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Spiro-OMeTAD is the well-known hole transportingmaterial (HTM) in perovskite solar cells.
In this work, its derivatives, namely four D-A shaped triphenylamine or biphenylamine
endcapped indenone spirofluorene (SFD-TPA, SFD-OMeTPA, SFD-TAD, and SFD-
OMeTAD), were designed and synthesized. With the introduction of electron-donating
moieties and the extension of conjugation length, a series of changes in photophysical and
electrochemical properties could be detected. Notably, in comparison with the optical gap
(2.96 eV) of the reported spiro-OMeTAD, SFD-OMeTAD presents an optical gap as low as
1.87 eV. Moreover, density functional theory simulations were employed to further
investigate their geometric and electronic structures. Finally, steady-state
photoluminescence measurements proved the efficient charge separation and
collection processes at the perovskite/HTM interface. It can be predicted that all four
compounds with enhanced sunlight absorption capability and suitable frontier energy
levels can be used as hole-transporting materials for perovskite solar cells.
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INTRODUCTION

Perovskite solar cells (PSCs) have attracted considerable attention as next-generation energy sources
because of their numerous advantages, such as facile processing, prominent power conversion efficiency
(PCE), and relatively low fabrication cost (Li X. et al., 2016; Lee et al., 2016; Ge et al., 2018; Shang et al.,
2018; Abuhelaiqa et al., 2019; Jiang A. et al., 2019; Bai et al., 2019). Hole-transporting materials (HTMs)
are always required to construct high-efficiency PSCs (Stranks and Snaith, 2015; Gangala andMisra, 2018;
Wang et al., 2018; Yu et al., 2019). Themost commonly usedHTM in record-breaking PSCs is 2, 2′, 7, 7′-
tetrakis-(N,N-di-p-methoxyphenylamino)-9,9′-spirobifluorene (spiro-OMeTAD) (Li et al., 2015; Ma
et al., 2015; Seo et al., 2016; Wang et al., 2016; Xu et al., 2017; Jiang Q. et al., 2019). However, doping
lithium bis-(trifluoromethanesulfonyl)imide salt (LiTFSIA) and 4-tertbutylpyridine (TBP) into spiro-
OMeTAD is essential to enhance carrier transportingmobilities (Zhou et al., 2018). As a consequence, the
stability of PSCs is deceased due to the hydrophilic properties of these dopants.

Donor-acceptor (D-A) type small molecules can be regarded as a good candidate for HTMs because
the D-A molecular backbone features intramolecular charge transfer (ICT) characteristics and a high
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dipole moment, which could induce self-doping and a built-in
potential to boost charge extraction (Liu et al., 2015; Steck et al.,
2015; Bi et al., 2016; Kim et al., 2016; Liu et al., 2016; Xu et al., 2018;
Mai et al., 2021; Zhang et al., 2021). Li et al. reported a
triphenylamine (donor) and tricyanovinylene (acceptor)
substituted dipolar chromophore (BTPA-TCNE) to serve as an
efficient dopant-free HTM for PSCs in 2016 (Li Z. et al., 2016),
generating a promising PCE of ~17.0%. This result outperforms the
control devices using doped spiro-OMeTAD HTM. Recently, Guo
et al. reported two novel D-A type HTMs with phenylamine groups
as the donor units and imide-functionalized thiophene as the
acceptor units (Wang et al., 2019). The dopant-free PSCs
achieved a remarkable efficiency of 21.17% with negligible
hysteresis and superior thermal stability and long-term stability
under illumination, which breaks the long-time standing
bottleneck in the development of dopant-free HTMs for highly
efficient inverted PSCs.

Inspired by these works, we report four novel D-A type HTMs
as shown in Figure 1, using indenone spirofluorene as acceptor
and arylamines as donors based on the following considerations:
(1) the extension of conjugation area based on classic spiro core
spiro-OMeTAD, which is better for property comparison; (2)
nonplanar molecular configuration and large steric hindrance can
effectively inhibit π−π aggregation and charge recombination
between molecules, thereby promoting hole extraction from
the perovskite layer (Pham et al., 2017; Zimmermann et al.,
2017; Pham et al., 2018); (3) the rigid structural characteristics
of the molecules have a relatively high glass transition
temperature, favoring uniform thin film formation (Azmi
et al., 2018; Jeon et al., 2018; Liu et al., 2018); (4) carbonyl
group as a Lewis base can passivate Pb2+ defects on the surface of
perovskite, reduce the activity, and improve its humidity stability
(Zhang et al., 2018; Chen et al., 2019; Zou et al., 2019); (5) the N
atom on the triarylamine has a strong electron donating ability,
which is easily oxidized to generate a cationic radical, enabling a

high hole mobility (Lin et al., 2003; Zhao et al., 2019). The novel
HTMs were characterized by NMR, UV-Vis, and cyclic
voltammetry spectroscopy. Steady-state photoluminescence
(PL) was also employed to evaluate the hole extraction
capability of the perovskite/HTMs interface.

RESULTS AND DISCUSSION

The detailed synthetic routes for SFD-TPA, SFD-OMeTPA, SFD-
TAD, and SFD-OMeTAD are shown in Scheme 1. 12H,12′H-
10,10′-spirobi [indeno [2,1-b]fluorene] (2O-spiro) was used as
starting material, which was synthesized according to our
previous report (Xia et al., 2015). First, employing a bromine
reagent, regioselective bromination at the α positions of 2O-spiro
was attempted in C2H2Cl4. Tetrabrominated intermediate
2,2′,8,8′-tetrabromo-12H,12′H-10,10′-spirobi [indeno [2,1-b]
fluorene] (3) could be obtained together with five-fold
brominated by-products. The mixture was tough to be purified
due to its poor solubility and similar polarity. An alternative
synthesis strategy was developed. Using LiAlH4, 2O-spiro could
be reduced to compound 1 in 72% yield. Thereafter, compounds
2 and 3 were prepared via bromination and oxidation reaction in
yields of 15% and 47%, respectively. Finally, electron-donating
group arylamines, as terminal moieties, were covalently bonded
to 3 via four-fold Suzuki coupling reactions or Buchwald Hartwig
cross-coupling reactions. SFD-TPA, SFD-OMeTPA, SFD-TAD,
and SFD-OMeTAD were purified using silica gel column
chromatography in yields of 40%, 42%, 38%, and 42%,
respectively. The structures of the target molecules were fully
characterized by 1H NMR, 13C NMR, and Maldi-TOF-Mass.

Optical properties. The spiro-OMeTAD dichloromethane
solution is light yellow under sunlight, while the color of
indenone spirofluorene cored products is deeper. UV-Vis
absorption spectroscopy is used to study their optical properties
in detail. As shown in Figure 2, these compounds display two bands
in the range of 300–450 nm, which are assigned to n-π* transition
and π−π* transition. Moreover, the bands in the range of
450–650 nm are observed obviously. This band is ascribed to the
intramolecular charge transfer since there is no light absorption for
spiro-OMeTAD and 2O-spiro (Xia et al., 2015). Furthermore, the
UV-Vis absorption onset of diphenylamine moieties substituted
indenone spirofluorene (SFD-TAD and SFD-OMeTAD) are in
the longer wavelengths in comparison with triphenylamine
substituted ones, indicating the direct linkage between 2O-spiro
and N atoms favoring for effective charge transfer. The optical gaps
of SFD-TPA, SFD-OMeTPA, SFD-TAD, and SFD-OMeTAD were
calculated to be 2.22, 2.16, 1.97, and 1.87 eV, respectively, according
to the formula, Eg = 1240/λonset.

Electrochemical properties. The electrochemical properties of
SFD-TPA, SFD-OMeTPA, SFD-TAD, and SFD-OMeTAD were
investigated by cyclic voltammetry (CV) in CH2Cl2 at a scan rate
of 100 mV s−1. As shown in Figure 3, the CV of these four
compounds displays reversible oxidation and reduction waves.
Their reduction potentials are similar to that of the core 2O-spiro
(Xia et al., 2015), and thus their lowest unoccupied molecular
orbital (LUMO) energy levels are in the range of −3.24 to

FIGURE 1 | Chemical structures of Spiro-OMeTAD, SFD-TPA, SFD-
OMeTPA, SFD-TAD, and SFD-OMeTAD.
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−3.35 eV. In comparison with the highest occupied molecular
orbital (HOMO) energy level of spiro-OMeTPA, HOMO energy
levels of SFD-TPA, SFD-OMeTPA, SFD-TAD, and SFD-
OMeTAD decrease obviously, which is arising from the
electron-withdrawing capability of carbonyl group from 2O-
spiro. Moreover, with the onset voltage of the first oxidation

potentials, the HOMO levels of SFD-TPA, SFD-OMeTPA, SFD-
TAD, and SFD-OMeTAD were calculated to be −5.22, −4.96,
−5.12, and −5.01 eV, respectively, according to the formula,
EHOMO = -[EOx+4.80-E(Fc/Fc+)], all data are exhibited in
Table 1. On the basis of these results, it is predictable that

SCHEME 1 | Synthesis route of spiro-OMeTAD derivates.

FIGURE 2 | UV−vis absorption spectra and pictures of SFD-TPA, SFD-
OMeTPA, SFD-TAD, and SFD-OMeTAD in CH2Cl2.

FIGURE 3 | CV of SFD-TPA, SFD-OMeTPA, SFD-TAD, and SFD-
OMeTAD.
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methoxy groups favor the HOMO level enhancement.
Consequently, the HOMO values for SFD-TPA, SFD-
OMeTPA, and spiro-OMeTAD properly match with the
valence band edge of the perovskite, leading to an effective
hole extraction from the HTM, but also an efficient electron-
blocking due to the high LUMO level. To further obtain a greater
understanding of the geometric structure, electron distribution
and frontier orbital energy levels of SFD-TPA, SFD-OMeTPA,
SFD-TAD, and SFD-OMeTAD, density functional theory (DFT)
calculations are carried out at the B3LYP/6-31G level. As shown
in Supporting Information (Supplementary Figure S1), the
electron density of LUMO distribution is mainly on the
central core, while HOMO energy levels are almost delocalized
across the whole molecule skeleton, which is similar to spiro-
OMeTAD. The DSC curves of four target compounds are
provided in Supplementary Figure S24.

To investigate the photoinduced charge transfer and charge
separation between novel HTMs and perovskite, the
photoluminescence (PL) quenching experiments were carried
out (Figure 4). Compared with the bare perovskite film, when
HTMs were introduced, the PL response of the pristine perovskite
film was significantly quenched. This result indicates effective

hole extraction and transport from perovskite to HTMs, and the
quenching extent for four novel HTMs is at the same level of
spiro-OMeTPA. Therefore, indenone spirofluorene cored
molecules are proved to be promising novel D-A HTMs for
PSCs. The novel D-A type hole-transporting materials with low
cost for PSCs commercialization will be designed and synthesized
in our laboratory.

CONCLUSION

In summary, we have successfully constructed four novel D-A
type indenone spirofluorene cored HTMs. The appropriate
introduction of carbonyl groups into spiro-OMeTAD can not
only lead intramolecular charge transfer effect but also
modulate the frontier orbital energy levels. SFD-OMeTAD
presents the optical gap as low as 1.87 eV, which
significantly decreases in comparison with that (2.96 eV) of
the reported spiro-OMeTAD. For the first time, we achieved
the modification of classical spiro-OMeTAD into D-A type
HTMs for perovskite solar cells.
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TABLE 1 | The optical and parameters of the target products.

λmax

(nm)
λonset
(nm)

ELUMO
a

(eV)
EHOMO

a

(eV)
Eg

a

(eV)
Gapb

(eV)

SFD-TAD 529.3 627.8 −3.35 −5.12 1.77 1.97
SFD-
OMeTAD

561.6 660.6 −3.27 −5.01 1.74 1.87

SFD-TPA 457.7 557.4 −3.29 −5.22 1.93 2.22
SFD-
OMeTPA

488.0 573.8 −3.24 −4.96 1.72 2.16

Spiro-
OMeTAD

390.1 418.2 -- −4.72 -- 2.96

aObtained by CV curves.
bObtained by UV-Vis absorption spectra.

FIGURE 4 | Steady-state photo luminance spectra of perovskite film and
perovskite/HTM films.
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