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Abstract: The comprehension of neuronal network functioning, from most basic mechanisms of
signal transmission to complex patterns of memory and decision making, is at the basis of the modern
research in experimental and computational neurophysiology. While mechanistic knowledge of
neurons and synapses structure increased, the study of functional and effective networks is more
complex, involving emergent phenomena, nonlinear responses, collective waves, correlation and
causal interactions. Refined data analysis may help in inferring functional/effective interactions
and connectivity from neuronal activity. The Transfer Entropy (TE) technique is, among other
things, well suited to predict structural interactions between neurons, and to infer both effective and
structural connectivity in small- and large-scale networks. To efficiently disentangle the excitatory and
inhibitory neural activities, in the article we present a revised version of TE, split in two contributions
and characterized by a suited delay time. The method is tested on in silico small neuronal networks,
built to simulate the calcium activity as measured via calcium imaging in two-dimensional neuronal
cultures. The inhibitory connections are well characterized, still preserving a high accuracy for
excitatory connections prediction. The method could be applied to study effective and structural
interactions in systems of excitable cells, both in physiological and in pathological conditions.

Keywords: transfer entropy; local transfer entropy; synapses; calcium imaging; spiking; bursting

1. Introduction

Complex emergent dynamics in excitatory and inhibitory neuronal networks are at
the basis of brain functions both in humans and lower-level organisms. In this context,
increasing efforts have been devoted in recent years to the deep investigation of structure-
function coupling, trying to link neuronal connectome to neurons synchronization and
global network activity [1-4] . Indeed, structural connections naturally drive emergent
dynamics that may result in different functional patterns depending on specific operating
conditions, external stimuli, noise, and nonlinearities. On this basis, neuronal assemblies
at different scales are investigated both in terms of structural networks and in terms of
functional and effective networks, describing correlations and causal interactions among
cells, both in in silico and in experimental studies. From an experimental point of view,
comprehensive investigations of structure—function in neuronal assemblies have been
possible thanks to advances in calcium imaging techniques able to precisely record activity
from thousands of cells, simultaneously, despite suffering from limited temporal resolution
with respect to multi-electrode array approaches [5-10].

Although functional and effective networks encode a different kind of informa-
tion with respect to the structural connectome, data analysis approaches to infer func-
tional/effective interactions can also be adopted to infer structural couplings under proper
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conditions. In the last years, the most used approaches to predict structural interaction
were based on pairwise correlations between cells activity, partial correlations, Granger
causality, and Transfer Entropy (TE) [11-17]. Among these techniques, TE, from infor-
mation theory, has been shown to be a promising and accurate tool to predict structural
interactions between neurons, and it was extensively applied to infer both effective and
structural connectivity in small- and large-scale networks [15,18-21]. In the context of
structural interactions inference, TE approaches generalized to account both for excitatory
and inhibitory couplings have been developed and tested on in silico data, showing good
performance in labelling structural connections [18,22]. However, the major drawbacks
of those methods are the need for a double acquisition of network activity, successively
blocking and non-blocking inhibitory interactions, the introduction of negative terms in the
TE computation, and additional post-analysis based on TE features. In this contribution,
we present an alternative method to infer excitatory and inhibitory structural interactions
among neurons based on the splitting of the TE index into two contributions and a proper
selection of the delay between the time series. We test our approach on simulated spike
train data from small neuronal networks, investigating reconstruction performance for dif-
ferent network properties. Our results show that splitting of TE in local contributions and
introducing a proper delay between source and target cells leads to accurate identification
of inhibitory connections, preserving high accuracy of excitatory connection prediction in
case of zero or minimal temporal delays. Our method can be potentially applied to infer
both effective and structural interactions among neurons or in other biological systems,
overcoming the limitations of the available methods. On this basis, our approach has
potential impacts for a comprehensive investigation of organization principles of neural cir-
cuits both in physiological scenarios and in pathological conditions, including neurological
diseases and disorders.

The paper is organized as follows: in Section 2, we describe our network model,
including the setting of structural networks, the intrinsic cell dynamics, and briefly dis-
cussing the implementation details. Moreover, starting from the standard definition of TE,
we introduce the TE splitting into local contributions encoding excitatory and inhibitory
information flow. Furthermore, in Section 3, we present modeling results and the perfor-
mance of local TEs in predicting excitatory and inhibitory synaptic connections. Finally,
in Sections 4 and 5, we discuss and comment on the predictive power of our generalized
approach, also including open challenges to be explored in future contributions.

2. Materials and Methods

In this section, we present details of the modeled network in terms of structural
features of neuronal assemblies and intrinsic cell dynamics. Then, by starting from the
standard definition of TE as the main descriptor of the causal interactions, we introduce a
local splitting of TE suited to dissecting excitatory and inhibitory information flow.

2.1. Neuronal Network Modeling

The overall network model comprises 100 neurons, in a 2D geometry, reflecting the
structure of neuronal networks grown on plates for calcium imaging experiments. We
consider these arrangements since most calcium imaging studies were performed on two-
dimensional cultures due to the limited time resolution of 3D acquisitions. However,
our approach is general and can be fully translated to volumetric cells assemblies. The
position of neurons, assumed to be 0-dimensional, is randomly assigned on a square
domain with sides of length 1, non-dimensional units. Outward connections from each
cell are set through a spatial Gaussian kernel, with amplitude 1 on the reference cell and
normally decaying to zero for increasing distances with respect to the reference cell, i.e.,

K = exp [—dlzj / aﬂ , with i and j denoting the selected cells pair, and d;; the Euclidean
distance between the cells. Specifically, synaptic projections are set by randomly extracting

a number in the interval [0,1] and comparing it with the kernel amplitude at that specific
distance. The standard deviation o, of the kernel was set to 0.3 to achieve 20 inward
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connections per neuron on average, corresponding to a connection probability of 0.2.
This setting was chosen to reproduce a spatial dependent connectivity similar to the one
developed in cultures growing on plates and results in a mildly sparse network, in line
with other modeling studies and data on cortical neuronal circuits [18,23].

The single neuron model responds to the need for an accurate description of electrical
activity, coupled to a feasible computational cost for a network of hundreds or potentially
thousands of neurons. The model [24-26] is a quadratic integrate-and-fire model with
adaptation, able to reproduce the regular spiking and bursting behaviors of most cortical
neurons. The differential equation describing the membrane voltage neuron dynamics is:

T = LKe(o o) (0~ 00) — w0+ Is] + ge€ (1) M
Ty
with 7, being the membrane voltage time constant; w the inhibitory current resuming the
effect of slow current related to activation of potassium channels and inactivation of sodium
channels; Is the synaptic current, coming as input from connected neurons; finally, ()
denotes a white noise process with auto-correlation (¢(t)¢(')) = 6(t —t'), and g is the
noise standard deviation. The quadratic part of Equation (1) includes the resting potential
v, and the threshold potential v;. If the stimulation is low, v remains lower that v, and the
membrane potential relaxes towards its resting potential. After repeated stimulation, v can
reach and exceed the threshold value, and can grow generating a spike (v > v)). After the
spike, the potential is reset to the value v, and the inhibitory current is reset to w + Aw.
The inhibitory current is described by the equation:

% _ Kyp(v—1v) —w @)
Tw

where Ty, is the time characteristic of the inhibitory current w, and Ky, is the sensitivity of w

to sub-threshold fluctuations of the membrane potential.

The membrane potential dynamics of each cell is monitored to check for spiking
events, precisely recorded when v reaches the value v), just before resetting to control
sub-threshold potential. Spike times ts are stored to compute the synaptic input on each
neuron based on the pre-synaptic cells spiking history. Each contribution is delivered at
time t,;, = t; + d, where d is a synaptic delay

Is = Y Y Iy 3)
7%

Iy = gsDj(ts)exp (1 -= tmk) (t — th)9(f — tug) - @)

Ts Ts

In Equations (3) and (4), j and k are indices scanning the whole sets of pre-synaptic
cells and past spike times, respectively; t5 and t,,;; denote spike time and delayed spike
time for the k-th spike of the j-th pre-synaptic cell; gs and 75 represent strength and time
constant of the synapse. The dynamical variable D;(t) describes depletion and renewal of
neurotransmitter at the pre-synaptic cell. After each spiking event, D reduces to aD, with
a € [0,1], while, when no events occur, it is regulated by a dynamic tending exponentially
to 1 to model the neurotransmitter replacement.

dD(t) _1-D )

dt D

We included AMPA and fast GABA-mediated currents (GABA ), as those currents
have a major role in regulating spiking and bursting dynamics in neuronal cultures. Our
specific choice of the strengths for excitatory and inhibitory synapses is based on the
amplitude of single post-synaptic evoked potentials (EPSP and IPSP), such as each pre-
synaptic event which generates EPSP and IPSP of about 1.2 and 2mV, respectively, [27-29].
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We further amplified synaptic strengths by a factor ~3-5 to account for the limited number
of synaptic projections in our small networks [30]. By keeping the excitatory synaptic
strength fixed, the inhibitory strength is varied in our simulations to simulate different
balances of excitatory and inhibitory components. The reference balance of excitation and
inhibition is g /g1 equal to 1:2 (parameters reported below).

Other than intrinsic synaptic input, each neuron receives an incoming excitatory
stimulus from an independent Poisson process with frequency A, modeling the combined
effect of extrinsic synaptic input and minis currents related to synaptic shot noise.

This random input serves as a basis to induce spontaneous activity in the network.

The model parameters used in numerical simulations are: v, = —60mV, v; = —45mV,
vp = 35mV, v, = =50mV, 7, = 50ms, Ky = 0.5 mV~1, gz = 24.5mV/ms, 7, = 50ms,
Ky = 0.5, Aw =50mV, gr =200mV, g1 =400mV, 17z = 1ms, 177 =5ms,d = 1ms, « = 0.,
™p = 1000ms, A = 0.5Hz. These values are fine-tuned to reproduce spiking/bursting
behavior as observed in neuronal cultures.

The network model is resolved with an in-house C++ code, implementing a fourth-
order Runge-Kutta scheme with a fixed time step of At = 0.1 ms, opportunely evolving
both the deterministic and stochastic terms for the membrane potential dynamic. Total
simulation time was set to 5 min.

Since our interest is to apply TE on signals closely resembling the ones acquired from
calcium imaging techniques, we computed calcium signals from simulated the membrane
potential time series by convolving spike trains as calculated from numerical simula-
tions with a calcium response kernel, A exp(—t/Tca2)(1 — exp(—t/Tcap)), where A =1,
Tca2 = 700ms, T, 1 = 10ms [18,26,31,32]. This function models an exponential rise and
decay of calcium at every spike event, with different on and off time scales set to reproduce
experimental signals. We also added a white noise process with a mean of 0 and a standard
deviation of 10% with respect to A to introduce noise as usually observed in the optical
acquisition of calcium data, despite not directly modeling calcium binding to fluorescence
indicators. Further, both noisy and deterministic calcium traces were down-sampled at
5,10, and 20 ms to analyze TE performance on coarse calcium traces as usually acquired
in experiments (~100 Hz frame rate). In line with network analysis performed on experi-
mental calcium, we focused our investigation on binary spike train signals opportunely
extracted from down-sampled calcium data. Specifically, the coarse calcium traces are
taken as a starting point for a further spike detection whose result is the input to the TE
analysis. Spike identification on calcium signals is performed through an accurate analysis
of signal derivative, leading to an almost perfect reconstruction of the coarse spike train in
case of deterministic down-sampled calcium signal, and to a ~90% accurate identification
of spikes in case of noisy coarse calcium. To acquire this accuracy, additional conditions are
imposed related to the derivative at later times with respect to the reference time to discard
random fluctuations [33]. Specifically, we identify an onset and an offset: at the onset, the
derivative must exceed a certain positive threshold. At the offset, the derivative must be
below a certain negative threshold. We labeled all time points between each detected pair
of onset and offset with 1, considering neurons as active throughout the rising phase.

It is worth noting that also in the case of deterministic coarse calcium signals, the
reconstructed spike train is not exactly equal to the down-sampled spike train as computed
by numerical integration of the network, since recognition by derivative tends to extend by
a small amount of time the activated state of the neuron respect to the spiking event.

2.2. Transfer Entropy

For two discrete Markov processes X = [x1,xp,...,x7] and Y = [y1,¥2,...,yr] the TE
from Y to X is defined as [34]:

TEy ,x = Z P(x”’xnfl’ynfd) log (k) ©
(0 P(alx, %)

Xn Xy 1Yna
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where x;, is n-th element of X, x,’; and y, ° , are the k-dimensional vectors [x, 1, ..., X, _¢]
and [V, g4, ---,Yn_d_k+1), respectively. For simplicity, in Equation (6) k denotes Markov
order both for x and y, but in the following ky # k, will be assumed. TE quantifies the
flow of information directed from Y to X. TE is defined on transition probabilities and
represents the distance in the probability space between the single-node transition matrix

P(xn|x,(1](21) and the two-nodes transition matrix P(x, \xﬁl,yi@ ;) [35]. Tt ranges from 0
to infinity: non vanishing values indicate the existence of causality from Y to X, i.e. past
values of Y are helpful in predicting the future behavior of X, while 0 values indicate lack
of causality, i.e. single node and two nodes transition matrix are identical.

To infer effective neuronal network connectivity, TE and its extensions have been
successfully applied to various types of neuronal data, in which X and Y are binary time
series corresponding to activities of two neuronal units (the values are labeled by 1 when
neurons are spiking and by 0 when at rest). The efficiency of TE in quantifying information
transfers among neuronal units is proved by several studies: TE has been exploited to
elucidate general physical principles of neuronal networks, such as the structure—function
relationship [15,16,18,36], small-worldness and scale-free properties[37,38], existence of
hubs and modules [39], etc.

However, TE defined as in Equation (6) cannot distinguish between inhibitory and
excitatory synapses. For this purpose, the aim of this work is to combine a generalized
version of TE [15], suitable for calcium imaging data, with a proper splitting in local
excitatory and inhibitory contributions. This step is fulfilled by defining appropriate
subsets of states related to excitation and inhibition, in line with a recent study focusing
on the identification of inhibitory and excitatory connections from multi-electrode array
data [22]. This distinction of connections is fundamental to understanding how a small
number of inhibitory neurons functionally interplay with a large number of excitatory
neurons controlling network dynamics, bursts and synchronization [40-43].

The key idea is to consider local TEs, which estimate the information transfer between
events rather than variables [44], thus we split TE in Equation (6) into the two contributions,
the excitatory one and the inhibitory one, defined, respectively, in Equations (7) and (8).

® K Palxf vl )
TEg, o= Y, Plox,y®,) log © @
NG P(xnlx,2q)
nXy 1Y gt
xn:yfﬁd
P(x \x(k) y(k) )
kK)o (k Y
TEh = Y, Pl ) log — =t ®
il Plonby)
xn?‘éyik_)d

In the excitatory component, the sum goes over the states such that x, and yl(ji) ;4 have the

same event; that is, they are both active or inactive. In the inhibitory component instead,
the sum is restricted over the states such that x, and yikj ; have the opposite events, i.e.,
one is active and the other inactive. It is important to note that, in the above definitions
of excitatory and inhibitory subsets of states, y,(f_) 4 1s considered active (equal to 1) if at
least one of its entries is 1. Instead, all the time series y,_4,..., Yy_4—k+1 are included for the
evaluation of the joint probability distribution function and local TEs.

In our splitting, particular care should be taken for combinations of states such as
{yflk_) g =0xn = 0}, {yik_) g =0xn = 1}. We assume that the first occurrence is linked to a
hidden excitatory contribution since no activity in one neuron corresponds to no activity on
the other neuron. Instead, the second occurrence underlies a hidden inhibitory connection
since the silenced state of the inhibitory source is unable to stop the activity on the target
cell. We could modify our assumptions and treat those contributions differently, but

computed results show that these subsets promote a consistent identification of excitatory
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and inhibitory information. Furthermore, our assumptions on excitatory and inhibitory
contributions are in line with those presented in the literature [22].

To apply this approach to calcium imaging data, taking into account the general
characteristics of the system, TE is modified in two main aspects: the inclusion of “same-bin”
interaction and the selection of dynamical states [15]. Since typical temporal resolutions
available for calcium imaging recording (>5 ms) are greater than excitatory synaptic time
constants (~1 ms) and comparable with inhibitory ones (~5 ms), excitatory connections
are better identified if considering causal interactions between events that occur within
the same time-bin, that is the case of d = 0. Slower interactions can be still included by
calculating TE for a Markov order greater than 1. Our approach aims to further investigate
this aspect by evaluating excitatory and inhibitory contributions of TE for several time bin-
sizes (5 ms, 10 ms, 20 ms) both in case of zero and non-zero delay, with fixed Markov orders
ky =1, k, = 2. We verify that while taking into account same-bin interaction improves the
detection of an excitatory connection, the inhibitory component of TE is better highlighted
by looking at delayed anti-correlation, which is mainly addressable to the longer timescale
of inhibitory currents. Additionally, the restriction of TE evaluation to non-synchronous
dynamical states is crucial to properly capture interactions between neurons. Selection
of dynamical states is performed by analyzing the histogram of the average signal of the
network and choosing a threshold value in order to include in the analysis all data points
at time instants in which the average fluorescence is below the selected threshold. This
procedure is equivalent with respect to the use of a conditioning variable to select regions of
interests (ROISs) for the analyzed signals [15]. The presented results in the following section
are related to the best accuracy obtained for different selections of ROIs, performed by
varying the threshold between the minimum and maximum value of the average calcium
trace. Despite a slight variability, all the selections of ROIs we tested gave accurate results,
with the only exception of the more restrictive threshold close to the minimum value of the
average calcium.

3. Results

We assess the performance of our algorithm on calcium fluorescence traces generated
by simulating dynamics of a modeled neuronal network including 100 cells—80% excita-
tory and 20% inhibitory—connected via a spatial Gaussian kernel (Figure 1A, see Methods).
We analyze data simulated from 10 realizations of the model with the same spatial distribu-
tion of cells but a different sorting of excitatory and inhibitory neurons. Network dynamics
are simulated at a different balance between excitation and inhibition in terms of synaptic
conductance (the ratio gg/gr). Emergent activity in a control condition, i.e., gg/gr equal to
1:2, consists of spiking/bursting oscillations with frequency of ~0.5-1 Hz, and presents
both synchronous and asynchronous regimes (Figure 1B). Calcium traces, computed by
a convolution of the spike train with a calcium response kernel, are down-sampled at 5,
10, and 20 ms bin size, enriched with noise, and further binarized with derivative-based
methods (Figure 1C-E, see Methods). Spike trains extracted from calcium traces are used to
calculate excitatory and inhibitory contributions of TE in Equations (7) and (8), for different
values of the delay d and ky and k,, fixed to 1 and 2, respectively, (Figure 1F). TE compo-
nents are tested separately in predicting excitatory and inhibitory connections. Standard
Receiver-Operator Characteristic (ROC) analysis is exploited to quantify the distance be-
tween inferred effective connectivity and structural ones by comparing TE matrices to the
corresponding structural adjacency matrices. In particular excitatory (inhibitory) adjacency
matrix has entry a;; equal to 1 if exist a structural excitatory (inhibitory) link from j to i and
0 otherwise. ROC curves are generated by considering a variable threshold from the lowest
to the highest TE value, and taking as significant indices only the ones above the threshold.
At each threshold, values are then computed and plotted the fractions of true positives
(TPR) and false positives (FPR). In Figures 2A, 3A and 4A the mean and the standard
deviation of the ROC curves obtained for the 10 realizations of the network are reported.
A reliable detection is obtained for simultaneous low values of FPR and high values of
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TPR; thus the area under the curve (AUC) is an indicator of the accuracy: the greater it
is the better is the detection. We also evaluate the Youden's J, as the maximal value of
TPR — FPR, and the corresponding sensitivity (TPR) and specificity (1-FPR), reported for
all cases examined in Tables 1-3. In Figures 2B, 3B and 4B, we compare local excitatory and
inhibitory components of TE in different operating conditions: the excitatory component of
TE at 0—bin delay is plotted versus the inhibitory component evaluated at different delays.
Black lines denote the best thresholds for predictions whose evaluation is based on the
Youden'’s ] in the independent ROC analysis in the panels A. Left and bottom density plots
represent projections of the two-dimensional distributions of TE indices on excitatory and
inhibitory components, respectively. Such a graph provides the intuitive idea of the ability
of the local TE components to distinguish different types of connections.

3.1. Increasing the Delay Improves Inhibitory Network Reconstruction

Our main goal is to address the role of 4 on the accuracy of the network reconstruction,
with particular regard to inhibitory connections. On this basis, we analyzed in detail local
excitatory and inhibitory TE indices at different offsets of the source signal with respect
to the target cell. Figure 2 displays results for 0, 1 and 2-bin delays (d = 0, 1, 2) both
for the excitatory and for inhibitory local components of TE (red and blue, respectively).
The down-sampled bin size is 10 ms and the ratio gg/gr is set to 1:2. The ROC curves in
Figure 2A show that at increasing delays, the local excitatory component of TE decays in
performance while the local inhibitory component improves. In particular, we note that
for delay values greater than 0, in terms of bins, the inhibitory ROC (blue curves) displays
a sharp rise at low FPR, indicating a significant increase of the accuracy with respect to
the case of zero delay in which TPR is always near to the FPR (Table 1). In Figure 2B we
compare the local excitatory component of TE at 0-bin delay with the inhibitory component
evaluated for the different delays considered. Delays greater than 0 in the inhibitory
part give rise to improved segregation and more accurate reconstruction of real spatial
connections. Indeed, excitatory links, represented by red spots, are localized on the top left
of the graph, exhibiting high excitatory TE and low inhibitory TE values, while inhibitory
connections (blue spots) are localized on the right, being well sorted above the threshold of
the inhibitory TE component.

To further investigate the effect of noise on spike recognition from calcium down-
sampled data and consequent effects on TE performance, we repeat the same analysis with
spike trains as extracted from noisy coarse calcium signals. Computed results in terms of
ROC parameters are shown in Table 1 and show a non-significant loss in detection accuracy,
still leading to an efficient reconstruction of both excitatory and inhibitory connections
optimized at the same values of d as observed in the deterministic signals analysis.

3.2. The Ratio gg /g1 Does Not Affect Network Reconstruction

Similar results are obtained varying the ratio gg / g1, as shown in Figure 3 for ratio equal
to 1:1, 1:2, 1:3 and same down-sampled bin size set to 10 ms. Note that from here on, the
three delays overlap in the same figure. ROC curves in Figure 3A exhibit high values of TPR
corresponding to low values of FPR, both for excitatory (with d = 0, 1) and for inhibitory
(with d = 2) component, regardless of the ratio gr/g1. An increasing imbalance towards
inhibition slightly improves accuracy, sensitivity, and specificity of inhibitory synapses
recognition, but still, control condition and unbalance towards excitation leads to accurate
and good results (Table 2). Figure 3B also confirms a good partition of excitatory and
inhibitory links analogous to the one observed in Figure 2B for the inhibitory component
calculated with a delay d = 2.

3.3. Down-Sampled Bin Size Effect on Network Reconstruction

Figure 4 depicts results varying the down-sampled bin size between the values of 5,
10, 20ms and for a ratio gg/gr fixed to 1:2. In the case of the smaller bin size, 5ms, we
observe for the local excitatory and inhibitory TE quite similar behavior with respect to the
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case of 10 ms bins as previously analyzed. However, small differences can be noticed (see
Figure 4A and Table 3): excitatory TE is less affected by delay variation since bin size gets
smaller; both components preserve good accuracy, but surprisingly, the best performance
is obtained with a bin size of 10 ms. This means that increasing temporal resolution in
our approach is not only not necessary for efficient structural link detection, it actually
makes it worse. An improvement could be achieved by increasing the Markov order ky,
but this implies higher computational costs. On the contrary, for 20 ms bins, the ROC
curves show a more drastic performance decay of the local excitatory component of TE
at increasing delays. Moreover, prediction of inhibitory links results in higher accuracy
for 1-bin delays and worse for 2-bin delays. Figure 4B shows that good segregation of
excitatory and inhibitory connections can be achieved for each bin size by choosing an
appropriate delay.
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Figure 1. Modeled networks, simulated data and TE decomposition.(A) Example of modeled neu-
ronal network including 100 cells, 80% excitatory and 20% inhibitory, connected via a spatial gaussian
kernel. Red/blue circles and arrows denote excitatory/inhibitory neurons and directed connections,
respectively. (B) Simulated membrane voltage time series (continuous curves) and corresponding
calcium signals (dashed curves) for two representative cells (black and gray). Calcium traces are
computed by a convolution of the computed spike train with a calcium response kernel. (C) Calcium
traces (black and gray) after down-sampling at 10 ms bin size and noise addition. At the bottom,
spike trains as extracted from the down-sampled calcium traces. The red curve shows the average
calcium response of the network. (D) Raster plot showing down-sampled calcium traces (top) and
spike events (bottom) over the entire network in 1 min, as detected from the down-sampled calcium
traces. (E) 1-min down-sampled calcium traces (black and gray) for the same representative cells
shown in panels (B,C), as computed from the convolution with the original spike train. (F) TE
decomposition scheme on two representative spike trains. Red and blue dots denote combinations
of state encoding excitatory and inhibitory information from Y to X, respectively. The parameter d
represents the delay considered on the source Y, in terms of bins.
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Figure 2. Reconstruction of structural connections at varying delays. (A) ROC curves showing the

accuracy of excitatory and inhibitory components of TE (red and blue, respectively) in predicting
real synaptic connections. ROC analysis is conducted over 10 realizations of the model, based on
the same spatial distribution of cells but a different sorting of excitatory and inhibitory neurons.
Continuous red and blue lines and corresponding light red and blue areas denote mean and standard
deviation, respectively, computed over all the simulations. TE is evaluated on spike trains extracted
from the calcium traces down-sampled at 10 ms. TE components are tested separately in predicting
excitatory and inhibitory connections by comparing TE matrices to the corresponding structural
adjacency matrices encoding solely excitatory or inhibitory links. The local excitatory component of
TE decays in performance at increasing delays, while the local inhibitory component increases in
performance at increasing delays. (B) Comparison of local excitatory and inhibitory components of
TE in a single modeled network. The excitatory component of TE at 0-bin delay is plotted versus the
inhibitory component evaluated at different delays. Delays greater than 0 in the inhibitory part give
rise to improved segregation and more accurate reconstruction of real spatial connections. Gray dots
denote TE indices for uncoupled cells, while red and blue dots denote TE indices for excitatory and
inhibitory real connections. Black lines denote the best thresholds for predictions as evaluated in
the independent ROC analysis of panel (A), based on the Youden’s ]. Left and bottom density plots
represent projections of the two-dimensional distributions of TE indices on excitatory and inhibitory
components, respectively.
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Figure 3. Reconstruction of structural connections at a varying ratio gg : g1, and at different delays.

(A) ROC curves showing the accuracy of excitatory and inhibitory components of TE (red and
blue, respectively) in predicting real synaptic connections. ROC analysis is conducted over 10
realizations of the model, based on the same spatial distribution of cells but a different sorting of
excitatory and inhibitory neurons. Continuous red and blue lines and corresponding light red and
blue areas denote mean and standard deviation, respectively, computed over all the simulations.
Dark, medium and light red /blue curves represent ROC at different delays for excitatory/inhibitory
connections. TE is evaluated on spike trains extracted from the calcium traces down-sampled at
10 ms. TE components are tested separately in predicting excitatory and inhibitory connections by
comparing TE matrices to the corresponding structural adjacency matrices encoding solely excitatory
or inhibitory links. Left, central, and right columns show results at a varying balance between
excitation and inhibition in terms of synaptic conductance (gg:gy): 1:1 (left), 1:2 (central, control case),
1:3 (right). In every case, the local excitatory component of TE decays in performance at increasing
delays, while the local inhibitory component increases in performance at increasing delays. (B)
Comparison of local excitatory and inhibitory components of TE in a single modeled network. The
excitatory component of TE at 0-bin delay is plotted versus the inhibitory component evaluated at
2-bin delay, giving the best segregation and more accurate reconstruction of real spatial connections.
Gray dots denote TE indices for uncoupled cells, while red and blue dots denote TE indices for
excitatory and inhibitory real connections. Black lines denote the best thresholds for predictions as
evaluated in the independent ROC analysis of panel (A), based on the Youden’s J. Left and bottom
density plots represent projections of the two-dimensional distributions of TE indices on excitatory
and inhibitory components, respectively.
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Figure 4. Reconstruction of structural connections at a varying down-sampled bin size, and at
different delays. (A) ROC curves showing the accuracy of excitatory and inhibitory components of
TE (red and blue, respectively) in predicting real synaptic connections. ROC analysis is conducted
over 10 realizations of the model, based on the same spatial distribution of cells but a different sorting
of excitatory and inhibitory neurons. Continuous red and blue lines and corresponding light red
and blue areas denote mean and standard deviation, respectively, computed over all the simulations.
Dark, medium and light red /blue curves represent ROC at different delays for excitatory/inhibitory
connections. Networks dynamic is simulated at a ratio gg:g1 equal to 1:2. TE components are tested
separately in predicting excitatory and inhibitory connections by comparing TE matrices to the
corresponding structural adjacency matrices encoding solely excitatory or inhibitory links. Left,
central, and right columns show results at a varying down-sampled bin size: 5 ms (left), 10 ms (central,
control case), 20 ms (right). For the majority of cases, the local excitatory component of TE decays in
performance at increasing delays, while the local inhibitory component increases in performance at
increasing delays. At 20 ms bin size, 1-bin delay results in higher accuracy in predicting inhibitory
links. (B) Comparison of local excitatory and inhibitory components of TE in a single modeled
network. The excitatory component of TE at 0-bin delay is plotted versus the inhibitory component
giving rise to the best segregation of real connections. Gray dots denote TE indices for uncoupled cells,
while red and blue dots denote TE indices for excitatory and inhibitory real connections. Black lines
denote the best thresholds for predictions as evaluated in the independent ROC analysis of panel (A),
based on the Youden’s J. Left and bottom density plots represent projections of the two-dimensional
distributions of TE indices on excitatory and inhibitory components, respectively.
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Table 1. Effect of noise in the identification of synaptic connections. Average AUC, Youden’s J, and
corresponding sensitivity and specificity over 10 neuronal networks (see Section 3). Reconstruction
starting from signals down-sampled at 10 ms bin size. Balance between excitation and inhibition
gE/ g1 is set to 1:2. Both in deterministic and noisy data, ROC analysis shows equivalent performance
in links prediction.

Deterministic [bin 10 ms, gg/g1 1:2] Noise [bin 10 ms, gg/g1 1:2]
E I E I
d 0 1 2 0 1 2 0 1 2 0 1 2

AUC 086 084 076 058 079 090 086 084 076 058 0.76 0.89

J 057 054 041 021 055 068 057 054 041 019 046 0.65
Sens 083 076 063 030 065 081 083 079 068 029 057 0.80
Spec 075 079 078 091 090 087 074 076 073 090 0.89 0.84

Table 2. Effect of excitation inhibition balance in the identification of synaptic connections. Av-
erage AUC, Youden’s ], and corresponding sensitivity and specificity over 10 neuronal networks.
Reconstruction starting from signals down-sampled at 10 ms bin size. Balance between excitation
and inhibition gg /gy is set to 1:1, and 1:3. Unbalance toward excitation leads to worse results in
the identification of inhibitory links, however, still preserving good performance at 2-bin delays.
Unbalance toward inhibition improve inhibitory links identification keeping unaltered identification
accuracy for excitatory connections.

Deterministic [bin 10 ms, gg/g; 1:11  Deterministic (bin 10 ms, gg/gy 1:3]
E I E I
d 0 1 2 0 1 2 0 1 2 0 1 2
AUC 084 084 076 054 071 083 086 084 075 060 082 0.92
J 055 054 042 012 039 056 058 054 039 026 0.60 071
Sens 082 079 067 032 053 072 083 075 0.64 033 0.69 0.85
Spec 073 075 075 080 086 084 075 079 075 093 091 0.86

Table 3. Effect of varying bin size in the identification of synaptic connections. Average AUC,
Youden’s J, and corresponding sensitivity and specificity over 10 neuronal networks. Reconstruction
starting from signals down-sampled at 5 and 20 ms bin size. Down-sampling at 5 ms has minimal
effect on excitatory links prediction accuracy, slightly reducing performance in the detection of
inhibitory connections. Down-sampling at 20 ms significantly deteriorates excitatory links prediction
at increasing bin delays and highlights a loss performance for the identification of inhibitory synapses
at 2-bin delays.

Deterministic [bin 5 ms, gg/g1 1:2] Deterministic (bin 20 ms, gg/g1 1:2)
E I E I
d 0 1 2 0 1 2 0 1 2 0 1 2
AUC 084 083 081 059 071 081 087 081 058 054 0.84 0.78
J 054 054 050 027 046 059 061 048 013 0.10 057 042
Sens 0.82 079 074 034 056 0.72 085 074 051 031 071 0.69
Spec 0.72 075 0.77 093 090 088 0.76 0.75 062 079 086 0.73
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4. Discussion

Reconstruction of structural connectivity among neurons from experimental record-
ings of their activity is a key aspect to unveil organization principles of neuronal networks,
both in simple and complex organisms, with the aim to shed light on the structure—function
coupling in those complex biological systems. Despite several studies largely explored a
variety of techniques in inferring functional, effective, and structural connectivity, mostly
based on cross-correlations, causalities, and information theory measures [11-17], only
a few recent works attempted to generalize these approaches to label excitatory and in-
hibitory synapses selectively [17,18,22]. Specifically, these methods try not only to infer
the network connectome but also the sign of each connection. However, among the ones
based on TE, which is currently assumed to be one of the best indices to infer connections
and causal dependencies, also accounting for nonlinear interactions, the presented tech-
niques show some drawbacks, including the need for additional post-analysis or multiple
recordings of neuronal activity, with and without specific chemicals to suppress inhibition.
In this contribution, we propose an alternative method to infer excitatory and inhibitory
links among neurons trying to overcome the abovementioned limitations. Our approach
consists of a proper splitting of TE in local contributions, encoding excitatory and inhibitory
information transfer. We define the subsets of states related to the excitatory and inhibitory
combination based on the evidence that inhibitory links promote a “silenced” state in
the target while excitatory links an “active” state. This choice is also in line with similar
approaches proposed in the literature [22]. Computed results on in silico networks show
that considering a proper delay between the source and the target improves the accuracy of
detection substantially for inhibitory connections, reaching levels of accuracy comparable
to the current approaches based on TE but avoiding similar drawbacks. In our model,
the optimal delay is in the range of 10-20 ms and is in line with the time scales of fast
GABA-mediated inhibitory currents [45-49]. Furthermore, the detection of excitatory links
is more accurate at zero-bin delays, denoting higher excitatory information transfer at
physical time delays in the range of 1-10 ms, which is consistent with the fast activation
of AMPA-activated currents [50-52]. It is worth mentioning that our analysis of 0, 1, and
2-bin delays is mainly due to the down-sampled calcium data used as starting point. The
main reason for this is because neuronal activity in in vitro and in vivo experiments is
mostly recorded via calcium imaging techniques that allow for efficient simultaneous
acquisition of neuronal activity from thousands of cells, with a time resolution usually
limited at 1 ms in the best situations. However, based on the very general formulation
of our local TE measures, our approach is potentially applicable to other kinds of data,
such as multi-electrode array recordings, by opportunely redefining delays and Markov
orders in the TE computation. A further improvement here presented with respect to
similar applications of TE in dissecting structural connections concerns the mathematical
model adopted to reproduce neurons dynamics. Indeed, previous applications of TE on
synthetic calcium data were mostly based on simple integrate-and-fire models with limited
dynamical behavior compared to the quadratic integrate-and-fire, which also accounts for
bursting response other than spiking activity.

Of course, in future implementations, the adopted model could also be replaced by
more detailed biophysical descriptions of single neuronal dynamics [53,54] also accounting
for intracellular calcium balance to avoid the use of a predefined calcium kernel to simulate
network response. Furthermore, our investigation of excitatory and inhibitory information
transfer should also be tested in light of different models of synaptic dynamics, possibly
accounting also for NMDA- and slow GABA-activated synaptic currents [55,56]. In this
regard, preliminary investigations of different formulations of post-synaptic currents,
based on double exponentials suited to set specifically activation and deactivation time
constants, fine-tuned to reproduce experimental data, show that our modeling and TE
results are qualitatively unchanged, still showing a significant improvement in the detection
of inhibitory synapses when a proper delay is taken into account in the local TE measures.
On this basis, we believe that our approach can be a valuable alternative for the complete
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dissection of neuronal connectome both in small and large-scale systems, in in silico and
real experiments. Particular care must be considered in the case of application to real
experimental data. Indeed, the best accuracy of local TE in our simulations is achieved by
comparison with the ground truth network structure, a piece of information that is usually
not available in experiments and represents the outcome to be predicted most of the time.
In this case, surrogate data should be considered to test for the statistical significance of the
computed TE indices [57-59], eventually filtering only the most significant ones to identify
actual information transfer. Given our approach and techniques for significance testing,
extension to real data is immediate, and near future studies will be devoted to the selection
of optimal surrogate models to identify actual communications between neurons. Other
than the prediction of excitatory and inhibitory structural connectivities, we believe that our
approach is potentially applicable also to infer effective connectivity among neurons. In this
context, it is well known that a unique network structure in neuronal assemblies gives
rise to various dynamical regimes, depending on external inputs, intrinsic parameters, or
noise. Strongly synchronized and asynchronous activities are among the type of emergent
activities that can arise in neuronal networks. By starting from recorded activity, TE
reconstructed connectivity is sensible to dynamical regimes of the network, as explored in
previous studies [15], and some dynamical states, such as the asynchronous regime, are
favorable in predicting structural connections while are less accurate in case of synchronous
emergent activity. In this scenario, we believe that local TE can still be a useful indicator
of functional and effective connectivity despite switching the goal from the inference of
structural links to the identification of causal interactions as observed from dynamics. On
this basis, the approach proposed here has the potential to be applicable to the inference of
structural and effective connectivity in in vitro and in vivo neuronal circuits with a strong
impact on the comprehension of basic mechanisms underlying information acquisition,
storage, and transmission in physiological or pathological scenarios. Particular relevance
in this regard concerns the investigation of network properties in neurological disorders
or pathologies, such as schizophrenia, Alzheimer’s disease, strokes and epilepsy [60-64],
where our approach can be useful not only in predicting general features of connectivity
but also in identifying the unbalance between excitation and inhibition.

5. Conclusions

In this work, we formulate an alternative method to infer structural excitatory and
inhibitory connections between neurons and test its accuracy on a network model repre-
sentative of real neuronal assemblies. The basic idea is to dissect TE in local excitatory and
inhibitory components and analyze their relative contribution at different communication
delays. Our results indicate that via TE splitting and considering specific delays, it is
possible to discriminate excitatory and inhibitory synaptic couplings. Our approach has the
potential to be generalized to other kinds of recordings of neuronal activity and can also be
applied to the inference of effective connectivity. Future investigations should be devoted
to validating our approach against experimental data and other biophysical models of
neuronal network activity. Future computational studies should also deal with compara-
tive benchmarks, including other available methods to selectively identify excitatory and
inhibitory connections starting from the recorded activity.
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