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New neurons are generated in the hippocampal dentate gyrus from early development
through adulthood. Progenitor cells and immature granule cells in the subgranular
zone are responsive to changes in their environment; and indeed, a large body of
research indicates that neuronal interactions and the dentate gyrus milieu regulates
granule cell proliferation, maturation, and integration. Following traumatic brain injury
(TBI), these interactions are dramatically altered. In addition to cell losses from
injury and neurotransmitter dysfunction, patients often show electroencephalographic
evidence of cortical spreading depolarizations and seizure activity after TBI. Furthermore,
treatment for TBI often involves interventions that alter hippocampal function such
as sedative medications, neuromodulating agents, and anti-epileptic drugs. Here, we
review hippocampal changes after TBI and how they impact the coordinated process
of granule cell adult neurogenesis. We also discuss clinical TBI treatments that have the
potential to alter neurogenesis. A thorough understanding of the impact that TBI has on
neurogenesis will ultimately be needed to begin to design novel therapeutics to promote
recovery.

Keywords: epilepsy, traumatic brain injury, anesthetic neurotoxicity, spreading depolarization (SD), dentate gyrus,
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INTRODUCTION

Adult neurogenesis in the hippocampal dentate gyrus is widespread in mammals. Generation of
dentate granule cells occurs late in embryonic development, continues after birth, and persists into
old age in most mammals examined (Amrein et al., 2011; Amrein, 2015; Ngwenya et al., 2015).
Studies in rodents indicate that adult generated granule cells play a role in hippocampal dependent
learning (Nakashiba et al., 2012; Danielson et al., 2016; Johnston et al., 2016). Whether neurogenesis
continues into old age in humans remains controversial (Danzer, 2018a), with studies finding
evidence for (Eriksson et al., 1998; Spalding et al., 2013; Boldrini et al., 2018) and against ongoing
neurogenesis (Sorrells et al., 2018). Yet there is general agreement that dentate neurogenesis occurs
in childhood and continues throughout young adulthood in humans, and that newly-generated
neurons are poised to contribute to hippocampal function. At a minimum, therefore, traumatic
brain injuries (TBIs) occurring during adolescence have the potential to disrupt this important
process.
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The generation, maturation, and integration of new neurons is
critical for hippocampal function. This tightly regulated process,
however, is easily disrupted by pathological events, such as
TBI. In this review, we discuss the coordinated process of
adult neurogenesis in the hippocampal subgranular zone (SGZ)
and the impact that TBI and TBI treatments have on this
process. An understanding of the regulation and dysregulation
of neurogenesis is important for determining whether and how
therapeutic interventions targeted at adult neurogenesis are
useful for TBI treatment.

NEUROGENESIS IS A COMPLEX,
TIGHTLY-REGULATED PROCESS

Adult neurogenesis is characterized by multiple “control” points.
The number of daughter cells produced by neural stem cells
(NSC) located in the SGZ of the dentate gyrus can be modulated
by the rate of cell proliferation and survival, while factors
regulating fate specification control whether and how the new
cells become neurons and integrate into the hippocampal
circuitry (see recent review by Song et al., 2016). These control
points can be regulated by signals released into the extracellular
milieu by both neuronal and non-neuronal cells (Alenina
and Klempin, 2015; Egeland et al., 2015), neurotrophic and
transcription factors (Faigle and Song, 2013; Goncalves et al.,
2016), neuroinflammatory mediators (Belarbi and Rosi, 2013),
metabolic and hormonal changes (Cavallucci et al., 2016; Larson,
2018), and direct synaptic input from both glutamatergic and
GABAergic neurons (Chancey et al., 2014; Alvarez et al., 2016;
Song et al., 2016; Yeh et al., 2018). For additional information,
the readers are referred to the excellent reviews cited for each
mechanism, and the schematic in Figure 1. Critically, all of these
factors can be disrupted by TBI, creating an environment in
which immature granule cells and granule cell progenitors no
longer receive the proper cues to guide their development.

NEUROGENESIS IS DISRUPTED AFTER
TRAUMATIC BRAIN INJURY

Traumatic brain injury is particularly disruptive to the
hippocampus due to its disparate pathomechanisms. Clinically,
TBIs are classified as mild, moderate, or severe, however, the
impact of TBI can include a variety of pathologies that are not
sufficiently explained by clinical severity (Saatman et al., 2008).
TBI can result from direct impacts or inertial forces. Pathologies
include focal hemorrhage and contusions, diffuse pathology such
as shear injury, and the myriad of pathoanatomic components
seen in blast injury (Rosenfeld et al., 2013). Most human TBI
involves a combination of forces and pathologies, and a variety
of experimental TBI models exist to mimic these pathologies
(Xiong et al., 2013). While not all TBIs directly involve the
hippocampus, the structure nonetheless often exhibits signs of
injury. For example, in the controlled cortical impact (CCI)
model, which produces a focal cortical injury, cell death is
apparent in the hippocampal dentate gyrus (Anderson et al.,

2005). The contralateral hippocampus, remote from the injury
site, can also show hippocampal injury and increased excitability
after lateral fluid percussion injury (LFPI) (Tran et al., 2006).
Involvement of the hippocampus raises the possibility that adult
neurogenesis will be impacted.

Granule cell proliferation, survival, differentiation and
maturation are impacted by TBI. Cells in the SGZ and inner
granule cell layer undergo acute cell death after experimental CCI
(Gao et al., 2008). In addition, however, TBI can also increase cell
proliferation and neurogenesis (Dash et al., 2001; Chirumamilla
et al., 2002; Urrea et al., 2007; Gao et al., 2009). Variable impacts
on neurogenesis may reflect differences in injury severity (Wang
et al., 2016). Notably, while there is speculation that increased
neurogenesis may be beneficial (Rolfe and Sun, 2015), studies
indicate that dentate gyrus neural progenitor cells are only
capable of undergoing a finite number of replicative cycles
before they terminally differentiate and become post-mitotic,
ultimately depleting the regenerative pool (Encinas and Sierra,
2012; Neuberger et al., 2017).

Beneficial and pathological effects are also evident among
the newly-integrated granule cells themselves. Inhibiting
neurogenesis after CCI in mice (Blaiss et al., 2011) or after LFPI
in rats (Sun et al., 2015) impairs spatial learning and cognitive
recovery, suggesting that the new cells have positive effects.
Consistent with this interpretation, treatment with growth
differentiation factor 5 after CCI in mice was associated with
increased neurogenesis and improved recovery (Wu et al.,
2018). Similarly, optogenetic depolarization of immature granule
cells and granule cell progenitors after LFPI in mice enhanced
cell survival and maturation, while simultaneously improving
cognitive measures (Zhao et al., 2018). However, while the axons
of granule cells generated after LFPI follow the normal trajectory
into the CA3 pyramidal cell layer (Emery et al., 2005; Sun et al.,
2007), the cells can also exhibit morphological and physiological
abnormalities. Following CCI, for example, newborn cells in mice
exhibit abnormal dendritic branching (Villasana et al., 2015).
Similarly, newborn granule cells in the LFPI model developed
aberrant, hilar-projecting basal dendrites (Robinson et al., 2016).
These newborn neurons also become ectopically localized to the
dentate hilus (Robinson et al., 2016; Shapiro, 2017) or migrate
too far into the granule cell layer (Ibrahim et al., 2016; Ngwenya
et al., 2018). In line with the interpretation that neurogenesis can
be pathological, treatment with a VEGFR2 antagonist after LFPI
in rats suppressed injury-induced neurogenesis and prevented
increases in seizure susceptibility (Neuberger et al., 2017),
while treatment with the mTOR antagonist rapamycin after
CCI in mice reduced neurogenesis, attenuated morphological
abnormalities, and reduced seizure incidence (Butler et al., 2015).
Hence, neurogenesis after TBI may produce a complex set of
beneficial and pathological changes.

INFLUENCE OF ABNORMAL
ELECTRICAL ACTIVITY AFTER TBI

It has recently been shown that part of the pathophysiology
after TBI is the occurrence of spreading depolarizations (SD).
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FIGURE 1 | Generation and integration of adult-born granule cells is a coordinated process that is impacted by TBI. At each stage of adult neurogenesis, the normal
process (blue) has potential to be altered by TBI (orange). (1) Quiescent radial neural stem cells (NSCs) in the subgranular zone (SGZ) can be depleted by frequent
activation early in life, such as by TBI-induced seizures, leading to deficiencies with age. (2) TBI and its effects, including spreading depolarizations and seizures,
cause an increase in proliferation of progenitor cells. (3) Newly-generated neurons migrate from the SGZ to the granule cell layer (GCL), and after TBI abnormal hilar
migration is apparent. (4) Parvalbumin interneurons and (5) mossy hilar neurons are susceptible to cell death after TBI. Reduction in their numbers results in
decreased GABAergic and glutamatergic (respectively) input to the newly-generated neurons. Newly-generated neurons show additional signs of aberrant
neurogenesis such as abnormal connectivity (6), hyperexcitability (7) and inappropriate integration and dendritic maturity (8) which can be caused by changes in the
environmental milieu.

SDs are characterized by a massive wave of neuronal and glial
depolarization that travels at 2–5 mm/min and is followed
by electrical silence as neurons become temporarily refractory
(Hartings et al., 2017). In patients with TBI, SDs are a predictor
of mortality (Hartings et al., 2011) and are often the last electrical
signal present in the brain just prior to death (Dreier et al.,
2018). Their occurrence in migraine, however, suggests that the
waves themselves can be relatively benign (Dreier et al., 2015).
Studies have shown that this abnormal electrical activity causes
an increase in neurogenesis (Urbach et al., 2008, 2016), the effects
of which are currently unknown.

Acute seizures often occur immediately after TBI as a
direct result of the traumatic force, and seizures are known
to disrupt neurogenesis. Indeed, even a single, isolated seizure
in a healthy animal is sufficient to increase granule cell
neurogenesis (Bengzon et al., 1997). Seizures also disrupt granule
cell integration, causing synaptic alterations (Jackson et al.,
2012), abnormalities in dendritic structure (Murphy et al., 2012),
migration defects and aberrant circuit formation (Scharfman
et al., 2003; Parent et al., 2006; Jessberger et al., 2007b; Danzer,
2018b). In epileptic animals, seizure frequency is positively
correlated with the frequency of abnormal, newborn granule
cells (Hester and Danzer, 2013), suggesting that the number of
seizures that occur following TBI is likely an important predictor
of the degree of granule cell disruption.

TBI INDUCED CHANGES TO DENTATE
GYRUS CIRCUITRY

In addition to seizure-induced cell death, direct effects of TBI
and its immediate sequela can also cause death of key cellular
components (Kharatishvili et al., 2006). Massive extracellular
increases in glutamate follow TBI (McGuire et al., 2018), for

example, and can cause excitotoxic injury. A wide variety
of neurons are vulnerable. Dentate hilar neuron loss has
been demonstrated after LFPI (Lowenstein et al., 1992; Grady
et al., 2003) and includes parvalbumin positive, cholecystokinin
positive, and GluR2/3 positive cells (Toth et al., 1997). Decreased
parvalbumin immunoreactivity, for example, has been observed
in the dentate following LFPI in rats (Huusko et al., 2015;
Zhang et al., 2018) while time-dependent, interneuron-subtype
specific changes have been described following diffuse TBI
in rats (Carron et al., 2018). An observed reduction in
spontaneous inhibitory post-synaptic current (sIPSC) frequency
among mature granule cells months after LFPI suggests these
changes have functional consequences (Pavlov et al., 2011),
although impacts are temporally complex, as increases in
sIPSC frequency have also been observed in granule cells
after acute LFPI (Toth et al., 1997; Santhakumar et al.,
2001; Gupta et al., 2012). Importantly, parvalbumin positive
interneurons play key roles in regulating neurogenesis (Song
et al., 2012, 2013) and their loss is likely to disrupt the
process.

Glutamatergic mossy cells located in the dentate hilus are
also extremely vulnerable to injury, including following TBI and
seizures (Toth et al., 1997; Kienzler et al., 2009; Scharfman,
2016). Moreover, in the LFPI model, mossy cells that survive
the insult are hyperexcitable (Santhakumar et al., 2000). Mossy
cells directly excite granule cells, and are the first glutamatergic
input to adult-generated granule cells (Chancey et al., 2014).
The role of mossy cells is complex, however, as the neurons
also indirectly inhibit granule cells by activating inhibitory
interneurons which innervate granule cells (Scharfman, 2016).
Both the direct glutamatergic and indirect GABAergic pathways
have been shown to play a critical role in regulating granule
cell neurogenesis (Yeh et al., 2018), so mossy cell loss and
hyperexcitability following TBI will impact neurogenesis.
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In addition to changes in local circuit neurons, TBI-induced
changes in granule cell neurogenesis itself may exert effects
on subsequent rounds of neurogenesis. Adult-generated granule
cells transition through a distinct critical period during which
they provide robust excitatory input to CA3 pyramidal cells, but
only modest input to local circuit neurons mediating feedback
inhibition (Temprana et al., 2015). As the cells mature, they
integrate into and robustly activate inhibitory circuits within
the dentate (Drew et al., 2016). The size of the newborn
granule cell population at a distinct time point, therefore, may
alter the development and integration of both more mature
and less mature cohorts of granule cells. Taken together,
therefore, newborn granule cell integration following TBI may
reflect a complex interplay among disrupted circuits caused by
interneuron loss, mossy cell loss and the size of previously-
generated granule cell populations.

THE EFFECT OF TBI INTERVENTIONS

Clinical TBI interventions include a range of medically necessary
and lifesaving measures, including surgery, anesthesia and
treatment with neuroactive drugs to enhance care and recovery.
Given the exquisite sensitivity of granule cell progenitors
and immature granule cells to changes in the surrounding
environment, these medications have the potential to exert both
positive and negative effects on neurogenesis.

Anesthetic agents are a necessary part of clinical TBI
treatment, yet they can have deleterious effects on NSCs and
immature neurons. Studies in animal models demonstrate that
clinically relevant doses of isoflurane induce neuronal apoptosis
among newly-generated granule cells, with vulnerability peaking
when the cells are about 2 weeks old (Hofacer et al., 2013; Jiang
et al., 2016). This roughly corresponds to the period during which
many newborn cells undergo natural apoptosis, suggesting that
the anesthetic may artificially enhance the process (Deng et al.,
2014; Lin et al., 2017).

Propofol, one of the most commonly used intravenous
anesthetics in adult patients in both the operating room
and the intensive care unit, has deleterious effects on adult
neurogenesis. In the early postnatal period in rodents, propofol
decreases the total number of granule cells and promotes
dendritic spine loss (Huang J. et al., 2016). In adult animals,
propofol impairs the maturation and differentiation of adult-
born granule cells (Krzisch et al., 2013). After CCI, propofol
attenuates the post-traumatic increase in adult neurogenesis and
may contribute to cognitive impairment (Thal et al., 2014),
although whether reduced neurogenesis and impaired cognition
are mechanistically related in this model is not known.

Ketamine is a dissociative anesthetic whose impact on
neuronal function is unresolved, yet has seen a recent resurgence
in clinical use after TBI (Chang et al., 2013; Oddo et al.,
2016). As an NMDA receptor antagonist, ketamine has been
associated with both neurotoxic (Slikker et al., 2007; Yan and
Jiang, 2014; Wang et al., 2017) and neuroprotective (Yan and
Jiang, 2014; Bell, 2017) effects. The effect of ketamine on
hippocampal neurogenesis is similarly mixed with evidence that

ketamine interferes with proliferation of NSCs, but enhances
neuronal differentiation (Huang H. et al., 2016; Soumier et al.,
2016). The disparate effects appear dependent on timing and
length of drug administration. After CCI, ketamine increased
cell proliferation in the SGZ, decreased the number of newborn
neurons, and ameliorated post-CCI cognitive deficits (Peters
et al., 2018) suggesting that despite neurotoxic concerns, there
may be beneficial effects. Indeed, ketamine is being evaluated as
a promising therapy to halt SDs after TBI (Carlson et al., 2018;
Hartings et al., 2018). As with propofol, the causal relationship
between reduced neurogenesis and altered recovery has not been
established. Moreover, the observation that propofol reduces
neurogenesis and impairs cognition – while ketamine reduces
neurogenesis and improves cognition – indicates that these
associations should be interpreted cautiously.

Due to the occurrence of seizures following TBI, a variety of
anti-epileptic drugs have been tried as potential therapies. Anti-
epileptic drugs, however, often act by similar mechanisms as
anesthetics, and can also induce apoptosis (Forcelli et al., 2011,
2012) and behavioral deficits (Gutherz et al., 2014) in young
rodents. However, not all anti-epileptics have deleterious effects.
Typical anti-epileptics phenobarbital and phenytoin have high
side-effect profiles and are known to be pro-apoptotic (Bittigau
et al., 2002), yet levetiracetam, a newer anti-epileptic medication
that is being used with increased frequency in TBI patients
(Jones et al., 2008; Szaflarski et al., 2010), may exert its effects
by suppressing aberrant neurogenesis. For example, Sugaya et al.
(2010) demonstrate in an animal model of status epilepticus that
levetiracetam decreases the percentage of abnormally migrated
hilar neurons. Levetiracetam has been shown to exert its effects
on cell proliferation and neuronal differentiation by activation
of the PI3/Akt pathway (Yan et al., 2018). Valproic acid,
another commonly used anti-epileptic, also inhibits aberrant
neurogenesis and induces neuronal differentiation. However, the
mechanism of valproic acid may be through a PI3/Akt mediated
epigenetic modification (Jessberger et al., 2007a; Zhang et al.,
2017). This suggests that beyond suppression of seizures there
may be a beneficial effect of certain anti-epileptic medications for
patients with TBI.

Depression is a common post-TBI disturbance that is often
treated with neuroactive medication. Post-TBI depression is
generally managed with selective serotonin reuptake inhibitors
(SSRIs), despite only minimal evidence of their efficacy in
TBI (Yue et al., 2017; Kreitzer et al., 2018). It is suggested
that there may be a causative relationship between depression
and dysfunctional adult neurogenesis, with antidepressant
medications exhibiting their effects via increases in neurogenesis
(Santarelli et al., 2003; Eisch and Petrik, 2012; Yun et al.,
2016). Chronic administration of the antidepressant medication
fluoxetine increases NSC proliferation in the hippocampus
(Malberg et al., 2000), however sertraline, another commonly
used SSRI, appears to affect neuronal differentiation rather than
proliferation (Peng et al., 2012). Antidepressant medications
have also been shown to influence hippocampal neuronal
plasticity by modulating dendritic spines (McAvoy et al., 2015),
neurotrophic receptors (Rantamaki et al., 2007), and signaling
cascades (Pilar-Cuellar et al., 2013) – all of which could impact
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neurogenesis. Finally, experimental TBI studies have shown
increases in neurogenesis after administration of antidepressants,
with varying effects on cognitive recovery (Han et al., 2011;
Wang et al., 2011). These results suggest that the effects of
antidepressants may extend beyond the treatment of depression.
However, the timing of administration relative to the injury, the
maturational state of adult-born granule cells potentially affected
by the treatment, and whether the new cells are exerting net
beneficial or pathological effects may all be important variables.
Currently, there is insufficient data to determine when during
the temporal sequence of events an intervention such as an SSRI
might be most beneficial.

CONCLUSION

Adult granule cell neurogenesis is exquisitely regulated by
synaptic and extrasynaptic factors that can be directly impacted
by TBI and TBI treatments. The process of neurogenesis includes
proliferation, survival, maturation and functional integration.
Just as each step of the process is regulated by ongoing
activity in the neurogenic niche, changes in neurotransmission,
electrical activity, and death of supporting cells can disrupt this
process (Figure 1). The initial injury disrupts transmitter levels,
and produces drastic changes in neuronal activity, including
spreading depolarizations and seizures. The injury can also
impair the function or induce the outright death of critical
neuron populations providing input to new granule cells.
Furthermore, exposure to anesthetic agents and other medically
essential drugs alters the signals received by immature granule
cells, and may have untoward effects on their survival or
development. As it is becoming increasingly recognized that
adult neurogenesis is an important component of TBI and
cognitive recovery, disruption of this process has significant
implications. Nonetheless, there does not appear to be a simple

relationship between increased or decreased neurogenesis and
improved or impaired recovery. Critical factors likely include
the nature of the injury, the agent that alters neurogenesis, the
timing of intervention, the sequence of the neurogenic process
that is altered (e.g., proliferation vs. survival) and whether
the new cells integrate into the hippocampal circuit in ways
that are beneficial (improved cognition) or pathological (pro-
epileptogenic). Despite these challenges, studies strongly suggest
that neurogenesis is playing an important role in TBI, and
therefore an understanding of how TBI and its interventions
disrupt neurogenesis will be critical to guide the development of
novel therapeutic approaches.
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