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Major traits of shell shape in bivalves may alternatively be described in terms of (i) functionally relevant parameters, assumed to
play a significant role in the adaptation of bivalves molluscs to their environments (such as the shell-outline elongation 𝐸, ventral
convexity𝐾, and dissymmetry𝐷), or (ii) growth-based parameters, directly controlled by the animal. Due to the geometrical linkage
between functionally-relevant and growth-based parameters, adaptive constraints that may either widen or narrow the respective
ranges of variations of the functional parameters lead to the onset of specific covariations (either positive or negative) between the
growth-based parameters.This has practical interest since adaptive constraints are often difficult to identify directly, while they can
be conveniently inferred indirectly via the easily recorded patterns of covariances between growth-based parameters. Hereafter, I
provide the theoretical background of this tool, including (1) establishing the geometrical relationships between growth-based and
functionally relevant parameters and (2) then specifying the correspondences between the different patterns of adaptive constraints,
widening or narrowing the variations of the functional parameters and the corresponding patterns of covariations between the
growth-based parameters. Illustrative examples of the practical use of this tool are provided, considering both interspecific and
intraspecific variations within marine and fresh-water clams.

1. Introduction

The shell shape in bivalves—in particular the elongation 𝐸,
ventral convexity𝐾, and dissymmetry𝐷 of the shell outline—
arguably has significant functional implications regarding
animal fitness (𝐸, 𝐾: [1–21];𝐷: [22]). Accordingly, “function-
ally relevant” parameters describingmajor aspects of the shell
outline such as 𝐸,𝐾, and𝐷 are likely submitted to significant
selective pressures.

At the intraspecific level, selection is expected to more
or less restrict the ranges of individual variations of the
functionally relevant parameters within acceptable limits,
according to both the environmental variability and the
tolerance capacity of individuals.

At the interspecific level, selection may either (i) increase
the range of variations between species, so as to promote the
exploitation of sufficiently separate niches by distinct species

or, conversely, (ii) tend to decrease the range of variations
between species, in spite of niches diversification, in order
to remain in the vicinity of a common adaptive optimum.
For example, in a series of clam’s genera, the interspecific
variability of the ventral convexity 𝐾 of shell contour is
shown to be severely restricted, contrasting with an increased
range of interspecific variations of the shell elongation 𝐸

(Section 5). In short, to maintain at best the animals’ fitness,
the magnitude of the range of variations of each functionally
relevant parameter may be either expanded or reduced,
depending, in particular, upon the environmental context, as
discussed below.

Now, as important as the functionally relevant parameters
𝐸, 𝐾, and 𝐷 may be in bivalves, the animal has no direct
control upon them however; it is only an indirect influence,
via the control of “growth-related” parameters.This is because
the shape of shell outline is not a geometrical figuration
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generated per se, defined at the outset, but it is the cumulative
result of an accretionary growth process [4]. The animal
continuously controls the rate of peripheral accretion of new
material at each location of the shell contour [4, 23]. And it
is through the relationships linking the controlled growth-
related parameters to the resulting functionally relevant
parameters that the shell outline may actually be regulated—
indirectly by the animal.

Thus, understanding how the animal indirectly controls
the functionally relevant parameters of shell shape, such as 𝐸,
𝐾, and 𝐷, requires the prior derivation of the set of geomet-
rically based equations linking growth-related parameters
(𝛼, 𝜌, and 𝛿, defined later on) to the functionally relevant
parameters 𝐸,𝐾, and𝐷.

Due to this geometrical linkage, it will be shown that any
particular pattern of constraints—widening or narrowing the
respective ranges of variation of each functionally relevant
parameters 𝐸, 𝐾, and 𝐷—implies the onset of a correspond-
ing particular pattern of covariations (positive or negative)
between the growth-related parameters 𝛼, 𝜌, and 𝛿 (and vice
versa).

In short, the rational behind this is as follows.

(i) If a given functionally relevant parameter has geo-
metrical dependences of the same sign (either >0
or <0) upon two growth-based parameters, then a
positive covariance between these two growth-based
parameters will tend to widen the range of variations
of the considered functionally relevant parameter (as
compared to what would be this range of variations if
there was no covariance between these two growth-
based parameters) and vice versa. Conversely, a neg-
ative covariance between these two growth-based
parameters will tend to narrow the range of variations
of the considered functionally relevant parameter.

(ii) If a given functionally relevant parameter has geo-
metrical dependences of opposite signs upon two
growth-based parameters, then a positive covariance
between these two growth-based parameters will tend
to narrow the range of variations of the consid-
ered functionally relevant parameter and vice versa.
Conversely, a negative covariance between these two
growth-based parameters will tend towiden the range
of variations of the considered functionally relevant
parameter.

Biunivocal correspondences may thus be established
between (i) the six possible patterns of adaptive constraints,
either widening or narrowing the respective ranges of varia-
tions of the three functional parameters 𝐸, 𝐾, and 𝐷 and (ii)
six corresponding patterns of covariations (either positive or
negative) between the three growth-based parameters 𝛼, 𝜌,
and 𝛿.

In practice, this set of correspondences provides a conve-
nient tool, allowing for inferring indirectly which particular
pattern of adaptive constraints actually affects the respective
magnitudes of variation of the three functional parameters,
on the basis of the pattern of covariances actually recorded
between the three growth-based parameters.

And this is of significant practical interest, since the
occurrence of adaptive constraints applyed to functionally
relevant parameters is often difficult to detect and identify
directly, while the patterns of covariances between growth-
based parameters are far more easily recorded.

Hereafter, the theoretical background of this tool is
described.

(1) The set of biunivocal geometrical relationships be-
tween the growth-based and the functionally rele-
vant parameters describing shell shape in bivalves is
derived at first.

(2) Then, the six patterns of correspondences are settled
(Table 2) between (i) the six different possible pat-
terns of constraints either widening or narrowing the
respective ranges of variations of the three functional
parameters 𝐸, 𝐾, and 𝐷 and (ii) the six related
patterns of covariation (either positive or negative)
between the three growth-based parameters 𝛼, 𝜌, and
𝛿.

Illustrative examples of the practical use of this tool
are provided, including both interspecific and intraspecific
variations within both marine and fresh-water clams.

2. Methods

Two alternative sets of descriptive parameters of the shell
outline (the growth-related parameters 𝛼, 𝜌, and 𝛿 and the
functionally relevant parameters𝐸,𝐾, and𝐷) are defined first
and the corresponding set of equations linking 𝐸, 𝐾, and 𝐷

to 𝛼, 𝜌, and 𝛿 is then derived. The nine partial derivatives
of these equations {𝜕𝐸/𝜕𝛼, 𝜕𝐸/𝜕𝜌, 𝜕𝐸/𝜕𝛿, 𝜕𝐾/𝜕𝛼, 𝜕𝐾/𝜕𝜌,
𝜕𝐾/𝜕𝛿, 𝜕𝐷/𝜕𝛼, 𝜕𝐷/𝜕𝜌, 𝜕𝐷/𝜕𝛿} provide the sign and strength
of the dependences of each parameters 𝐸, 𝐾, and 𝐷 with
respect to all parameters 𝛼, 𝜌, and 𝛿. In turn, this data is
used to disclose the six different patterns of covariances that
will occur between growth-related parameters 𝛼, 𝜌, and 𝛿,
according to the six different possible patterns of constraints
that may either widen or narrow the respective ranges of
variations of the three functional parameters 𝐸,𝐾, and𝐷.

In a growth-based approach of shell shape, the sagittal
outline of shellsmay be appropriately parameterised syntheti-
cally using three indices associated with three “typical growth
vectors” 𝑉, 𝑉, and 𝑉

 (Figure 1), each of them extending
from the valve umbo𝐴.Theumbo (or “apex”) is defined, here,
as the extreme dorsal side near the umbo itself, as quoted by
Galtsoff [24]; see also [11]. Segment 𝐵𝐶 is the valve length
𝐿, and then vectors 𝑉, 𝑉, respectively, join the apex 𝐴 to
the shell outline at the extremities 𝐵, 𝐶 of the segment 𝐵𝐶
and vector 𝑉 joins the apex 𝐴 to the shell outline at point 𝐹
via the middle 𝑂 of segment 𝐵𝐶. Finally, the segment 𝐴𝐺 is
perpendicular to 𝑥𝑥

, the parallel through 𝐹 to 𝐵𝐶.
Three growth-based indices are defined as

(i) the apical angle “𝛼” (angle 𝐵𝐴𝐶);
(ii) the differential growth index “𝜌” identified to the ratio

between axial (dorsoventral) growth andmean lateral
growth, 𝜌 = 𝑉/(1/2)(𝑉


+ 𝑉

);
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Figure 1: Definition of two alternative sets of descriptors of the shell outline. (a)The three growth-based parameters: apical angle 𝛼 (= 𝐵𝐴𝐶);
differential growth index 𝜌 = 𝑉/(1/2)(𝑉


+ 𝑉

); dissymmetric growth index 𝛿 = 𝑉


/𝑉
; (b) the three functionally relevant parameters:

elongation 𝐸, dissymmetry𝐷, and ventral convexity 𝐾.

(iii) the dissymmetric growth index “𝛿” identified to the
ratio of the larger to the smaller lateral growth vectors,
𝛿 = 𝑉


/𝑉
.

These three parameters are geometrically independent
factors, in the sense that no mutual dependence between 𝛼,
𝜌, and 𝛿 is compelled by purely geometric constraint: the
direction and/or module of each vector may, indeed, freely
be changed independently of the two others, in a purely
geometric perspective.

These three parameters thus account schematically for the
growth pattern of valves.

Alternatively, in a functionally relevant approach, the
main traits of the shape of shell outline may be synthetically
characterised by (i) the shell elongation, that is, the ratio of
contour length to contour height, (ii) the valve dissymme-
try, namely, the degree of dissymmetry of the position of
the umbo versus the anterior and posterior extremities of
shell, and (iii) the ventral convexity, that is, the degree of
prominence of the ventral side of the shell outline, opposite to
umbo. Three indices are defined correspondingly (Figure 1):
the “shell elongation” index “𝐸” as the ratio 𝐵𝐶/𝐴𝐺 = 𝐿/(𝑉 ⋅

cos (𝐺𝐴𝐹)), the “shell dissymmetry” index “𝐷” as the ratio
𝐶𝐽/𝐵𝐽, and the “ventral convexity” index “𝐾” as the ratio
𝐽𝐺/𝐴𝐺.

Note that choosing, in both approaches, a limited number
of parameters to describe the shell outline, rather than
implementing more refined approaches, such as Fourier
analysis of shell contour, is deliberate. As the shell outline
in bivalves is generally relatively simple, the main traits of
shell outline may be fairly well captured by even a limited
number of appropriately chosen parameters [25]. Moreover,
a major advantage of limiting the number of parameters
is that the equations linking growth-based and functionally
relevant shape parameters may be derived under an explicitly
analytical form, as suchmore appropriate to readily bring out
and highlight the rational behind the equations.

As for the three growth-based parameters 𝛼, 𝜌, and 𝛿

above, these three functionally relevant parameters 𝐸,𝐷, and
𝐾 are, intrinsically, free from any geometrical constraints

Table 1: The signs of the variations, 𝜕𝐸/𝜕𝛼, 𝜕𝐸/𝜕𝜌, 𝜕𝐸/𝜕𝛿, 𝜕𝐷/𝜕𝛼,
𝜕𝐷/𝜕𝛿, 𝜕𝐾/𝜕𝛼, 𝜕𝐾/𝜕𝜌, and 𝜕𝐾/𝜕𝛿, of the functionally relevant
parameters,𝐸,𝐾, and𝐷, according to variations of the growth-based
parameters 𝛼, 𝜌, and 𝛿 (according to Section 2).

𝜕𝐸 𝜕𝐷 𝜕𝐾

/𝜕𝛼 >0 <0 >0
/𝜕𝜌 <0 =0 >0
/𝜕𝛿 >0 >0 <0

a priori and thus mutually independent. Yet, 𝐸, 𝐷, and 𝐾 are
entirely dependent a posteriori upon 𝛼, 𝜌, and 𝛿, according to
the three geometrically based equations below (see Appendix
for further details and a demonstration):

𝐸 = 𝑓 (𝛼, 𝜌, 𝛿) ,

𝐷 = 𝑔 (𝛼, 𝜌, 𝛿) ,

𝐾 = ℎ (𝛼, 𝜌, 𝛿) .

(1)

As focus is put here on intra- and interspecific variations,
shell measurements were performed when the shells have
reached the stage where their shape becomes substantially
stabilized [26].

3. The Dependence of
Functionally Relevant Parameters upon
Growth-Related Parameters

The way each of the three functionally relevant parameters
𝐸, 𝐷, and 𝐾 depends upon each of the three governing
growth-related parameters 𝛼, 𝜌, and 𝛿 may be quantified
by considering the corresponding partial derivatives 𝜕𝐸/𝜕𝛼,
𝜕𝐸/𝜕𝜌, 𝜕𝐸/𝜕𝛿, 𝜕𝐷/𝜕𝛼, 𝜕𝐷/𝜕𝜌, 𝜕𝐷/𝜕𝛿, 𝜕𝐾/𝜕𝛼, 𝜕𝐾/𝜕𝜌, 𝜕𝐾/𝜕𝛿.
In short (summarised at Table 1).

(i) The shell elongation 𝐸 is (as expected) monotonously
increasing with the apical angle 𝛼 and monotonously
decreasing with the differential-growth index; the
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Table 2: Consequences on themagnitude of variationsΔ𝐸,Δ𝐾, and
Δ𝐷 of the functionally relevant parameters𝐸,𝐾, and𝐷, according to
the type of covariation between growth-related parameters 𝛼, 𝜌, and
𝛿. Arrows pointing upward (resp., downward) stand for widened
(resp., narrowed) ranges of variations; the sign “=” stands for a
nonaffected range of variations [as compared to what would be these
ranges in case of mutual independence between 𝛼, 𝜌, and 𝛿].

Pattern of covariation of
shell-growth parameters Δ𝐸 Δ𝐾 Δ𝐷

Covariance 𝜌 − 𝛿 positive ↓ ↓ =
Covariance 𝜌 − 𝛿 negative ↑ ↑ =
Covariance 𝛼 − 𝜌 positive ↓ ↑ =
Covariance 𝛼 − 𝜌 negative ↑ ↓ =
Covariance 𝛼 − 𝛿 positive ↑ ↓ ↓

Covariance 𝛼 − 𝛿 negative ↓ ↑ ↑

dependence of 𝐸 upon the growth-dissymmetry
index 𝛿 is less intuitive but is also monotonously
positive.

(ii) The shell dissymmetry 𝐷 is strongly increasing with
the growth-dissymmetry index 𝛿, less intuitively
decreasing with the apical angle 𝛼 and strictly inde-
pendent of the differential-growth index 𝜌 and inde-
pendent of the differential-growth index 𝜌.

(iii) The ventral convexity𝐾 of the shell outline is strongly
increasing with both the apical angle 𝛼 and the
differential-growth index 𝜌 andmore weakly decreas-
ing with the growth-dissymmetry index 𝛿.

4. The Patterns of Covariances between
Growth Parameters and the Corresponding
Patterns of Constraints upon the Magnitude
of Variation of Functional Parameters

As mentioned in Section 1, the covariances between growth-
related parameters 𝛼, 𝜌, and 𝛿 are directly influential upon
the respective magnitudes of the ranges of variations of the
functionally relevant parameters 𝐸, 𝐷, and 𝐾, according to
the sign of the dependence of each parameter 𝐸, 𝐷, and
𝐾 upon each parameter 𝛼, 𝜌, and 𝛿 (signs of dependence
provided at Table 1). From a theoretical point of view, six
types of covariance may a priori possibly occur between
couples of parameters among 𝛼, 𝜌, and 𝛿. These types of
covariance are listed at Table 2 with their corresponding
influence upon the magnitudes of variations of 𝐸, 𝐾, and 𝐷,
respectively (as compared to what these ranges would be in
case of mutual independence between 𝛼, 𝜌, and 𝛿).

For example, a positive covariance between 𝜌 and 𝛿 (i)
would correspond to a reduction of the ranges of variations
Δ𝐸, Δ𝐾 of both 𝐸 and𝐾, because both these parameters have
dependences of opposite signs upon 𝜌 and 𝛿 (see Table 1)
and (ii) would not affect the range of variations of 𝐷 since
𝐷 is independent of 𝜌. Similarly, a negative covariance
between 𝛼 and 𝛿 would correspond (i) to increased range of
variations Δ𝐾, Δ𝐷 for both 𝐾 and 𝐷, as the latter both have

dependences of opposite signs upon 𝛼 and 𝛿 (see Table 1) and
(ii) to a reduced range of variations Δ𝐸 of 𝐸, since 𝐸 has
dependences of the same sign upon 𝛼 and 𝛿.

The linkage is thus highlighted between the (presum-
ably selection-induced) patterns of constraints applying to
the respective magnitudes of variation of the different
functionally-relevant parameters of shell shape and the cor-
responding patterns of covariance between the growth-based
parameters, placed under the animal control.

Interestingly, this linkage, between the patterns of vari-
ability of shell shape and specific patterns of covariances
between shell growth parameters, is mirrored in both gas-
tropods [27, 28] and bivalves [29] by a rather similar kind
of linkage between the degree of variability of shell-size
and (once again) a specific type of covariance between shell
growth parameters.

5. The Model Compared to Field Data

As already pointed out (Section 2), the three growth-related
parameters 𝛼, 𝜌, and 𝛿 are, fundamentally, geometrically inde-
pendent factors. Accordingly, the occurrence of covariances
between these parameters is not expected a priori. And if
any covariance, nevertheless, is observed, it should then find
its origin out of pure geometry, in some kind of biological
constraint. In turn, such a biological constraint might have
either (i) a developmental origin, thus applying directly to 𝛼,
𝜌, 𝛿, or (ii), an adaptive origin, directly applying to any of 𝐸,
𝐾, and𝐷 and, consequently affecting only indirectly,𝛼,𝜌, and
𝛿 (through the relationships (1)).

The possible occurrence of covariances between growth-
related parameters 𝛼, 𝜌, and 𝛿was thus investigated in a series
of cases (Béguinot, unpublished results):

(i) at the interspecific level, within the major genera be-
longing to the super-family of marine bivalves Tellini-
dea (Blainville 1814): Tellina Linnaeus 1758, Donax
Linnaeus 1758, Gari Schumacher 1817, Abra Leach in
Lamarck 1818,Macoma Leach 1819;

(ii) at the intraspecific level, within a common marine
species, Donax trunculus and two fresh-water bi-
valves, Unio pictorum (Linnaeus 1758), and Anodonta
cygnea (Linnaeus 1758).

Two distinct types of covariances occur, depending on
whether interspecific variations or intraspecific variations are
considered (Table 3).

Within each of the five genera examined, the interspecific
variations of the apical angle 𝛼 and of the differential-growth
index 𝜌 were systematically negatively correlated, with the
trend being highly significant. No significant covariance was
recorded between 𝛼 and 𝛿 nor between 𝜌 and 𝛿. Now,
for each of the three species examined, the intraspecific
variations of the differential-growth index 𝜌 and of the
growth-dissymmetry index 𝛿 were systematically positively
correlated, with the trend being highly significant. No signif-
icant covariance was recorded between 𝛼 and 𝜌 nor between
𝛼 and 𝛿.
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Figure 2: Statistically significant covariances between growth-based parameters. (a) Interspecific variations within the genus Donax (36
species): a negative covariance between 𝛼 and 𝜌 (𝑟 = −0.74, 𝑃 < 0.0001; no covariance between 𝜌 and 𝛿: 𝑟 = 0.04, 𝑃 > 0.41). (b) Intraspecific
variations within theDonax trunculus (51 individuals): a positive covariance between 𝜌 and 𝛿 (𝑟 = +0.58, 𝑃 < 0.0001; no covariance between
𝛼 and 𝜌: 𝑟 = 0.04, 𝑃 > 0.39).

Table 3: Covariances between growth-related parameters 𝛼, 𝜌, and 𝛿, in (i) inter-specific context (negative covariance 𝛼 − 𝜌 within genus
Tellina, Donax, Gari, Abra, and Macoma) and (ii) intra-specific context (positive covariance 𝜌 − 𝛿 within Donax trunculus, Unio pictorum,
and Anodonta cygnea).

Tellina Donax Gari Abra Macoma Donax tr. Unio pic. Anodont.
Context inter-sp. inter-sp. inter-sp. inter-sp. inter-sp. intra-sp. intra-sp. intra-sp.
Covariance 𝛼 − 𝜌 < 0 𝛼 − 𝜌 < 0 𝛼 − 𝜌 < 0 𝛼 − 𝜌 < 0 𝛼 − 𝜌 < 0 𝜌 − 𝛿 > 0 𝜌 − 𝛿 > 0 𝜌 − 𝛿 > 0

Correl. coeff. −0.91 −0.74 −0.87 −0.94 −0.79 +0.58 +0.71 +0.81
Sample size 𝑛 = 49 𝑛 = 36 𝑛 = 11 𝑛 = 7 𝑛 = 7 51 121 57
Significance 𝑃 < 0.0001 𝑃 < 0.0001 𝑃 < 0.001 𝑃 = 0.002 𝑃 = 0.04 𝑃 < 0.0001 𝑃 < 0.0001 𝑃 < 0.0001

Figures 2(a) and 2(b) illustrate graphically the recorded
covariances between growth-related parameters, for coquina
clams Donax.

6. Discussion

The results above show that, in spite of their geometrical
independence a priori, growth-related parameters 𝛼, 𝜌, and
𝛿 may actually be strongly covariant, in both intra- and
interspecific contexts. These covariances must therefore rely
on some source of biological constraints since a purely
geometrical origin is excluded. Distinguishing between the
two main types of biological constraints that may be consid-
ered here—developmental or adaptive—remains, however,
far from being easy [30]. A few remarks, however, may
provide suggestive clues.

Interestingly, for each of the three cases involving
intraspecific variations (Donax trunculus, Unio pictorum, and
Anodonta cygnea), the recorded type of covariance (covar.
𝜌 − 𝛿 positive) is the only one, among the six, which leads

globally to the narrowest ranges of variations of each of
the functionally relevant descriptors of shell-shape (Table 2)
and this is precisely what could be expected for intraspecific
variations, as mentioned above. Now, for each of the five
cases involving interspecific variations (Tellina, Donax, Gari,
Abra, and Macoma), the recorded type of covariance is
consistently different (covar. 𝛼 − 𝜌 < 0) and favors the
enlargement of the range of variations of the shell elongation
𝐸 (Table 2), therefore promoting, as expected, functional
differentiation between species within the same genus, in
this respect. In short, in both cases, these results actually
make sense according to the same perspective: reducing the
range of variations of a functionally relevant phenotypic
character (the shell elongation 𝐸) at the intraspecific level
and, on the contrary, contributing to enlarging this range at
the interspecific level. The range of variations of the ventral
convexity 𝐾, for its own, constantly remains narrow, at the
intraspecific level and at the interspecific level as well, within
all the six genera investigated. Presumably, some significant
constraint specifically opposes any excessive variation of this
particular trait of shell shape. Some tentative arguments may
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be suggested, regarding the selective advantage that might be
associated with a limited degree of variability of the ventral
convexity, even at the interspecific level. For example, one
may note that the ventral portion of valves is often considered
as the weakest part and, thus, more at risks [3], since the
ventral part of the shell, especially the posteroventral sector,
is ordinarily less thick and thus less resistant than the dorsal
part. Increasing ventral convexity, that is, ventral promi-
nence, would thus enlarge the corresponding weakened zone.
Also, a larger convexity would tend to reduce the sealing
pressure along the ventral margin (at given unchanged posi-
tions of insertion of the adductor muscles) and thus would
make easier the shell opening by predators. Accordingly, a
sufficient level of shell mechanical resistance to various kinds
of environmentally induced stresses might preclude too high
values of ventral convexity. Conversely, a sufficient value of
ventral convexity might well be dictated by the avoidance
of excessively acute profiles of valves contour at the anterior
and posterior extremities (i.e., around 𝐶 and 𝐵, Figure 1)
which would inevitably result from a too weak convexity.
Such acute portions would be at still greater risks and more
prone to suffering local breakage. An optimally centred and
size-limited range of values for the ventral convexity of shell
outline would thus arguably be selected.

Overall, the above remarks seem pretty much in agree-
ment with the hypothesis of adaptive selection as the likely
cause responsible for the constraints governing the respective
magnitudes of variation of the functionally relevant param-
eters 𝐸, 𝐾, 𝐷. According to this hypothesis, the recorded
covariances between growth-related parameters would be the
indirect byproduct of the selective processes directly govern-
ing the respective magnitudes of variations (either intra- or
interspecific) of the functionally relevant parameters.

Yet, many questions remain open to investigation: (i)
is the positive 𝜌 − 𝛿 covariance an exclusive feature of
intraspecific variability? (ii) beyond the evidences reported
here, are covariances between growth-related parameters a
general trait among bivalves? (iii) besides the two recorded
type of covariances (positive covariance 𝜌 − 𝛿 and negative
covariance 𝛼 − 𝜌) does other one(s) among the other four
potential types (Table 2) actually occur in other families of
bivalves? We hope the theoretical framework provided here
may invite further investigations on these issues.

Appendix

The Equations Relating the Valve
Shape Parameters 𝐸, 𝐷, and 𝐾 to the Growth
Parameters 𝛼, 𝜌, and 𝛿

𝐸

=

[(𝛿
2
− 2𝛿 ⋅ cos (𝛼) + 1) ⋅ (4𝛿

2sin2 (𝛼) + ( 𝛿
2
− 1)
2

)]

0.5

(𝜌 ⋅ (𝛿 + 1) ⋅ 𝛿 ⋅ sin (𝛼))

(∗)

𝐷 =

(𝛿
2
− 𝛿 ⋅ cos (𝛼))

(1 − 𝛿 ⋅ cos (𝛼))
(∗∗)

𝐾 = 1 − 𝐸

⋅ {(
𝑋

(𝐸 ⋅ cos (𝜃))
)

2

− 0, 25

∗ [1 + (
𝑋

(𝐸 ⋅ cos (𝜃))
)

2

− (
𝑋

(𝛿 ⋅ 𝐸 ⋅ cos (𝜃))
)

2

]

2

}

0,5

(∗ ∗ ∗)

with 𝑋 = 2𝛿/(𝜌 ⋅ (𝛿 + 1)); cos(𝜃) = 2𝛿 ⋅ sin(𝛼)/(4𝛿2sin2(𝛼) +
(𝛿
2
− 1)
2
)
0.5 and 𝐸 defined above.

NB: for the specific case where shell is (sub-)symmetric
(𝛿 = 1), the three equations are simplified as

𝐸 =
[2 (1 − cos (𝛼))]0.5

𝜌
;

𝐷 = 1;

𝐾 = 1 −
[(1/2) (1 + cos (𝛼))]0.5

𝜌
.

(A.1)

In other words, this system of three equations (∗), (∗∗),
and (∗ ∗ ∗) expresses the tensor relationship linking the two
alternative sets of parameters describing the shell-outline, 𝛼,
𝜌, 𝛿 and 𝐸,𝐷,𝐾.

Demonstration of Equations (∗), (∗∗), and (∗ ∗ ∗). The
following, classical relationships between angles, sides, and
height in triangles are applied here within the triangle 𝐴𝐵𝐶

(see Figure 1):

𝐵𝐶 = 𝐿 = (𝑉
2
+ 𝑉
2

− 2𝑉

𝑉
 cos (𝛼))

0.5

, (A.2)

𝐽𝐶 =

(𝐿
2
+ 𝑉
2
− 𝑉
2
)

(2𝐿)
, (A.3)

𝐴𝐽 = [

[

𝑉
2
− (

(𝐿
2
+ 𝑉
2
− 𝑉
2
)

(2𝐿)
)

2

]

]

0.5

. (A.4)

(i) Valve Elongation.𝐸 = 𝐵𝐶/𝐴𝐺 = 𝐿/𝐴𝐺 = 𝐿/(𝐴𝐹⋅cos(𝜃)) =
𝐿/(𝑉 ⋅ cos(𝜃)), with 𝜃 = angle 𝐺𝐴𝐹.

Accounting for the definitions of 𝜌 = 𝑉/(1/2)(𝑉

+ 𝑉

)

and 𝛿 = 𝑉

/𝑉
, consider the following:

𝑉

=

2𝑉

(𝜌 ⋅ (𝛿 + 1))
. (A.5)

Equation (A.2) yields then

𝐿

𝑉
= (𝛿
2
− 2𝛿 ⋅ cos (𝛼) + 1)

0.5

. (A.6)
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From (A.5) and (A.6),

(
𝐿

𝑉
) =

2 (𝛿
2
− 2𝛿 ⋅ cos (𝛼) + 1)

0.5

(𝜌 ⋅ (𝛿 + 1))
. (A.7)

Now, 𝐽𝑂 = 𝐽𝐶 − 𝐿/2 and from (A.3) and (A.4), consider
the following:

𝑡𝑔 (𝜃) =
𝐽𝑂

𝐴𝐽
=

(𝑉
2
− 𝑉
2
)

(4𝐿2 ⋅ 𝑉2 − (𝐿2 + 𝑉2 − 𝑉2)
2

)
0.5

, (A.8)

and as 𝛿 = 𝑉

/𝑉
,

𝑡𝑔 (𝜃) =

(𝛿
2
− 1)

(4𝛿2 (𝐿/𝑉)
2

− ((𝐿/𝑉)
2

+ 𝛿2 − 1)
2

)

0.5
. (A.9)

Substituting𝐿/𝑉 by its expression in (A.6) yields 𝑡𝑔(𝜃) =
(𝛿
2
− 1)/(2𝛿 ⋅ sin(𝛼)) and then

cos (𝜃) = (
1

(1 + 𝑡𝑔
2
(𝜃))

)

0.5

= 2𝛿 ⋅
sin (𝛼)

(4𝛿2sin2 (𝛼) + (𝛿2 − 1)
2

)
0.5

.

(A.10)

Finally, (A.7) and (A.10) yield, for the elongation 𝐸 =

𝐿/(𝑉 ⋅ cos(𝜃)),

𝐸 =

[(𝛿
2
− 2𝛿 ⋅ cos (𝛼) + 1) ⋅ (4𝛿

2sin2 (𝛼) + (𝛿
2
− 1)
2

)]

0.5

(𝜌. (𝛿 + 1) ⋅ 𝛿 ⋅ sin (𝛼))
.

(A.11)

(ii) Valve Dissymmetry. 𝐷 = 𝐽𝐶/𝐽𝐵 = 𝐽𝐶/(𝐿 − 𝐽𝐶) and,
according to (A.2) and (A.3),𝐷 = (𝛿

2
−1+(𝐿/𝑉


)
2
)/(1−𝛿

2
+

(𝐿/𝑉

)
2
). With (𝐿/𝑉


) defined at equation (A.6), consider

the following:

𝐷 =

(𝛿
2
− 𝛿 ⋅ cos (𝛼))

(1 − 𝛿 ⋅ cos (𝛼))
. (A.12)

(iii) Convexity𝐾 of the Ventral Contour of Valve.The convex-
ity 𝐾 of the ventral contour of valve is defined by the ratio
𝐾 = 𝐽𝐺/𝐴𝐺 = 1 − 𝐴𝐽/𝐴𝐺.

From equation (A.4) and accounting for 𝐸 = 𝐿/𝐴𝐺,
consider the following:

𝐾 = 1 − [

[

𝑉
2
− (

(𝐿
2
+ 𝑉
2
− 𝑉
2
)

(2𝐿)
)

2

]

]

0.5

(
𝐸

𝐿
)

𝐾 = 1 − 𝐸 ⋅

{

{

{

(
𝑉


𝐿
)

2

− 0.25 [1 + (
𝑉


𝐿
)

2

− (
𝑉


𝐿
)

2

]

2

}

}

}

0.5

.

(A.13)

According to equation (A.5), 𝑉/𝐿 = 2/(𝐸 ⋅ 𝜌 ⋅ (𝛿 + 1))

and 𝑉

/𝐿 = 2𝛿/(𝐸 ⋅ 𝜌 ⋅ (𝛿 + 1)).

Substitution of𝑉/𝐿 and𝑉

/𝐿 by their expressions above

yields finally

𝐾 = 1 − 𝐸

⋅ {(
𝑋

(𝐸 ⋅ cos (𝜃))
)

2

− 0.25

× [1 + (
𝑋

(𝐸 ⋅ cos (𝜃))
)

2

− (
𝑋

(𝛿 ⋅ 𝐸 ⋅ cos (𝜃))
)

2

]

2

}

0,5

(A.14)

with 𝑋 = 2𝛿/(𝜌 ⋅ (𝛿 + 1)); cos(𝜃) = 2𝛿 ⋅ sin(𝛼)/
(4𝛿
2sin2(𝛼) + (𝛿

2
− 1)
2

)

0.5

according to (A.10) and 𝐸 defined
by (A.11).
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