedded in polyelectrolyte gel for two hours at 37˚C. Slices containing brains were excised from

solidified polyelectrolyte gel and immersed in digestion buffer with 200 mg / mL Proteinase K (Ther-

moFisher Scientific, Catalog #AM2546, Waltham, MA) overnight at room temperature. Slices

achieved maximum expansion after five washes with deionized water. Fully expanded gel slices were

anchored to the bottom of a petri dish with 2% low melting point agarose. Confocal microscopy

images were obtained on a Leica SP8 with a 25x water immersion objective (Leica Microsystems,

Wetzlar Germany).

Statistical analysis
Statistical analysis was completed using Prism 6.07 (GraphPad Software, Inc., La Jolla, CA). For rep-

resentative datasets, the experimenter was blind to genotype during quantification and data analy-

sis. Significance between two samples was determined using student’s t-test. Significance amongst

multiple samples was determined using one-way ANOVA with a Tukey’s post-test to correct for mul-

tiple comparisons. Significance between two samples (for EM) was determined using a two-tailed

student’s t-test.

Behavioral analyses
Olfactory trap assays were constructed as described (Potter et al., 2010). Flies were raised in a 12/

12 light/dark incubator. For each cohort, 25 flies of the appropriate genotype were starved over-

night in a 1% agar vial in complete darkness. They were anesthetized briefly on ice and transferred

to the olfactory trap, which contained an experimental vial of apple cider vinegar (ACV: Safeway,

Palo Alto, CA) and a control vial of water. Flies were then left in the trap for 16 hr in complete dark-

ness before being quantified. Preference index was calculated as (FliesACV – FliesWater) / FliesTotal.

Genotypes
See Supplementary file 1 for a listing of complete genotypes by figure panel.
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