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Abstract: Guided bone regeneration was studied to establish protocols and develop new biomaterials
that revealed satisfactory results. The present study aimed to comparatively evaluate the efficiency
of the bacterial cellulose membrane (Nanoskin®) and collagen membrane Bio-Gide® in the bone
repair of 8-mm critical size defects in rat calvaria. Seventy-two adult male rats were divided into
three experimental groups (n = 24): the CG—membrane-free control group (only blood clot, negative
control), BG—porcine collagen membrane group (Bio-Guide®, positive control), and BC—bacterial
cellulose membrane group (experimental group). The comparison periods were 7, 15, 30, and 60 days
postoperatively. Histological, histometric, and immunohistochemical analyses were performed.
The quantitative data were subjected to 2-way ANOVA and Tukey’s post-test, and p < 0.05 was
considered significant. At 30 and 60 days postoperatively, the BG group showed more healing of
the surgical wound than the other groups, with a high amount of newly formed bone (p < 0.001),
while the BC group showed mature connective tissue filling the defect. The inflammatory cell count
at postoperative days 7 and 15 was higher in the BC group than in the BG group (Tukey’s test,
p = 0.006). At postoperative days 30 and 60, the area of new bone formed was greater in the BG group
than in the other groups (p < 0.001). Immunohistochemical analysis showed moderate and intense
immunolabeling of osteocalcin and osteopontin at postoperative day 60 in the BG and BC groups.
Thus, despite the promising application of the BC membrane in soft-tissue repair, it did not induce
bone repair in rat calvaria.

Keywords: biomaterials; xenografts; cellulose

1. Introduction

Guided bone regeneration (GBR), a technique used to promote bone reformation, mainly depends
on the use of a biocompatible membrane that acts as a physical barrier to prevent the adjacent connective
tissue from invading the bone defect, thus creating a favorable space for bone regeneration [1].
During the healing process, the epithelial tissue migrates quickly to the wound, which complicates the
process of bone regeneration [2].
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These membranes must have the following properties: osteoinductivity, resorbability,
biocompatibility, lack of cytotoxicity, and mechanical stability, that is, the capacity to maintain
space during the process of bone repair [3,4].

Collagen-based membranes (CBMs) are well recognized for being biocompatible and hemostatic,
promoting chemotaxis for fibroblasts and osteoblasts, and for being semipermeable, allowing the
transfer of nutrients [5]. CBMs are also significant in the repair of intraosseous defects in the
periodontium [6], and, when associated with several types of bone grafts, the efficacy of these
membranes is improved, increasing their capacity to stimulate the repair of periodontal tissues [7,8].
Thus, this membrane is widely used in maxillofacial surgery and is considered the gold standard
in bone-healing treatment. Among these collagen membranes, Bio-Gide® (Bio-Gide®—Geistlich
Wolhusen, Switzerland) stands out in the market.

We are currently looking for other options to improve bone tissue repair since, although very
efficient, collagen membranes are expensive. As such, one of the alternatives is the exploitation
of cellulose, which, besides presenting good biomechanical properties, is a natural polymer,
biodegradable, and renewable. Therefore, it has become the subject of a series of investigations
on tissue engineering [9–12].

One of the methods used to obtain cellulose is bacterial synthesis (bacterial cellulose), which results
in cellulose with better properties than that extracted directly from plants, showing high mechanical
strength, high water retention capacity [13], crystallinity, a high degree of biocompatibility,
and resistance to degradation, making it suitable for use as a raw material in the production of
membranes and scaffolds directed to a variety of tissues, including bone tissue [14–16]. In addition,
this material has already been applied as an excellent substitute for skin in deep burn treatments [11,17],
in treating extensive loss of the dermal and epidermal layers in chronic or acute wounds, in relieving
pain and improving healing by accelerating the development of granulation tissue and new epithelium,
and in reducing scar formation [11,16]. In this context, a cellulosic membrane produced by the action of
some bacteria and yeast species on green tea (Nanoskin®) has been recently developed and is already
being used as an aid in the repair of skin lesions, showing great results.

Cellulose membranes remain in the body for a long time without being degraded [11], but their
contact with tissues does not generate toxicity or inflammation [11,17,18]. Bacterial cellulose is
produced by strains of Gram-negative bacteria and is quite different from plant cellulose [19,20].

Tissue engineering studies present bacterial cellulose-containing biomaterials that are also efficient
in the bone repair process, being explored mainly in the form of scaffolds [21,22]. The modification of
the bacterial cellulose membrane with different scaffolds has also demonstrated promising results in
in vivo osteoblast differentiation in calvaria defects [23].

Thus, this study aimed to compare the effectiveness of a bacterial cellulose membrane (Nanoskin®

Innovatec’s, São Carlos SP, Brazil) and a collagen membrane (Bio-Gide®—Geistlich Wolhusen,
Switzerland) in the bone repair of male adult rat skulls (3 to 4 months) at postoperative 7, 15,
30, and 60 days, using the hypothesis that Nanoskin® promotes bone formation compatible with that
observed by Bio-Gide®.

2. Materials and Methods

2.1. Development of the Bacterial Cellulose Membrane

Nanoskin® Innovatec’s bacterial cellulose raw material (São Carlos, São Paulo, Brazil) was supplied
by Innovatec-Produtos Biotecnológicos Ltda. (São Carlos São Paulo, Brazil, FIESP: 80591940001,
ISO: 13485:2003/AC:2009). The acetic fermentation process was performed using glucose as a source
of carbohydrates and green tea (100%) as a source of nitrogen, which are natural and rich sources
of polyphenols. The bacteria were then inoculated into the culture medium, and after being added,
the medium was autoclaved at 100 ◦C. The results of this process were vinegar and nanobiocellulose
biomass. Bacterial cellulose is produced by the Gram-negative bacterium Gluconacetobacter xylinus and
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extracted from the culture medium in a pure 3D structure, formed by an ultra-thin network of highly
hydrated (3–8 nm) cellulose nanofibers (99% in weight), displaying high molecular weight, high cellulose
crystallinity (60–90%), enormous mechanical strength, and full biocompatibility [18,20,22–27].

2.2. Samples

This study was submitted to and approved by the Ethics Committee of Araçatuba Dental
School—UNESP under protocol number 2015-00965 and followed the ARRIVE Guidelines.

Seventy-two male, adult (3 to 4 months) rats (Rattus novergicus albinus, Wistar), weighing
approximately 200–300 g, were divided into three groups (n = 24 per group) and euthanized at four
time points during the experiment: 7, 15, 30, and 60 days postoperatively. The sample size was
calculated using the software SigmaPlot 12.0 (exact graphs and data analysis, Sant Jose, CA, USA). It was
used as described in a previously published manuscript, in which the minimal difference in means of
percentage bone fill was 18.9; expected standard deviation 8.1; for a power, test = 80%, and p > 0.005,
it would be necessary to have five samples to an experimental group [28]. Thus, there was a possibility
of animal loss during the research, and six animals per group were elected.

These animals were kept in cages, being four per cage identified with the code of each group and
fed with balanced feed (NUVILAB, Curitiba PR, Brazil) containing 1.4% Calcium and 0.8% Phosphorus
and water ad libitum in the Vivarium of the Araçatuba Dental School—UNESP. In each animal, a critical
bone defect was created in the skull (8 mm), as described below:

CG: clot group (negative control)—n = 24: The critical bone defect was filled with blood clots; six rats
were euthanized during each period of analysis (7, 15, 30, and 60 days postoperatively).
BG: Bio-Gide® group (positive control)—n = 24: The critical bone defect was filled with blood clots,
and a collagen membrane was placed over the defect; 6 rats were euthanized during each period of
analysis (7, 15, 30, and 60 days postoperatively) (Figure 1A).
BC: bacterial cellulose group (experimental group)—n = 24: The critical bone defect was filled with
blood clots, and a bacterial cellulose membrane was placed over the defect; 6 rats euthanized during
each period of analysis (7, 15, 30, and 60 days postoperatively) (Figure 1B).

The division of experimental groups was performed through randomization using a lottery.
An envelope was used with 24 papers containing the words CG, 24 containing the words BG,
and 24 containing the words BC. Thus, 72 animals were divided aleatorily.
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2.3. Experimental Surgery

The animals were subjected to an 8 h preoperative fast and were sedated by intramuscular
administration of ketamine hydrochloride (Francotar—Vibrac do Brasil Ltda, São Paulo, Brazil)
associated with xylazine (Rompum—Bayer AS—Health Animal, São Paulo, Brazil), at a dosage of
50 mg/kg and 5 mg/kg, respectively. A strict aseptic protocol was adopted, including sterilization of the
instruments used, delimitation of the area to be operated with sterile fields, and use of sterile surgical
gloves and gowns. All surgical procedures were performed in the Vivarium’s surgical room at the
Araçatuba Dental School—UNESP. Trichotomy was then performed in the skull of the rats, followed by
antisepsis with polyvinyl pyrrolidone iodine (10% PVPI, Riodeine Degermante, Rioquímica, São José
do Rio Preto), associated with topical PVPI (10% PVPI, Riodeine, Rioquímica, São José do Rio Preto).

A V-shaped incision was made in the occipitofrontal direction, with the apex located in the
frontal region, and the base located in the occipital region, measuring approximately 2 cm, with a
detachment flap (Figure 2). Subsequently, using a 7-mm diameter inner drill bit (3i Implant Innovations,
Inc., Palm Beach Gardens, FL, USA), coupled with low rotation under abundant irrigation with
0.9% sodium chloride solution (Darrow, Rio de Janeiro, Brazil), a critical surgical defect, 8 mm in
diameter [21], was made in the central portion of the skull involving a sagittal suture, maintaining
the integrity of the dura mater (Figure 2). In the CG (clot) group, the surgical critical-size defect was
filled with a blood clot without overcoating of the defect. In the BG (Bio-Guide®) group, the surgical
critical-size defect was filled with a blood clot and was covered with a porcine collagen membrane
(Bio-Gide®; Geistlich Pharma AG, Wolhusen, Switzerland). In the BC (Bacterial cellulose®) group,
the surgical critical-size defect was filled with a blood clot and covered by a bacterial cellulose
membrane (Nanoskin® Innovatec’s bacterial cellulose raw material, São Carlos SP, Brazil).
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Figure 2. Surgical approach to calvaria and defect creating.

At the end of the procedure, the soft tissues were carefully repositioned and sutured in planes
using a resorbable suture (polylactic acid—Vycril 4.0, Ethicon, Johnson Prod., São José dos Campos,
Brazil) in the deep plane and monofilament sutures (Nylon 5.0, Mononylon, Ethicon, Johnson Prod.,
São José dos Campos, Brazil) with interrupted sutures in the surface plane.

In the immediate postoperative period, each animal received a single intramuscular dose of 0.2 mL
of penicillin G-benzathine (Pentabiótico Veterinário Pequeno Porte, Fort Dodge Saúde Animal Ltda.,
Campinas, SP, Brazil). Every two days, the cages were cleaned, and the animals cared.
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2.4. Histological/Histometric Analysis

The histological blades were stained with hematoxylin and eosin (Merck & Co., Inc, Kenilworth,
New Jersey, NY, USA). The histometric analysis was performed through the inflammatory cell and
vessel count; the inflammatory response was determined, and the neoformed bone area was measured.
The photomicrograph of the blades was made using an optical microscope (LeicaR DMLB, Heerbrugg,
Switzerland) coupled to an image capturing camera (LeicaR DC 300F microsystems Ltd, Heerbrugg,
Switzerland) and connected to a microcomputer with ImageJ digitized image analyzer software
(National Institutes of Health, Bethesda, MD, USA).

All analyzed blades had their identification hidden so that the examiner was blind. For the
inflammatory cell and vessel count, two sections per animal were analyzed, totalizing 48 sections,
and three regions were evaluated: center of the defect, right side, and left side of the defect [12]. In the
original objective of ×100, 130 points were predetermined, and the ones that touched a cell were
counted. The area of bone tissue present in the central region of each bone defect was evaluated using
two sections per animal (primary outcome). The data obtained in the analyses were transformed into
absolute values, from pixels to square micrometers, to minimize the interference of the negative size
difference. For comparison between the mean values obtained in the different experimental groups
and periods, the data were subjected to initial statistical tests [12,29,30].

2.5. Immunohistochemical Analysis

Immunohistochemical reactions were visualized using the indirect immunoperoxidase detection
method. Blockage of nonspecific reactions through the inactivation of endogenous peroxidase was
performed using 3% hydrogen peroxide (Merck, São Paulo, SP, Brazil), 1% bovine serum albumin
(Sigma-Aldrich Ltda., São Paulo, SP, Brazil), and 20% fat-free powdered milk. Antigen recovery was
achieved with citrate phosphate buffer (pH 6.0) in the presence of humid heat. Primary antibodies
against osteocalcin (OC) (Santa Cruz Biotechnology, Dallas, TX, USA) and osteopontin (OP) (Santa Cruz
Biotechnology, Dallas, TX, USA) were used. These proteins were chosen to evaluate the cell responses
related to bone mineralization. The secondary antibody used was a biotinylated anti-goat antibody
produced in rabbits (Pierce Biotechnology, Rockford, IL USA), along with biotin and streptavidin
(Dako, Glostrup, Denmark) and diaminobenzidine (Dako, Glostrup, Denmark). Counterstaining was
performed using Harris hematoxylin.

All analyzed blades had their identification hidden so that the examiner was blind. The images
were captured from the center of the defect performed in the skull of all the animals in the experiment
for the biomarkers OC and OP. To acquire the images, a photomicroscope (LeicaR DMLB, Heerbrugg,
Switzerland) connected to a microcomputer was used. The postoperative 15, 30, and 60-day periods
alone were evaluated because at 7 days postoperatively, no cellular activity can be expected regarding
the OC and OP biomarkers, which are related to the final stage of bone formation.

The immunohistochemical reactions were evaluated by assigning scores based on a
semi-quantitative analysis [31–37]. The scores were assigned as null (0), mild (1), moderate (2),
and intense (3). The increase in score represented an increased region of diaminobenzidine-stained
cells. From 10 to 30% of stained cells were assigned score 1, from 50 to 70% of stained cells score 2,
and from 80 to 100% or more of stained cells score 3. A calibrated evaluator performed the analysis of
the images at two different times, at least 15 days between the analyses. Both accounted cells were
tabulated and subjected to the Kappa test, obtaining an index > 0.9, which indicated concordance.

2.6. Statistical Analysis

The data obtained through a histometric analysis were initially subjected to a homogeneity test to
evaluate the distribution of data in a normal distribution curve (Shapiro–Wilk, p > 0.05). After the
normality of the distribution was confirmed, two-way ANOVA and Tukey’s post hoc tests were used to
compare the means. The level of significance was set at p < 0.05. For data from immunohistochemical
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analyses, the scores were subjected to variance analysis—two-way ANOVA test and Holm–Sisak
post-test, considering the source of variation membranes and periods of analysis.

3. Results

As an exclusion criterion, it was established that any trans or postoperative surgical complication
would exclude the sample from the evaluations. Among the samples, no complications were observed
during the surgical procedure, and all animals went through a normal and healthy postoperative
period, allowing the inclusion of everyone in the work.

3.1. Morphological Evaluation (Microscopic)

The results were evaluated using an optical microscope with a standardized reading of the slides
of the CG, BC, and BG groups.

At day 7 postoperatively, all groups (CG, BG, and BC) showed hypervascularization, and the BC
group exhibited an intense inflammatory infiltrate. On day 15, only the BG group presented osteoid
tissue in the center of the defect, whereas the BC group showed a small inflammatory tissue that
was still maintained. On day 30, the BG group had a large amount of bone tissue interspersed with
fragments of porcine collagen membrane, and for the CG and BC groups, the defect could not be
closed (Figure 3). On day 60, the CG defect was filled with connective tissue, without signs of bone
neoformation, proving to be a critical defect; the BG group showed behavior as expected, promoting
complete closure of the defect without the presence of membrane remnants. The BC group showed
connective tissue, collagen fibers, and inflammatory infiltrate with discrete areas of osteoid tissue at
the center of the defect (Figures 3 and 4A,B).
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Figure 3. Photomicrographs of the least magnified histological sections (×6.3) for the experimental groups (CG: clot group; BG: Bio-Guide®; BC: bacterial cellulose) in
all periods analyzed (postoperative 7, 15, 30, and 60 days) in which we observed the bone repair capacity of each membrane. The Bio-Guide® performed better at
60 days with significant closure of the bone defect. The BC group showed good closure of the defect, but with a high prevalence of poorly differentiated connective
tissue. * represents regions of the bone stumps; + represents the horizontal extension of the bone defect.
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Figure 4. Photomicrographs of the smallest (×6.3) and largest (×25.0) histological sections of the
delimited area (center of the defect) in the BG and BC experimental groups in the longest repair period
(60 days). (A) The BG group; note the presence of bone neoformation from bone stumps and in the
center of the defect (red arrows). (B) The BC group with a large amount of mature connective tissue
and the presence of inflammatory infiltrate (yellow arrows).

3.2. Histometric Analysis

3.2.1. Inflammatory Cells and Membrane

Regarding the behavior of the membrane during the analysis periods, a statistical difference was
noticed between the BC and BG groups (p < 0.05) in inflammatory cells and vessels. The cells noticed
during the analysis were mostly lymphocytes and some monocytes, with a higher incidence in the BC
group in all analysis periods. Concerning the postoperative periods of 7 and 15 days, between the BC
and BG groups, there was a decrease in the number of inflammatory cells (p < 0.001), but an increase
in the number of vessels in the BG group and a reduction in the BC group. When comparing the BG
and BC groups, there was a discrepancy in the number of inflammatory cells at 7 days (p = 0.019) and
no statistical difference at 15 days (p = 0.072). Regarding vessel count, at 7 days, similar values were
observed between the groups (p = 0.163); however, at 15 days, a considerable statistical difference was
observed, suggesting that the inflammatory process was still occurring in the BC group (p < 0.001)
(Figure 5 and Table 1). At 30 and 60 days, it was observed that the membrane was not completely
degraded, suggesting that the inflammatory process was still occurring in all the experimental periods
(Figure 6).

Table 1. Table demonstrating the average and standard deviation for inflammatory cells and vessels
for each group (BG and BC) at postoperative 7 and 15 days. p-values for intergroup comparison.

Membranes
7 15

Cells Vessels Cells Vessels

Collagen 10.22 ± 2.08 * 7.14 ± 1.05 5.20 ± 2.40 9.98 ± 2.22

Bacterial 14.06 ± 3.11 5.46 ± 2.33 8.02 ± 1.25 5.04 ± 1.29

p = 0.019 p = 0.163 p = 0.072 p < 0.001

* Average; (standard deviation)
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(blue stars) between the groups and periods analyzed (×100). Regarding the postoperative periods
of 7 and 15 days, there was a decrease in the number of inflammatory cells (p < 0.001) in the BC
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3.2.2. Newly Formed Bone

After 7 and 15 days of bone repair, there were similar values in the area of bone neoformation when
comparing the groups (Figure 7). After 30 days of bone repair, the group with the collagen membrane
presented the greatest values of newly formed bone in relation to the other groups (p < 0.001). A large
area of bone neoformation was observed in the BC group as opposed to that in the CG group, but the
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difference was not statistically significant (p < 0.05; Figure 7). Regarding the analyzed periods, it was
observed that the BG alone showed better bone repair at 30 days than in the other periods (Figure 7).
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Figure 7. Graph comparing the areas of bone formation between the groups and periods analyzed.
When comparing the type of membrane used, there was a statistical difference only in the 30 and 60-day
periods between the BG × BC and BG × CG groups (Tukey’s test, p < 0.001). A comparison of the
analyzed periods showed a statistical difference only in the BG group between the periods 30 d and
60 d × 15 d and 30 d and 60 d × 7 d (p < 0.001). In short, at 7 days: BG > BC > C; 15 days: BG > C > BC;
30 days: BG > C > BC; 60 days: BG > C > BC (p < 0.05).

3.3. Immunohistochemical Analysis

Osteocalcin

BG: Photomicrographs of the repaired bone on day 15 of bone repair showed mild (1) labeling for
OC, especially in the extracellular matrix region. At 30 and 60 days of bone repair, it was possible to
observe intense marking (3) for the biomarker OC in the region of the bone stump and the center of the
defect (Figure 8).
BC: The photomicrographs obtained at 15, 30, and 60 days of bone repair showed mild marking (1) for
OC (Figure 8).
For semi-quantitative comparison, at 15 days, BG and BC groups showed similar staining areas
(p < 0.05). At 30 and 60 days, BG levels increased significantly in comparison to the BC group (p < 0.05).

Osteopontin

BG: Photomicrographs of the repaired bone at 15 days showed moderate (2) labeling for OP. At 30 days,
light marking (1) was observed for the biomarker. At 60 days, mild (1) presence of this biomarker was
observed again (Figure 9).
BC: Regarding OP, mild (1) immunostaining was observed at 15 days of repair, moderate (2) at 30 days,
and intense labeling (3) at 60 days of repair (Figure 9).
For semi-quantitative comparison, at 15 and 30 days, there was no difference between BG and BC
(p > 0.05), whereas, at 60 days, BC showed greater staining than BG (p < 0.05).
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4. Discussion

This study aimed to evaluate the efficacy of BC membranes (Innovatec’s, São Carlos SP, Brazil),
synthesized through bacterial cellulose, in the repair of 8-mm bone defects generated in the skulls
of adult male rats. Concerning the membrane’s osteopromotive features and neoformation capacity,
the photomicrographs taken after extended periods of bone repair (30 and 60 days) showed no filling
of the bone defect with neoformed bone. In addition to the absence of bone tissue, the predominance
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of fibrous connective tissue throughout the area of the bone defect was noted, even in the later periods.
In the initial periods (7 and 15 days), the microscopic characteristics showed, specifically in the BC
group, extensive inflammatory infiltrate, which delayed bone repair as opposed to the BG group
(Bio-Gide®).

The investigation of bone tissue biology as a function of the BC membrane in this study was
based on tissue engineering, which has shown promising results, mainly with respect to soft-tissue
repairs, such as in the repair of venous ulcers [18,22], traumatic lacerations and abrasions, venous
stasis, skin graft donor sites, lesions due to second-degree burns, and ulcers in diabetic feet. Despite
evidence of good behavior in soft-tissue repair, little is known about the effect of BC on hard tissues.
Therefore, it is necessary to evaluate its efficacy in GBR because it is a natural and biocompatible
material [38]. Some studies [35,39] on this subject have obtained promising results that differed from
the results found in this study.

To evaluate the osteopromotive property, the critical size defect, which does not heal spontaneously,
was chosen because this is the only means by which the biological performance of the biomaterials can
be observed, given that the CG group was not able to close the defect [40]. Based on the principle of
GBR, the presence of a membrane, as a barrier to not allow the invagination of epithelial cells to the
defect area, is essential. Therefore, the membranes used for this purpose must be able to maintain the
volume and be biocompatible.

Porcine collagen membranes are widely used for this purpose, with Bio-Gide® being the most
used. Several clinical [41] and experimental studies [42] have demonstrated the effectiveness of this
membrane as a biological barrier in significant bone defects, whether associated with a biomaterial or
used in isolation.

In the current study, the histometric analysis showed that Bio-Gide® was significantly superior
to the BC membrane in terms of the amount of bone formed (p < 0.001) after 30 days of bone repair.
Histological analysis revealed that despite filling the created bone defect, the BC membrane could not
produce mature bone tissue in which it was possible to observe connective tissue alone, with a discrete
presence of the membrane and bone tissue.

In contrast, Lee et al. [41] compared the effectiveness of the BC membrane and collagen membrane
(GENOSS, Suwon, South Korea) as biological barriers in 8-mm defects in rat skulls. However,
in addition to the membrane, a xenogenous bone graft was used under the defect. The authors
observed that the bacterial cellulose membrane showed behavior very similar to that of the collagen
membrane, where it could stimulate adequate bone neoformation in the created defect and could be
used as a biological barrier.

Although the authors reported good results with the BC membrane, it is important to note that an
associated xenogenous bone graft was used, and the collagen membrane was not Bio-Gide. However,
the results showed the need to carry out further studies on the use of BC membranes in GBR (use
of membrane-covered bone substitutes) since the material has very interesting properties, besides
being phytotherapeutic. In addition, the reparative cellular activity of this group as a function of
immunoblotting for the proteins OP and OC at 60 days was intense and mild, respectively, throughout
the area of immunostaining in the extracellular matrix. These proteins represent the maturation of
bone tissue. In this way, the use of BC membranes showed interesting cellular activity, indicating the
need to evaluate its behavior as a bone substitute in future studies.

The inflammatory activity observed in the histological analysis, which persisted in almost all
periods, may be attributed to the fact that cellulose presents itself as a foreign substance in the human
body since it cannot be digested, which may have led to a delay in its reabsorption, leading to a greater
inflammatory response in the bone tissue (as observed in Figures 5 and 6 and Table 1).

Thus, despite the limitations of this animal study, BC showed interesting properties as a biological
membrane and presented excellent results in the repair of large soft-tissue injuries. It did not
demonstrate acceptable results in critical defects in rat skulls when compared to the collagen membrane
(Bio-Gide®—Geistlich Wolhusen, Switzerland), which proved to be significantly superior in the quality
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and quantity of neoformed bone than the BC membrane. To improve the performance of the BC
membrane, some strategies, like enzyme embedding, to improve the biodegradable characteristic,
protein incorporation, to increase the osteopromotive cell grip, could be used, with the proposition
that the BC membrane could present better results related to new bone formation [43].

5. Conclusions

The results support the conclusion that the membranes we examined had different biological
behaviors in the bone neoformation process. The positive control group (BG group) showed the best
results, as expected. The test group (BC group) showed low biocompatibility, with a large amount of
mature connective tissue in the final stage.

Author Contributions: Conceptualization, A.P.F.B. and F.d.A.L.; Data Curation, A.P.F.B. and L.P.F.; Formal
analyzes, A.P.F.B.; Funding acquisition, A.P.F.B., L.F.d.M.B. and F.d.A.L.; Investigation, A.P.F.B.; Methodology,
A.P.F.B.; Project administration, A.P.F.B.; Resources, A.P.F.B., V.F.B., L.F.d.M.B., J.C.P., H.M.A.-S., G.A.C.M., L.P.F.
and F.d.A.L.; Software, V.F.B., G.A.C.M. and L.P.F.; Supervision, A.P.F.B.; Validation, A.P.F.B.; Visualization, A.P.F.B.
and G.A.C.M.; Writing—original draft, A.P.F.B., L.F.d.M.B. and J.C.P.; writing review editing, A.P.F.B., V.F.B.,
H.M.A.-S. and L.P.F. All authors have read and agreed to the published version of the manuscript.

Funding: This article receives no external funding.

Acknowledgments: The authors would like to thank the Laboratory for the Study of Mineralized Tissues from
the Araçatuba Dental School—UNESP (FAPESP, 2015/23790-2) for the immunohistochemistry analysis.

Conflicts of Interest: The authors have declared that no competing interest exist.

References

1. Seeman, E. Reduced bone formation and increased bone resorption: Rational targets for the treatment of
osteoporosis. Osteoporos. Int. 2003, 14, 2–8. [CrossRef]

2. Ingle, J.N.; Chlebowski, R.T.; Gralow, J.; Yee, G.C.; Janjan, N.A.; Cauley, J.A.; Blumenstein, B.A.; Albain, K.S.;
Lipton, A.; Brown, S. American Society of Clinical Oncology. Update on the role of bisphosphonates and
bone health issues in women with breast cancer. J. Clin. Oncol. 2003, 21, 4042–4057.

3. Wallace, S.S.; Froum, S.J.; Cho, S.C.; Elian, N.; Monteiro, D.; Kim, B.S.; Tarnow, D.P. Sinus augmentation
utilizing anorganic bovine bone (Bio-Oss) with absorbable and nonabsorbable membranes placed over the
lateral window: Histomorphometric and clinical analyses. Int. J. Periodontics Restor. Dent. 2005, 25, 551–559.

4. Sims, N.A.; Dupont, S.; Krust, A.; Clement-Lacroix, P.; Minet, D.; Resche-Rigon, M.; Gaillard-Kelly, M.;
Baron, R. Deletion of estrogen receptors reveals a regulatory role for estrogen receptors-beta in bone
remodeling in females but not in males. Bone 2002, 30, 18–25. [CrossRef]

5. Faria, P.E.; Okamoto, R.; Bonilha-Neto, R.M.; Xavier, S.P.; Santos, A.C.; Salata, L.A. Immunohistochemical,
tomographic and histological study on onlay iliac grafts remodeling. Clin. Oral. Implant. Res. 2008, 19,
393–401. [CrossRef]

6. Alvarez, O.M.; Patel, M.; Booker, J.; Markowitz, L. Effectiveness of a biocellulose wound dressing for the
treatment of chronic venous leg ulcers: Results of a single center randomized study involving 24 patients.
Wounds-A Compend. Clin. Res. Pract. 2004, 16, 224–233.

7. Kowalska-Ludwicka, K.; Cala, J.; Grobelski, B.; Sygut, D.; Jesionek-Kupnicka, D.; Kolodziejczyk, M.;
Bielecki, S.; Pasieka, Z. Modified bacterial cellulose tubes for regeneration of damaged peripheral nerves.
Arch. Med. Sci. 2013, 9, 527–534. [CrossRef]

8. Helenius, G.; Bäckdahl, H.; Bodin, A.; Nannmark, U.; Gatenholm, P.; Risberg, B. In vivo biocompatibility of
bacterial cellulose. J. Biomed. Mater. Res. A 2006, 76, 431–438. [CrossRef]

9. Salata, L.A.; Hatton, P.V.; Devlin, A.J.; Craig, G.T.; Brook, I.M. In vitro and in vivo evaluation of e-PTFE
and alkali-cellulose membranes for guided bone regeneration. Clin. Oral. Implant. Res. 2001, 12, 62–68.
[CrossRef]

10. Huang, Y.; Wang, J.; Yang, F.; Shao, Y.; Zhang, X.; Dai, K. Modification and evaluation of micro-nano
structured porous bacterial cellulose scaffold for bone tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl.
2017, 75, 1034–1041. [CrossRef]

http://dx.doi.org/10.1007/s00198-002-1340-9
http://dx.doi.org/10.1016/S8756-3282(01)00643-3
http://dx.doi.org/10.1111/j.1600-0501.2007.01485.x
http://dx.doi.org/10.5114/aoms.2013.33433
http://dx.doi.org/10.1002/jbm.a.30570
http://dx.doi.org/10.1034/j.1600-0501.2001.012001062.x
http://dx.doi.org/10.1016/j.msec.2017.02.174


Membranes 2020, 10, 230 14 of 15

11. Gruss, J.S.; Antonyshyn, O.; Phillips, J.H. Early definitive bone and soft-tissue reconstruction of major
gunshot wounds of the face. Plast. Reconstr. Surg. 1991, 87, 436–450. [CrossRef] [PubMed]

12. Danieletto-Zanna, C.F.; Bizelli, V.F.; Ramires, G.A.D.A.; Francatti, T.M.; de Carvalho, P.S.P.; Bassi, A.P.F.
Osteopromotion Capacity of Bovine Cortical Membranes in Critical Defects of Rat Calvaria: Histological and
Immunohistochemical Analysis. Int. J. Biomater. 2020, 2020, 6426702. [CrossRef] [PubMed]

13. Blumenthal, N.M. The use of collagen membranes to guide regeneration of new connective tissue attachment
in dogs. J. Periodontol. 1988, 59, 830–836. [CrossRef] [PubMed]

14. Von Arx, T.; Buser, D. Horizontal ridge augmentation using autogenous block grafts and the guided bone
regeneration technique with collagen membranes: A clinical study with 42 patients. Clin. Oral. Implant. Res.
2006, 17, 359–366. [CrossRef]

15. Wang, H.L.; O’Neal, R.B.; Thomas, C.L.; Shyr, Y.; MacNeil, R.L. Evaluation of an absorbable collagen
membrane in treating Class II furcation defects. J. Periodontol. 1994, 65, 1029–1036. [CrossRef]

16. Crigger, M.; Bogle, G.C.; Garrett, S.; Gantes, B.G. Repair following treatment of circumferential periodontal
defects in dogs with collagen and expanded polytetrafluoroethylene barrier membranes. J. Periodontol. 1996,
67, 403–413. [CrossRef]

17. Yukna, C.N.; Yukna, R.A. Multi-center evaluation of bioabsorbable collagen membrane for guided tissue
regeneration in human Class II furcations. J. Periodontol. 1996, 67, 650–657. [CrossRef]

18. De Olyveira, G.M.; dos Santos, M.L.; dos Santos, R.C.; Costa, L.M.M.; Daltro, P.B.; Basmaii, P.; de
Cerquerira, D.G.; Guastaldi, A.C. Physically Modified Bacterial Cellulose Biocomposites for Guided Tissue
Regeneration. Sci. Adv. Mater. 2015, 7, 1657–1664. [CrossRef]

19. Yoshino, A.; Tabuchi, M.; Uo, M.; Tatsumi, H.; Hideshima, K.; Kondo, S.; Sekine, J. Applicability of bacterial
cellulose as an alternative to paper points in endodontic treatment. Acta Biomater. 2013, 9, 6116–6122.
[CrossRef]

20. Koike, T.; Sha, J.; Bai, Y.; Matsuda, Y.; Hideshima, K.; Yamada, T.; Kanno, T. Efficacy of Bacterial Cellulose as a
Carrier of BMP-2 for Bone Regeneration in a Rabbit Frontal Sinus Model. Materials 2019, 12, 2489. [CrossRef]

21. Enemark, H.; Sindet-Pedersen, S.; Bundgaard, M. Long-term results after secondary bone grafting of alveolar
clefts. J. Oral. Maxillofac. Surg. 1987, 45, 913–919. [CrossRef]

22. De Olyveira, G.M.; dos Santos, M.L.; Daltro, P.B.; Basmaji, P.; de Cerqueira Daltro, G.; Guastaldi, A.C.
Bacterial cellulose/chondroitin sulfate for dental materials scaffolds. J. Biomater. Tissue Eng. 2014, 4, 150–154.
[CrossRef]

23. Codreanu, A.; Balta, C.; Herman, H.; Cotoraci, C.; Mihali, C.V.; Zurbau, N.; Zaharia, C.; Rapa, M.; Stanescu, P.;
Radu, I.-C.; et al. Bacterial Cellulose-Modified Polyhydroxyalkanoates Scaffolds Promotes Bone Formation
in Critical Size Calvarial Defects in Mice. Materials 2020, 13, 1433. [CrossRef] [PubMed]

24. De Olyveira, G.G.; Dos Santos Riccardi, C.; Dos Santos, M.L.; Costa, L.M.M.; Daltro, P.B.; Basmaji, P.;
De Cerqueia Daltro, G.; Guastaldi, A.C. Bacterial celulose nanobiocomposites for periodontal disease.
J. Bionanosci. 2014, 8, 319–324. [CrossRef]

25. De Olyveira, G.M.; Filho, L.X.; Basmaji, P.; Costa, L.M.M. Bacterial nanocellulose for medicine regenerative.
J. Nanotechnol. Eng. Med. 2011, 2, 034001. [CrossRef]

26. User, G.; Manzine Costa, L.M.; Molina De Olyveira, G.; Basmaji, P.; Filho, L.X. Delivered by ingenta to:
Bacterial Cellulose Towards Functional Green Composites Materials. J. Bionanoscience 2011, 5, 167–172.

27. Olyveira, G.; Valido, D.P.; Costa, L.M.M.; Gois, P.B.P.; Xavier Filho, L.; Basmaji, P. First Otoliths/Collagen/

Bacterial Cellulose Nanocomposites as a Potential Scaffold for Bone Tissue Regeneration. J. Biomater.
Nanobiotechnol. 2011, 2, 239–243. [CrossRef]

28. Zellin, G.; Linde, A. Effects of different osteopromotive membrane porosities on experimental bone neogenesis
in rats. Biomaterials 1996, 17, 695–702. [CrossRef]

29. Biguetti, C.C.; De Olive, A.H.; Healy, K.; Mahmoud, R.H.; Custódio, I.D.C.; Constantino, D.H.; Ervolino, E.;
Duarte, M.A.H.; Fakhouri, W.D.; Matsumoto, M.A. Medication-related osteonecrosis of the jaws after
tooth extractio in senescent female mice trated with zoledronic acid: Microtomographic, histological and
immunohistochemical characterization. PLoS ONE 2019, 14, e0214173. [CrossRef]

30. Mada, E.Y.; Santos, A.C.C.; Fonseca, A.C.; Biguetti, C.C.; Neves, F.T.A.; Saraiva, P.P.; Matsumoto, M.A. Effects
of green tea and bisphosphonate association on dental socket repair of rats. Arch. Oral. Biol. 2017, 75, 1–7.
[CrossRef]

http://dx.doi.org/10.1097/00006534-199103000-00008
http://www.ncbi.nlm.nih.gov/pubmed/1998014
http://dx.doi.org/10.1155/2020/6426702
http://www.ncbi.nlm.nih.gov/pubmed/32148506
http://dx.doi.org/10.1902/jop.1988.59.12.830
http://www.ncbi.nlm.nih.gov/pubmed/3225730
http://dx.doi.org/10.1111/j.1600-0501.2005.01234.x
http://dx.doi.org/10.1902/jop.1994.65.11.1029
http://dx.doi.org/10.1902/jop.1996.67.4.403
http://dx.doi.org/10.1902/jop.1996.67.7.650
http://dx.doi.org/10.1166/sam.2015.2283
http://dx.doi.org/10.1016/j.actbio.2012.12.022
http://dx.doi.org/10.3390/ma12152489
http://dx.doi.org/10.1016/0278-2391(87)90439-3
http://dx.doi.org/10.1166/jbt.2014.1155
http://dx.doi.org/10.3390/ma13061433
http://www.ncbi.nlm.nih.gov/pubmed/32245214
http://dx.doi.org/10.1166/jbns.2014.1241
http://dx.doi.org/10.1115/1.4004181
http://dx.doi.org/10.4236/jbnb.2011.23030
http://dx.doi.org/10.1016/0142-9612(96)86739-1
http://dx.doi.org/10.1371/journal.pone.0214173
http://dx.doi.org/10.1016/j.archoralbio.2016.12.001


Membranes 2020, 10, 230 15 of 15

31. Maciel, J.; Momesso, G.A.; Ramalho-Ferreira, G.; Consolaro, R.B.; Perri de Carvalho, P.S.; Faverani, L.P.;
Farnezi Bassi, A.P. Bone Healing Evaluation in Critical-Size Defects Treated With Xenogenous Bone Plus
Porcine Collagen. Implantdentistry 2017, 26, 296–302. [CrossRef] [PubMed]

32. Palin, L.P.; Polo, T.O.B.; Batista, F.R.S.; Gomes-Ferreira, P.H.S.; Garcia Junior, I.R.; Rossi, A.C.; Freire, A.;
Faverani, L.P.; Sumida, D.H.; Okamoto, R. Daily melatonin administration improves osseointegration in
pinealectomized rats. J. Appl. Oral. Sci. 2018, 10, e20170470. [CrossRef] [PubMed]

33. Hassumi, J.S.; Mulinari-Santos, G.; Fabris, A.L.D.S.; Jacob, R.G.M.; Gonçalves, A.; Rossi, A.C.; Freire, A.R.;
Faverani, L.P.; Okamoto, R. Alveolar bone healing in rats: Micro-CT, immunohistochemical and molecular
analysis. J. Appl. Oral. Sci. 2018, 18, e20170326. [CrossRef] [PubMed]

34. Yogui, F.C.; Momesso, G.A.C.; Faverani, L.P.; Polo, T.O.B.; Ramalho-Ferreira, G.; Hassumi, J.S.; Rossi, A.C.;
Freire, A.R.; Prado, F.B.; Okamoto, R. A SERM increasing the expression of the osteoblastogenesis and
mineralization-related proteins and improving quality of bone tissue in an experimental model of osteoporosis.
J. Appl. Oral. Sci. 2018, 26, e20170329. [CrossRef] [PubMed]

35. Faverani, L.P.; Polo, T.O.B.; Ramalho-Ferreira, G.; Momesso, G.A.C.; Hassumi, J.S.; Rossi, A.C.; Freire, A.R.;
Prado, F.B.; Luvizuto, E.R.; Gruber, R.; et al. Raloxifene but not alendronate can compensate the impaired
osseointegration in osteoporotic rats. Clin. Oral. Investig. 2018, 22, 255–265. [CrossRef] [PubMed]

36. Luvizuto, E.R.; de Oliveira, J.C.S.; Gomes-Ferreira, P.H.S.; Pereira, C.C.S.; Faverani, L.P.; Antoniali, C.;
Okamoto, R. Immunohistochemical response in rats of beta-tricalcium phosphate (TCP) with or without
BMP-2 in the production of collagen matrix critical defects. Acta Histochem. 2017, 119, 302–308. [CrossRef]

37. Oliveira, D.; Hassumi, J.S.; Gomes-Ferreira, P.H.; Polo, T.O.; Ferreira, G.R.; Faverani, L.P.; Okamoto, R. Short
term sodium alendronate administration improves the peri- implant bone quality in osteoporotic animals.
J. Appl. Oral. Sci. 2017, 25, 42–52. [CrossRef]

38. Ramalho-Ferreira, G.; Faverani, L.P.; Momesso, G.A.C.; Luvizuto, E.R.; de Oliveira Puttini, I.; Okamoto, R.
Effect of antiresorptive drugs in the alveolar bone healing. A histometric and immunohistochemical study in
ovariectomized rats. Clin. Oral. Investig. 2017, 21, 1485–1494. [CrossRef]

39. Oortgiesen, D.P.; Plachokova, A.S.; Geenen, C.; Meijer, G.J.; Walboomers, X.F.; van den Beucken, J.J.;
Jansen, J.A. Alkaline phosphatase immobilization onto Bio-Gide and Bio-Oss for periodontal and bone
regeneration. J. Clin. Periodontol. 2012, 39, 546–555. [CrossRef]

40. Vajgel, A.; Mardas, N.; Farias, B.C.; Petrie, A.; Cimões, R.; Donos, N. A systematic review on the critical size
defect model. Clin. Oral. Implant. Res. 2014, 25, 879–893. [CrossRef]

41. Kozloysky, A.; Aboodi, G.; Moses, O.; Tal, H.; Artzi, Z.; Weinreb, M.; Nemcovsky, C.E. Bio-degradation of a
resorbable collagen membrane (Bio-Gide) applied in a double-layer technique in rats. Clin. Oral. Implant. Res.
2009, 20, 1116–1123. [CrossRef] [PubMed]

42. Lee, S.H.; An, S.J.; Bae, E.B.; Gwon, H.J.; Park, J.S.; Jeong, S.I.; Jeon, Y.C.; Lee, S.H.; Lim, Y.M.; Huh, J.B.
The effect of bacterial celulose membrane compared with collagen membrane on guided bone regeneration.
J. Adv. Prosthodont. 2015, 7, 484–495. [CrossRef] [PubMed]

43. Sheikh, Z.; Qureshi, J.; Alshahrani, M.A.; Nassar, H.; Ikeda, Y.; Glogauer, M.; Ganss, B. Collagen based barrier
Membr. for periodontal guided bone regeneration applications. Odontology 2016, 105, 1–12. [CrossRef]
[PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1097/ID.0000000000000572
http://www.ncbi.nlm.nih.gov/pubmed/28288022
http://dx.doi.org/10.1590/1678-7757-2017-0470
http://www.ncbi.nlm.nih.gov/pubmed/29995145
http://dx.doi.org/10.1590/1678-7757-2017-0326
http://www.ncbi.nlm.nih.gov/pubmed/29898174
http://dx.doi.org/10.1590/1678-7757-2017-0329
http://www.ncbi.nlm.nih.gov/pubmed/29742257
http://dx.doi.org/10.1007/s00784-017-2106-2
http://www.ncbi.nlm.nih.gov/pubmed/28357643
http://dx.doi.org/10.1016/j.acthis.2017.02.006
http://dx.doi.org/10.1590/1678-77572016-0165
http://dx.doi.org/10.1007/s00784-016-1909-x
http://dx.doi.org/10.1111/j.1600-051X.2012.01877.x
http://dx.doi.org/10.1111/clr.12194
http://dx.doi.org/10.1111/j.1600-0501.2009.01740.x
http://www.ncbi.nlm.nih.gov/pubmed/19719734
http://dx.doi.org/10.4047/jap.2015.7.6.484
http://www.ncbi.nlm.nih.gov/pubmed/26816579
http://dx.doi.org/10.1007/s10266-016-0267-0
http://www.ncbi.nlm.nih.gov/pubmed/27613193
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Development of the Bacterial Cellulose Membrane 
	Samples 
	Experimental Surgery 
	Histological/Histometric Analysis 
	Immunohistochemical Analysis 
	Statistical Analysis 

	Results 
	Morphological Evaluation (Microscopic) 
	Histometric Analysis 
	Inflammatory Cells and Membrane 
	Newly Formed Bone 

	Immunohistochemical Analysis 

	Discussion 
	Conclusions 
	References

