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ABSTRACT: C-reactive protein (CRP), an acute-phase protein synthesized in the liver in response to inflammation, is one of the
biomarkers used for the detection of several diseases. Sepsis and cardiovascular diseases are two of the most important diseases for
which detection of CRP at very early stages in the clinical range can help avert serious consequences. Here, a CNT-based
nanobiosensing system, which is portable and reproducible, is used for label-free, online detection of CRP. The system consists of an
aptameric CNT-based field-effect transistor benefiting from a buried gate geometry with Al2O3 as a high dielectric layer and can
reflect the pro-cytokine concentration. Test results show that the device responds to CRP changes within 8 min, with a limit of
detection as low as 150 pM (0.017 mg L−1). The device was found to have a linear behavior in the range of 0.43−42.86 nM (0.05−5
mg L−1). The selectivity of the device was tested with TNF-α, IL-6, and BSA, to which the nanosensing system showed no significant
response compared with CRP. The device showed good stability for 14 days and was completely reproducible during this period.
These findings indicate that the proposed portable system is a potential candidate for CRP measurements in the clinical range.

■ INTRODUCTION

C-reactive protein (CRP) is an acute phase protein produced
by the liver in response to inflammation or in the cases of
cardiovascular diseases.1−4 The levels of CRP corresponding to
inflammation indicate that a concentration of 2 mg L−1 or less
is among the normal concentrations, while in the case of
inflammation, the levels can rise up to 1000-fold.5 The
reported concentrations in septic patients range from 12 to 159
mg L−1, which exhibits a significant overlap with the 13−119
mg L−1 range in systemic inflammatory response syndrome
patients.6,7 The concentrations in the case of cardiovascular
diseases are rather classified differently and fall into three
categories. A concentration of less than 1 mg L−1 is considered
to be normal, the low-risk group lies between 1 and 3 mg L−1,
and concentrations higher than 3 mg L−1 are considered to be
of high risk.8,9 Since CRP aids in the phagocytosis of bacteria,
its levels augment late during the onset of sepsis.10 Thus, early
diagnosis in conjunction with appropriate treatment can help
avert the serious and sometimes deadly consequences. It

should be noted that CRP is not considered as a specific
biomarker; however, it provides useful information to the
health practitioner as to whether inflammation or cardiovas-
cular disease is present.11 For example, a CRP concentration of
>8.7 mg dL−1 and a temperature of more than 38.2 °C were
associated with infection with sensitivities of 93.4 and 54.8%
and specificities of 86.1 and 88.9%, respectively.12 Currently,
CRP analysis is done by assays of turbidimetry, nephelometry,
and enzyme-linked immunoassay, with the latter being
considered as the gold standard for this diagnosis.13−15

These assays also have disadvantages of being expensive,
time-consuming, not sensitive enough, and being prone to false
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results.16,17 The disadvantages of these techniques continue
since they need skilled personnel and sophisticated equipment
and therefore cannot be performed in remote areas.18 The
quantification methods reported to date are surface plasmon
resonance and surface-enhanced Raman scattering,19,20 micro-
fluidic devices,21 quartz crystal microbalance technology,22−25

electrochemistry,26−28 and field-effect transistor (FET)-based
biosensors.29−31 Among these techniques, electrochemistry
and FET-based devices have shown the good features of
inexpensiveness, flexibility, sensitivity, and rapidness in terms
of producing results. The use of gold nanorods in conjunction
with antibody receptors accounted for a limit of detection of
10 fM in the paper published by Letchumanan et al.17 Vilian et
al. used an electron-mediated electrochemical device for the
fast detection of CRP, which works in a linear range of 5−220
fg mL−1.2 In another study, a CRP electrochemical biosensor
consisting of an eight Ag ion-intercalated multifunctional DNA
four-way junction (MF-DNA-4WJ) and a porous rhodium
nanoparticle (pRhNP) heterolayer on a microgap electrode
was fabricated by Kim et al.,32 which was able to detect a
concentration as low as 0.349 pM.
It has not been until recently that the FET-based biosensors

(aka. BioFETs) have been recognized as fast, infallible,
compact, power-efficient, and extremely sensitive. The use of
BioFETs in the biosensor industry has also addressed a rather
important issue caused by the introduction of labels to the
target molecules since it provides label-free detection of
biomolecules. For example, there has been numerous reports
of high-electron-mobility transistor (HEMT)-type FET
sensors for chemical and biological applications.33−35 Kim et
al.36 developed an extended gate FET-based biosensor for the
detection of streptavidin−biotin protein complexes. Tans et

al.37 have reported the use of carbon nanotubes (CNTs) as
channels in CNTFETs. Owing to their special geometry and
high surface to volume ratio, CNTs have become a good
candidate to be used in highly sensitive nanobiosensors. The
use of CNT-based FETs (CNTFETs) in biosensing has been
the center of attention for their high sensitivity and selectivity,
no need for labeling, real-time sample measurements, rapid-
ness, flexibility, and the low cost of fabrication. The
conductance of these devices changes by the charge transfer
from the molecules absorbed onto their surfaces.38−40 In these
sensing platforms, the CNT surface is functionalized with
bioreceptors capable of attaching to the biomolecule of
interest. When the target molecule binds to the bioreceptor
in a solution, the charges of the target molecule in the solution
affect the conductance of the CNTFET and hence enable the
detection. In the presence of a buffer in the solution, a double
layer is formed in the range of Debye length around the
CNTs.41,42 The target−receptor complex should fit in the
double layer to enable the charge transfers to the CNTs. When
a charged biomolecule is absorbed on the surface of the
CNTFET channel, a reduction in the source−drain current is
seen. Since the diameter of biomolecules is much bigger than
the diameter of the CNT channels, we expect them to have
high sensitivity for the detection of biomolecules.
Detection of proteins with antibodies is very common.

However, the high cost of antibodies, their large size, and low
stability have led recent research into using alternatives.43

Aptamers, artificial oligonucleotides, have gained attention due
to their low cost and high stability, and their relatively small
size enables detection in the double-layer range.41,44,45 The
good reproducibility seen in the aptasensors is due to their
well-established chemical synthesis routes.46 The binding

Figure 1. (a) Schematic of the aptameric MWCNTFET biosensor. The device benefits from a buried gate geometry for the detection of CRP. (b)
Schematic of the FET-based nanobiosensor. The 3D-printed well is mounted on the sensing area, making liquid handling easier. The source, drain,
and gate electrodes are connected to the power supplier with a copper wire. (c) Photograph of a MWCNTFET nanosensor before the
immobilization of MWCNTs. The buried gate geometry is covered with a 40 nm thick layer of Al2O3 (in gray) acting as a high-κ dielectric. A
titanium/gold contact is seen and labeled as G, which is connected to the power supply through a copper wire. The MWCNTs’ conducting channel
connects the drain and source electrodes, and the gate electrode which has the same constituents as the drain and source is buried under a 40 nm
thick layer of Al2O3.
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affinity to target molecules is almost the same as that of
antibodies, hence they are often called chemical antibod-
ies.47−49 The use of nanostructured gate electrodes and
shortness of aptamers help overcome the adverse effects of
Debye screening in physiological solutions.30 Therefore,
protein−aptamer reactions happen in the electrical double
layer. The small size of aptamers also contributes to their
immobilization at a higher density, which would mean a higher
sensitivity in detection.50

To address the issues impeding the cost effectiveness,
sensitivity, and fast detection of CRP and in continuation of
our research, especially in the field of biosensors,51−54 we
hereby report a sensit ive mult iwal led CNTFET
(MWCNTFET) sensor, that is small enough and can be
easily categorized as a portable device and using aptamers as
capture probes for convenient online detection of CRP. The
system consists of an aptameric MWCNTFET-based biosensor
and a 3D-printed well, mounted on the sensing area for better
liquid handling (Figure 1a−c).

■ EXPERIMENTAL AND METHODS
Chemicals and Materials. MWCNTs functionalized with

carboxyl groups were purchased from Sigma-Aldrich (Munich,
Germany). 285 nm SiO2/Si was ordered from Wafer World
(West Palm Beach, FL, US). Human CRP was purchased from
Sigma-Aldrich (Munich, Germany). Phosphate-buffered saline
(PBS) was purchased from Sigma-Aldrich (Munich, Ger-
many). (3-Aminopropyl)triethoxysilane (APTES) was pur-
chased from Sigma-Aldrich (Munich, Germany). Ethanolamine
was purchased from Sigma-Aldrich (Munich, Germany). 1-
Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) was
purchased from Sigma-Aldrich (Munich, Germany). N-
Hydroxysuccinimide (NHS) was purchased from Sigma-
Aldrich (Munich, Germany). The CRP-specific DNA aptamer
5 ′ - N H 2 - A C A C G A T GGGGGGG T A T G A T T T -
GATGTGGTTGTTGCATGATCGTGG-3′) was synthesized
and purified by the BIO-RP purification method. Ethanol
amine was purchased from Sigma-Aldrich (Munich, Germany).
Nanosensor Fabrication. The 285 nm SiO2/Si was

cleaned successively by acetone, isopropanol, and deionized
water. Then, SiO2/Si was dried and treated with plasma prior
to being employed as the substrate of our sensor. The buried
gate electrode was forged by the bilayer lift-off photo-
lithography process. The process used two layers of a resist,
a sacrificial layer and a photoresist, which were spin-coated
using a spin coater. The gate electrode consisting of a Ti/Au
structure (50 nm/120 nm) was marked out on the SiO2/Si
substrate using standard photolithography, and the metal
deposition was done by the physical vapor deposition
technique. A 40 nm thick nanolayer of Al2O3 was put on top
of our gate electrode as the high-κ dielectric. We then repeated
the process of photolithography to fabricate the source and
drain electrodes, which were also made out of Ti/Au (50 nm/
120 nm) on top of the Al2O3 surface. Following the Sputter
deposition of the metals, the nanosensor was exposed to
oxygen plasma again to remove the remaining residues. Then,
N2 was used to remove any possible dust on the surface of the
nanosensor. APTES (5% v/v) was dropped on the surface of
the nanosensor and then spin-coated using the spin coater to
produce a unified layer on the whole surface. After that, the
nanosensor was put into an oven for 20 min at 80 °C in order
to activate APTES. The whole purpose of APTES is to activate
the surface with amine groups. Figure 2a shows the FTIR

spectra after APTES treatment. Carboxylated MWCNTs (0.05
g) were ultrasonicated in a prepared solution of ethanol, NHS
(400 mM), and EDC (20 mM) to get them dispersed to their
full extent while activating the carboxyl groups on the
MWCNTs as well. Figure S2 shows a schematic step-by-step
process of the device fabrication. The FTIR spectra of
MWCNT COOH functionalized groups are shown in Figure

Figure 2. (a) FTIR spectra of the APTES-functionalized surface of
Al2O3 (orange line). APTES introduces amine groups on the surface.
FTIR spectra of COOH-functionalized MWCNTs (green line). ATR-
FTIR spectra of immobilized MWCNTs on the APTES-function-
alized surface of alumina (blue line). (b) EDX spectra of MWCNTs
before and after aptamer immobilization. A sharp increase in the
intensities of P and N is seen. (c) Drain−source current as a function
of drain−source voltage. (d) Drain−source current plotted against a
range of Vg at Vds = 0.2 V. (e) FESEM image of MWCNTs after
aptamer immobilization. The diameter of the MWCNTs increased
after aptamer immobilization; (inset) FESEM image of the MWCNTs
(Figure S3d,e).
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2a. The aforementioned MWCNTs were dropped on the
nanosensor using a sampler and then were let to rest and form
covalent bonds for 2 h at room temperature.
Biochemical Functionalization. To immobilize the

aptamers on the MWCNTs, the nanosensor was incubated
with 3 μM aptamer solution overnight at room temperature.
After rinsing with 1× PBS, 100 mM of ethanolamine was
added to the surface of the nanosensor for 90 min to block the
excess remaining functional groups on the MWCNT surface.
To address the liquid handling problem, a 3D-printed well was
carefully placed on the sensing area of our nanosensor.
Preparation of CRP Samples. Buffer dilution reduces the

ionic strength of the solution and hence increases the Debye
length.30 Here, we used 1× PBS to dilute our CRP samples and
create a dilution series of interest. A dilution range of 0.43−
171.43 nM (0.05−20 mg/L) of the protein was prepared. The
samples were let to rest overnight and were used the day after.
The storage temperature for this step was 4 °C.
Liquid Handling. While testing, a volume of 10 μL CRP at

various concentrations is added to and removed from the 3D-
printed well using a sampler. No need for rinsing after the
removal of the solution was recognized.

■ RESULTS AND DISCUSSION
Working Principle of the Nanobiosensor. A 40 nm

thick layer of Al2O3 that works as a high dielectric layer with ε
= 11.54 was grown on the gate electrode to insulate it from the
MWCNTs. A drain current Ids through the MWCNTs is
generated by a drain−source voltage Vds, powered by Rigol
(DP821). An external gate voltage Vg was applied at its optimal
value, where both the sensor’s sensitivity and MWCNT
conductivity reached their maximum potentials. The changes
of drain−source current Ids were recorded until reaching
equilibrium in 8 min. The FET-based biosensor either behaves
in a linear region for quantitative analysis or in a subthreshold
way for higher sensitivity. The drain current reduces after the
immobilization of the ssDNA aptamer due to the interfacial
dipole between nucleobases and MWCNTs in addition to π−π
stacking. Density functional theory calculations indicate that
the physisorption of DNA induces an interfacial dipole
between nucleobases and MWCNTs in addition to π−π
staking.55 The dipole is the direct result of electron-rich
aromatic rings’ closure to the polarized MWCNT surface and
is responsible for the mobility and density decrease of the
electron carriers in the channel.56,57 The current decrease is
due to the depletion of negative charge carriers induced by the
aptamer-CRP binding interaction. A schematic of the sensing
principle is seen in Figure S1. As can be seen, the aptamers are
in an unfolded state in the fresh buffer. Upon introduction of
CRP to the environment, the aptamers attach to CRP and
become folded, bringing CRP to the vicinity of MWCNTs’
surface. The negatively charged protein induces positive
charges in the MWCNTs, which leads to an increase in the
number of free electron carriers in the MWCNTs and hence a
change in the drain current.
Characterization. To assure the successful functionaliza-

tion, several characterization steps were adopted. ATR−FTIR
(Thermo Nicolet Avatar 380) spectra of the Al2O3 surface
showed the presence of amine groups, which indicates the
successful functionalization of the dielectric layer with APTES
(Figure 2a). As shown in the spectra, O−H stretching and N−
H stretching are seen at 3400 cm−1. The wavenumbers 2920
and 2850 cm−1 indicate the existence of asymmetrical/

symmetrical stretching in CH2, respectively. A strong N−H
vibrational bending due to the presence of amino groups is
seen at 1630 cm−1. 950−1000 cm−1 peaks are responsible for
C−N and Si−O functional groups and confirm the presence of
amine groups.58 FTIR analysis was also performed on
carboxylated MWCNTs to confirm the existence of the
carboxyl groups (Figure 2a). An intensive band at 3421
cm−1 due to stretching vibrations of isolated surface −OH
moieties or −OH in carboxyl groups is seen. Asymmetric
methyl stretching and asymmetric/symmetric methylene
stretching bands at 2960, 2923, and 2853 cm−1 are shown.
The CO bands that are characteristics of carboxyl functional
groups are observed at 1732 and 1630 cm−1. Observed at 1380
cm−1 is the band responsible for the presence of vibrational
bending of C−H. Vibrational stretching of C−O can be seen at
1069 cm−1.59 ATR−FTIR analysis was performed on the
MWCNTs immobilized on the surface of APTES-function-
alized alumina to confirm the bonding of carboxy groups on
MWCNTs with amine groups of APTES to form an amide
bond (Figure 2a). The formation of amide bonds was seen due
to the disappearing peaks of OH and NH at 3300−3600 cm−1.
The alkyl chain of APTES was seen at 2960 cm−1. The
formation of CON bonds between MWCNT-COOH and
APTES was seen at 1700 cm−1. Carbonyl functional groups
were seen at 1200 cm−1. The formation of CSi bonds was seen
at 1000 and 760 cm−1. All these suggest the successful
functionalization and immobilization of MWCNTs on the
alumina surface.
Energy-dispersive X-ray analysis (EDX) (Thermo scientific

K-Alpha+) was performed to confirm the immobilization of
aptamers on the MWCNTs. We measured the intensity of
nitrogen and phosphorous elements on the MWCNTs’ surface
before and after aptamer immobilization, which are shown with
red and blue lines, respectively. As expected, a sharp rise in the
intensity of the P and N elements was seen, which corresponds
to the successful immobilization of the ssDNA aptamers
(Figure 2b).
Ids was measured before and after aptamer immobilization

on the surface. The Ids measured decreased drastically after
aptamer immobilization (Figure 2c,d, data shown are an
average of the values from five sensors). As shown in the graph,
the device demonstrates a fully linear relationship between Ids
and Vds, which shows that a fully Ohmic contact between the
source and drain exists. In order to find the optimum Vg, the Ids
was measured against a range of interest for Vg with steps of 0.1
V. The sweeping of Vg was fast enough to not let the
biosensors reach a thermal equilibrium. The drain current
reduces as the Vg increases. Ids was measured once with 1×
PBS and once after the immobilization of the aptamer. The
data showed a maximum difference between Ids measured in
the presence of 1× PBS and Ids measured in the presence of the
aptamer at Vg = 0.5 V (Figure 2d). Figure S3a,b shows the
values obtained for sensors before and after aptamer
immobilization.
To further confirm the attachment of aptamers to the

MWCNTs’ surface, FESEM images (using TESCAN MIRA
III) were taken from the MWCNTs before and after aptamer
immobilization (Figure 2e). The MWCNTs’ diameters show
an increase after aptamer immobilization (Figures 2e and a−c).
All these experimental results are in consistency with those of
An et al.,60 suggesting the successful immobilization of the
aptamer on the MWCNTs’ surface.
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CRP Detection. The nanobiosensor’s detecting capability
was tested by exposing the sensing area to CRP artificial
sample solutions. The response of the FET-based nano-
biosensor is defined as Response = (I0 − Ic/I0) × 100, where I0
is defined as the drain−source current before exposure to
protein measured in the fresh PBS buffer and Ic is the drain−
source current after protein addition. The sensor’s response
was evaluated at certain Vds and Vgs in the linear working
regime. The drain−source current decreases after protein
addition and reaches an equilibrium at about 8 min. As can be
seen from the formula, the response of the sensor increases
with the increasing concentration of CRP. Time-resolved
measurements of CRP were performed at fixed Vds = 0.2 V and
Vgs = 0.5 V in 1× PBS and CRP artificial sample solution. As
shown in Figure 3, the response increases sharply from 0 to 95

with increasing concentrations of CRP to 43 nM (5 mg L−1).
The binding of CRP and its aptamer seems to reach saturation
at further concentrations and reaches 98 at 85.71 nM (10 mg
L−1). The response of the sensor remains almost unchanged up
to 171.43 (20 mg L−1). The inset of Figure 3 shows the

responses as a function of the logarithm of protein
concentrations. The range of the linear relationship lies
between 0.43 and 42.86 nM (0.05−5 mg L−1). The limit of
detection calculated based on the 3σ/s formula61 was as low as
150 pM (0.017 mg L−1).
As seen in the inset of Figure 3, the first point of the plot

indicates a concentration of 0.43 nM (0.05 mg L−1) and the
last point shown is a representative for 42.86 nM (5 mg L−1).
As can be seen, the device shows a linear relationship between
the responses and the logarithm of protein concentration.
Responses produced with increasing concentrations after 5 mg
L−1 cannot be distinguished from one another since they are
extremely close. The values plotted here are an average of five
devices.
Kd, the binding equilibrium constant, can be determined

from the sensor’s response. A lower Kd stands for the stronger
tendency for the aptamer to bind to CRP. The constant can be
calculated from the equation below62,63

=
+
C

C K
response i

i d

where Ci is the concentration of the CRP at which the
response is produced. From the above equation, the average Kd
of all five sensors was calculated at 2.09 nM, which shows a
good sensing performance by the nanosensor through different
sample solutions.

Control Experiment and Selectivity. To make sure that
the MWCNTs used in this experiment had no affinity for
direct CRP bonding, a concentration of CRP of 0.4 nM up to
17.14 nM was added to bare MWCNTs and the response was
measured.64 As shown in Figure 4a, the signal remained
constant in the sensing time (8 min). This finding showed that
either the CRP has no effects on the bare MWCNTs or the
effect is so low that it cannot be detected by our device.
Before aptamer immobilization, the responses produced by

the application of a range of CRP concentrations to the surface
of the biosensor were measured. The responses changed from
0 to 1% and remained almost constant with increasing
concentrations of the protein, indicating that the MWCNTs
do not have affinity for the protein of interest and rationalize
the choice of them as our conducting channel.

Selectivity of the Nanobiosensor. The selectivity of the
nanobiosensor was measured using TNF-α, IL-6, and BSA.

Figure 3. Detection of CRP in artificial samples. Responses produced
plotted against the concentration of the CRP. The responses are
shown as ΔI/I0. Inset: responses of the device against the logarithmic
concentration of the CRP.

Figure 4. (a) Inertness of bare COOH-functionalized MWCNTs to CRP. (b) Selectivity of the nanobiosensor. Responses of three other proteins
are plotted against the response of CRP. The maximum response produced by other proteins is 5.11% by a concentration of 1.7 nM BSA.
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TNF-α and IL-6 were chosen since they are also found in the
onset of sepsis and their concentrations also rise in response to
sepsis. BSA was chosen since albumin is found in a large
amount in the body. Figure S6 shows the responses from these
three proteins plotted against their concentrations. As can be
seen, the responses remain constant and do not change with
the increasing concentration of the proteins (the responses did
not change from 100 to 2000 pM for the three proteins). The
responses recorded from the addition of these proteins at
different concentrations are plotted against their concen-
trations. As shown in Figure 4b, the responses remained
constant with the increase in the concentration of the proteins.
The changes in the responses were compared to the changes of
the responses produced by the same concentration of CRP.
The graph shows that the same increase in CRP concentration
produced almost 28% more response in comparison with other
proteins.
Reproducibility and Stability Tests. In order to measure

the reproducibility and stability of the biosensor, a series of
identical tests were performed. Responses produced from a
series of concentrations of CRP were measured over a course
of 18 days. The correlation coefficient was measured for the
responses all against those on day 1. The sensor showed
stability and precision in the results produced until day 14
(Figure 5).

Below, a comparison between different methods of detection
of CRP with this work is presented. As can be seen from Table
1, the linear range of the sensors reported does not cover the
physiological concentration of the protein. Although these

sensors can detect very low concentrations, they are not of use
in clinical diagnoses.

■ CONCLUSIONS
Here, an MWCNT FET-based nanobiosensor for real-time
detection of CRP is presented. The system consists of an
aptameric MWCNT FET nanobiosensor with a buried gate
electrode geometry and a 3D-printed well mounted on top of
its sensing area for better handling of the samples. The
inertness of MWCNTs to CRP was measured with the results
justifying the appropriateness of MWCNTs as the conducting
channel. No need for a linker to attach aptamers to MWCNTs
means that our designed system not only cuts the expenses of a
linker but also makes the aptamer−CRP interaction occur
closer to the surface of MWCNTs, which leads to a higher
sensitivity. The specificity of the sensor was measured through
the use of negative controls. Since under the condition of
sepsis, the concentrations of IL-6 and TNF-α rise as well, we
used these two proteins and BSA as our negative controls. Test
results indicated that the sensor is highly specific to CRP and
can be relied upon in that manner. The proposed nano-
biosensor can respond to CRP concentration changes in 8 min
with a limit of detection down to 150 pM (0.017 mg L−1) and
a linear range of 0.43−42.86 nM (0.05−5 mg L−1), which
covers the physiological level of CRP in the human body. The
nanosensing system holds great potential to be used in the
clinical diagnosis of CRP-related diseases at very early stages.
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