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Hallmarks of cancer: comparing apples and 
oranges 
 
As depicted by Hanahan and Weinberg in 2000 [1], the 
circle schema of six hallmarks of cancer somewhat 
compares apples and oranges https://els-jbs-prod-
cdn.jbs.elsevierhealth.com/cms/attachment/428dbc2e-
657c-429d-98f4-9910c7df1678/gr1_lrg.jpg. 
 
The hallmarks themselves are exact, but they are not 
equal. For example, limitless replicative potential (cell 
immortality) cannot be directly compared to sustained 
angiogenesis. Cell immortality is revealed outside the 
host (extra-organismal level), for example, in cell 
culture where clonal cell lines can proliferate 
indefinitely without interaction with normal tissues. In 
contrast, sustained angiogenesis requires interaction of 
cancer cells with normal cells of several tissues. 

Angiogenesis can be only understood on the tissue 
level. 
 
Second, cancer cells undergo Darwinian-type selection 
[2] for resistance to anti-growth signals, resistance to 
apoptosis and self-sufficiency in mitogenic signals. This 
trio represents three out of six hallmarks of cancer [1]. 
They can be combined in one super-hallmark: resistance 
to growth-limiting conditions [3]. (Note: The definition 
of oncogenic resistance to growth-limiting conditions 
was discussed previously [4]). Not only resistance to 
apoptosis and anti-growth signals but also self-
sufficiency in mitogenic signals render cells resistant to 
growth-limiting conditions. Examples of growth-
limiting conditions include lack of external mitogenic 
signals, cytostatic cytokines such as TGF-beta, 
cytotoxic carcinogens such as tobacco smoke, anti-
cancer drugs, contact inhibition, glucose deprivation, 
cellular senescence, hypoxia, absence of nutrients and 
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ABSTRACT 
 
A thought-provoking article by Gems and de Magalhães suggests that canonic hallmarks of aging are superficial 
imitations of hallmarks of cancer. I took their work a step further and proposed hallmarks of aging based on a 
hierarchical principle and the hyperfunction theory. 
To do this, I first reexamine the hallmarks of cancer proposed by Hanahan and Weinberg in 2000. Although six 
hallmarks of cancer are genuine, they are not hierarchically arranged, i.e., molecular, intra-cellular, cellular, 
tissue, organismal and extra-organismal. (For example, invasion and angiogenesis are manifestations of 
molecular alterations on the tissue level; metastasis on the organismal level, whereas cell immortality is 
observed outside the host). 
The same hierarchical approach is applicable to aging. Unlike cancer, however, aging is not a molecular disease. 
The lowest level of its origin is normal intracellular signaling pathways such as mTOR that drive developmental 
growth and, later in life, become hyperfunctional, causing age-related diseases, whose sum is aging. The key 
hallmark of organismal aging, from worms to humans, are age-related diseases. In addition, hallmarks of aging 
can be arranged as a timeline, wherein initial hyperfunction is followed by dysfunction, organ damage and 
functional decline. 
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growth factors [5, 6]. For example, glucose deprivation 
selects for oncogenic Ras [6]. 
 
Whereas normal cells do not proliferate in growth-
limiting conditions, cancer cells do. Resistance to 
growth-limiting conditions provides an immediate 
selective advantage. But what immediate advantages 
can be provided by cellular immortality? The cell 
cannot tell the future, that it will live in cell culture one 
day. Cellular immortality is selected indirectly as 
derived hallmarks [3], because the same mutations that 
provide resistance to growth-limiting conditions also 
make cells immortal, angiogenic, invasive and 
metastatic [1, 7, 8]. Cellular immortality, angiogenesis, 
invasion and metastasis are derived hallmarks. 
 
Third, molecular alterations (e.g., DNA mutations) are 
absent in the six-hallmark circle by Hanahan and 
Weinberg [1]. As discussed by Gems and de Magalhães, 
the hallmarks do not include mutations (or genetic 
instability) because this hallmark is implicitly taken for 
granted [9]. In fact, Hanahan and Weinberg called it an 
enabling hallmark in their revised paper published in 
2011 [7]. 
 
In 2005, I explicitly included the molecular hallmark 
(mutations) and suggested the hierarchical principle to 
arrange these hallmarks from molecular to organismal 
levels [5]. 

Hierarchical model of hallmarks of cancer: 
arranging the oranges 
 
Here I present the hallmarks of cancer, depicted as a 
circle by Hanahan and Weinberg [1], not as the circle 
but hierarchically, from molecular levels to the 
organism (Figure 1). 
 
Molecular level: Somatically inheritable molecular 
alterations. 
 
Genome instability is an enabling hallmark of cancer 
because it enables the acquisition of molecular 
alterations, such as DNA mutations, aneuploidy and 
epigenetic alterations [7]. Vogelstein et al. suggested 
that a typical human tumor contains relatively few 
driver gene mutations that each confers a growth 
advantage of 0.4% and numerous passenger gene 
mutations that confer no selective advantage [8, 10]. 
 
Intracellular signaling pathways: Oncogenic 
translation of ambivalent signaling 
 
Signal-transduction pathways are ambivalent, causing 
opposite outcomes depending on cellular context. 
Oncogenic mutations re-wire signal transduction 
pathways. For example, MAPK pathways can 
simultaneously induce cyclin D1 and CDK inhibitors, 
leading either to cellular proliferation or senescence 

 

 
 
 
Figure 1. Hierarchical representation (from molecular to organismal levels) of the original hallmarks of cancer based on 
Hanahan and Weinberg. See text for explanation. 
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[11]. Inactivation of CDK inhibitors such as p16 may 
translate this ambivalent signaling into proliferation [3, 
12]. TGF-beta inhibits normal cell proliferation, but in 
cancer it can induce proliferation and invasion [7, 13]. 
 
Growth-promoting and mitogen/nutrient-sensing 
signaling pathways are constantly activated by 
mutations to promote growth and proliferation as well 
as self-sufficiency in mitogen signaling. This, in turn, is 
manifested as three hallmarks of cancer on the next 
hierarchical level: cellular. This trio can be combined as 
one super-hallmark of resistance to growth-limiting 
conditions. 
 
Cellular level: Resistance to growth-limiting 
conditions 
 
Oncogenic mutations make cancer cells resistant to 
growth-limiting conditions (a definition of oncogenic-
type of resistance was discussed previously [4]). This is 
the driver hallmark of cancer because it provides a 
selective advantage to cancer cells. Cells, capable of 
proliferation, are unicellular organisms in a Darwinian 
sense [2, 14, 15]. Selection can be “natural” (during 
carcinogenesis) and “artificial” (during cancer therapy) 
[14, 16]. For example, selection for therapy resistance 
increases oncogenic properties of cancer cells because 
many mutations in oncogenes and tumor suppressors 
that render cells drug-resistant also make them more 
oncogenic [5, 17–19]. Simultaneously, the same 
combination of mutations enables metastasis and other 
higher-level hallmarks. There is no direct selection for 
metastatic potential, angiogenesis and immortality. 
They are derived hallmarks. 
 
Tissue level: Invasion and angiogenesis 
 
Cancer cells produce cytokines and enzymes, which 
enable the cells to invade and to attract normal cells of 
different tissues in order to sustain angiogenesis [7]. 
 
Organismal level: Metastasis 
 
Metastasis is the deadliest hallmark of cancer. Yet, there 
is no direct selection for metastatic potential. Direct 
selection for metastatic potential could take place only 
if metastases produced new metastases; in other words, 
if metastases reproduce. Simply, selection for cells 
resistant to growth-limiting conditions (survival and 
proliferation) brings about mutations that confer not 
only resistance, but also metastatic potential. There are 
no specific “metastasis” genes [8, 20]. They are the 
same oncogenes and tumor suppressors that act on 
cellular levels for the “trio” hallmark. Let us consider an 
analogy. If we select people for their ability to run 
faster, these selected people will also jump higher than 

average, although selection was not for jumping ability. 
The fastest runners are the farthest jumpers. 
 
Extra-organismal level: Cellular immortality 
 
Some cancer cell lines live for more than half of a 
century in cell culture and for thousands of years in the 
wild. Originating in one animal, viable cancer cells are 
directly transmitted into unrelated hosts in a process 
similar to metastasis [21, 22]. Transmissible cancers 
have been observed in domestic dogs, the Tasmanian 
devil, hamsters and six bivalve species such as the soft-
shell clam [23]. Canine transmissible venereal tumors 
(transmitted during sexual intercourse) may have 
originated thousands of years ago from the cells of a 
wolf or East Asian breed of dog [21–25]. The 
Tasmanian devil facial tumor disease [24] spreads 
through the Tasmanian devil population by transfer of 
cancer cells through biting [22]. [26]. Derived from a 
single original clam, leukemia-like cancer spreads 
among marine bivalves through sea water, leading to 
massive population loss [23, 27]. 
 
Six levels rather than six hallmarks 
 
The number of hallmarks of cancer is arbitrary. Some 
can be combined, and others can be added. Numerous 
authors have re-visited the hallmarks of cancer, adding 
hallmarks or suggesting a new set of hallmarks [28–37]. 
 
Some hallmarks of cancer may be pseudo-hallmarks. 
For example, visiting an oncologist is a “hallmark” of 
cancer. We can be 99% sure that if someone has 20 
appointments in an oncology clinic, then this person has 
cancer. However, it would be ridiculous to include this 
pseudo-hallmark in Figure 1. And the hierarchical 
principle makes this impossible, because there is no 
level (among the six levels) to include it. 
 
Hallmarks of aging 
 
To start with, let us depict the hallmarks of aging 
suggested by López-Otín et al. [38] based on the 
hierarchical principle. This representation renders 
hallmarks tangible but reveals three shortcomings 
(Figure 2). 
 
First is the lack of hallmarks on the organismal level. 
Yet, the main hallmark of organismal aging is age-
related diseases in all species from C. elegans [39–42] 
to humans [39, 43]. Aging is the sum of all age-related 
diseases, which cause death “from aging”. 
 
Second, the relationship between hallmarks on different 
levels are unclear. 
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Third, the inclusion of genetic instability as a hallmark 
is based on the theory that aging is caused by 
accumulation of molecular damage. The molecular 
damage theory was refuted by key experiments, as 
discussed in detail [44–51]. 
 
Yes, damage accumulates and is harmful and potentially 
lethal [52–55] but it is not life-limiting because aging 
caused by hyper-functional signaling terminates life 
first. The reason why mTOR-driven aging is life-
limiting has been discussed [49, 56, 57]. 
 
It was also suggested that the levels of DNA repair 
needed to avoid cancer at a young age greatly exceeds 
the levels that are needed to prevent damage-induced 
aging during a normal lifetime [58]. As previously 
discussed, the role of molecular damage in cancer 
supports the role of mTOR-driven hyperfunction in 
aging [59]. 
 
Let us depict hallmarks of aging, according to the 
hyperfunction theory of aging (Figure 3). 
 
Hallmarks of aging and hyperfunction theory 
 
The hyperfunction theory of aging was extensively 
reviewed previously [44, 45, 49, 56, 57, 60–66], and 

responses [60, 67] to its critics [68, 69] were also 
provided. 
 
According to hyperfunction theory, aging is a 
continuation of developmental and reproductive 
programs that were not turned off upon their 
completion. Continuously active signaling pathways 
that initially drive developmental growth, drive aging 
later in life. Signaling pathways establish feedback 
loops, involving also gene expression and epigenetic 
modifications. These pathways become hyperfunctional, 
meaning that their activity is higher than optimal for 
longevity. 
 
How does normal function become a deadly 
hyperfunction? Consider an analogy. When you pump 
air into an inflatable balloon, it grows in size. But when 
it reaches its intended size and you continue to pump air 
at the same rate, it will not grow further but instead will 
burst. This event can be compared with a stroke due to 
hypertension, resulting in brain damage. The brain is 
not damaged by life-long accumulation of molecular 
damage, but by hyperfunction, such as hypertension and 
hypercoagulation, thrombosis. 
 
Hyper-function does not necessarily mean increased 
function. Even unchanged or slightly decreased activity 

 

 
 

Figure 2. Hierarchical representation of the hallmarks of aging based on López-Otín et al. See text for explanation. 
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of growth-promoting pathways, such as mTOR, can be 
hyperfunctional when developmental growth is 
completed. As an analogy, 55 mph on the highway is not 
speeding, but even 40 mph on the driveway is too fast. 
 
Hyperfunction causes organ damage and functional 
decline. The accumulation of molecular damage is 
associated with decline, but it is hyperfunction that 
causes decline during a normal lifetime. 
 
Unlike cancer, aging is not a molecular disease. 
Development is not driven by accumulation of 
molecular damage or mutations in signaling pathways, 
and aging is not either. Nutrient-sensing pathways (e.g., 
mTOR) are not altered by random mutations. 
 
The lowest level of hallmarks of aging is a continuous 
activation of normal signal transduction pathways. 
Deactivation of these pathways by knockout of a single 
gene extends lifespan in animals [70–73]. Rapamycin, a 
drug that inhibits normal mTOR signaling, extends 
lifespan [74–77]. 
 
Hyperfunctional signaling directly drives age-related 
diseases. There are no longevity pathways/mechanisms 
inhibitable by pro-aging pathways such as mTOR. Pro-

aging pathways do not drive aging by inhibiting 
longevity mechanisms. Why would nature create 
something that inhibits longevity mechanisms? Pro-
aging pathways such as mTOR directly drive age- 
related diseases because they are a continuation of 
development. 
 
The key to understanding aging: life-limiting vs. 
non-life-limiting hallmarks 
 
Among numerous harmful processes, only one can be 
life-limiting in a particular individual. If an animal dies 
from one cause, it cannot die from another cause even a 
day later. If quasi-programmed (e.g., mTOR-driven) 
aging is life-limiting, then accumulation of random 
damages cannot kill the organism. 
 
López-Otín et al. [38] suggested three criteria for 
hallmarks of aging but two of them are criteria for both 
life-limiting and non-life-limiting processes: (1) 
hallmarks are observed during normal aging and (2) its 
experimental aggravation should decrease lifespan. 
However, experimental aggravation can make any 
process life-limiting. Telomere shortening becomes life- 
limiting in mice lacking telomerase, but their symptoms 
are drastically different from normal age-related

 

 
 

Figure 3. Hierarchical hallmarks of aging based on hyperfunction theory, applicable to humans. Non-life-limiting hallmarks are 
shown in brown color. See text for explanation. 
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diseases [78]. Although telomere shortening is 
associated with cardiovascular disease (CVD) in 
humans, patients with dyskeratosis congenita (DKC), a 
condition caused by short telomeres, do not die from 
CVD but from bone marrow failure (which is not a 
typical age-related disease) [79]. Hyperfunction theory 
explains how hyper-functional signaling leads to CVD 
in humans [80]. But telomere shortening cannot 
explain it. 
 
Anything can shorten lifespan including starvation and 
the atomic bomb but they are not causes of aging. Only 
the third criterion matters: (3) its experimental 
amelioration should slow down aging and increase 
healthy lifespan. Not surprisingly, “the last criterion is 
the most difficult to achieve and not all of the hallmarks 
are fully supported yet by interventions,” as noted by 
López-Otín et al. [38]. In other words, they are not 
hallmarks of normal aging. 
 
(Note: Even the third criterion is not sufficient to define 
a life-limiting hallmark. 
 
Besides interventions may have off-target effects. For 
example, NAC, an antioxidant, is also a mTOR 
inhibitor [81]). 

In conclusion, numerous deadly processes develop in 
parallel but only a few (or one) are life-limiting. 
 
Therefore, non-limiting hallmarks are not included in the 
version of life-limiting hallmarks of aging (Figure 4). 
This final re-presentation is generic and can be applied 
to any species, from C. elegans to humans. 
 
Aging as a selective force for cancer 
 
Common cancers are age-related diseases. This cannot 
be explained by simple accumulation of mutations with 
age. For example, melanoma and lung cancer in 
smokers have atypically high mutation burden [8] but 
still develop at old age. Centenarians, who age slower, 
are protected from cancer. Rapamycin and calorie 
restriction slow aging in mice and prevent cancer. 
 
As discussed, the selective force driving carcinogenesis 
is growth-limiting conditions, also named micro-
environmental constraints in aging [16]. For example, 
the aging hematopoietic system selects for robust 
hematopoietic cells and such a preleukemic clone can 
originate leukemic clone [82]. Specifically, chronic 
inflammatory microenvironments in old age may select 
for cells harboring oncogenic mutations [83]. 

 

 
 
Figure 4. Hierarchical hallmarks of aging based on hyperfunction theory, universal. Hyperfunction of intracellular signaling 
pathways leads to cellular and systemic hyperfunctions, which in turn lead to age-related diseases on the organismal level [56]. Specific 
hyperfunctions and diseases may be different in different species and therefore are not shown. For example, human systemic 
hyperfunctions (e.g., hypertension, hyperlipidemia, hyperglycemia) and diseases (e.g., cardio-vascular diseases) differ from diseases in C 
elegans [40, 41]. 
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Chronic inflammation is a hyper-function and is in part 
mTOR-dependent [84–88]. An aging microenvironment 
puts stem cells on the path of hyper-activation [89] and 
geroconversion [90–92], leading to their exhaustion 
[89–92]. 
 
Mutations are necessary (with a few exceptions) but not 
sufficient for inducing cancer. The second requirement 
is selective force, favoring these mutations. Aging is a 
leading selective force. 
 
One of the potential mechanisms of growth-limiting 
conditions that drive cancer progression is mTOR-
dependent cellular senescence. 
 
Common hallmarks of cancer, aging and cell 
senescence 
 
Cellular senescence is a two-step process: cell cycle 
arrest followed by geroconversion [93]. Like organismal 
aging, geroconversion is a continuation of growth driven 
in part by hyperfunctional mTOR. When the cell cycle is 
blocked by p21/p16, but growth-promoting pathways 
such as mTOR and MAPK are active, the cells become 
hypertrophic (large cell morphology) and 
hyperfunctional: beta-Gal staining (lysosomal 
hyperfunction) and SASP. A hallmark of cellular 
senescence is active mTOR pathway in non-proliferating 
cells. Rapamycin suppresses geroconversion to 
senescence [93–97]. Figuratively, organismal aging is a 
quasi-growth after developmental growth is completed. 
 
In cancer, the PI3K/mTOR pathway is almost 
universally activated by mutations [98–100]. 
Figuratively, cancer cells are proliferating senescent 
cells. In organismal aging, cancer and cellular 
senescence, the same key signaling pathways, such as 
mTOR, are involved. This is why the same drugs, such 
as rapamycin, can suppress all of them. 
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