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Abstract

Background: Our previous study has shown that prenatal exposure to X-ray irradiation causes cerebral hypo-perfusion
during the postnatal development of central nervous system (CNS). However, the source of the hypo-perfusion and its
impact on the CNS development remains unclear. The present study developed an automatic analysis method to determine
the mean red blood cell (RBC) speed through single microvessels imaged with two-photon microscopy in the cerebral
cortex of rats prenatally exposed to X-ray irradiation (1.5 Gy).

Methodology/Principal Findings: We obtained a mean RBC speed (0.960.6 mm/sec) that ranged from 0.2 to 4.4 mm/sec
from 121 vessels in the radiation-exposed rats, which was about 40% lower than that of normal rats that were not exposed.
These results were then compared with the conventional method for monitoring microvascular perfusion using the
arteriovenous transit time (AVTT) determined by tracking fluorescent markers. A significant increase in the AVTT was observed
in the exposed rats (1.960.6 sec) as compared to the age-matched non-exposed rats (1.260.3 sec). The results indicate that
parenchyma capillary blood velocity in the exposed rats was approximately 37% lower than in non-exposed rats.

Conclusions/Significance: The algorithm presented is simple and robust relative to monitoring individual RBC speeds,
which is superior in terms of noise tolerance and computation time. The demonstrative results show that the method
developed in this study for determining the mean RBC speed in the spatial frequency domain was consistent with the
conventional transit time method.
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Introduction

Prenatal exposure to X-ray irradiation is a leading cause of

postnatal development deficits such as a decrease in brain size and

retardation of behavioral and mental activity [1]. Recently, we

found that X-ray irradiation exposure (1.5 Gy) on the 15th day of

pregnancy impaired the development of vascular endothelial cells

and cerebral arteriogenesis in postnatal rat brains [2]. Further,

following prenatal exposure to irradiation, newborn rats showed

reduced cerebral blood flow (CBF), which was only half of that

observed in age-matched non-exposed rats [2]. These findings

suggest that immature development of the brain vasculature,

including cerebral hypo-perfusion, is of etiological importance in

the delayed development of the central nervous system (CNS)

observed in subjects following prenatal exposure to X-ray

irradiation.

Because the CBF reflects a product of cortical blood volume per

unit tissue volume and cross-sectional blood velocity in the

vessels, the cerebral hypo-perfusion observed in the exposed

subjects could be due to low blood volume (i.e., decrease in

capillary density) in the parenchyma tissue relative to non-exposed

subjects, or it could be due to a decrease in blood velocity through

the parenchyma capillaries. In the former case, low blood volume

may result from an immature development of the microvascula-

ture. In the latter case, a decline in blood velocity can be

interpreted as a higher resistance in the cerebral circulation in the

exposed subjects, which can be attributed to a narrow lumen space

of cerebral arteries or low demand of metabolic activity in

parenchyma tissue. In either case, it is necessary to measure the

blood velocity in the parenchyma capillaries directly to further

determine the source of the hypo-perfusion observed in the

prenatal exposed subjects.
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Using a variety of fast-scanning optical microscopic techniques,

previous studies have shown that the mean red blood cell (RBC)

speed in cortical microvessels ranged from 0.4 to 1.5 mm/sec in

anesthetized rats [3-7]. However, these studies were limited to

microvessels located on the cortical surface, but not in parenchy-

ma capillaries, where neural processes and metabolic activity

occur. Alternatively, Kleinfeld et al. [8] first used two-photon

microscopy to directly visualize RBC movement through the

parenchyma capillaries up to a depth of 600 mm. Two-photon

microscopy has an increase in the depth of tissue penetration

into biological tissue as compared to other most commonly used

optical microscopes [9,10]. The near-infrared excitation wave-

lengths used in two-photon microscopy allows for high penetration

of the light into the tissue due to low absorption and scattering

effects [11]. However, the depth penetration of two-photon imaging

is decreased in circumstances of increased tissue absorption and

scattering [12,13], which makes analyzing small targets, i.e., moving

RBCs, difficult, such as in disease model animals where the

scattering and/or absorption of light by the tissue is high.

To overcome the potential limitations in analyzing RBC speed

from poor contrast-to-noise ratio images in disease model animals,

we developed an analytical method based on a two-dimensional

fast Fourier transform (FFT) approach. This method is similar to

that used in a recent study by Drew et al. [14] who used the Radon

transform to characterize the spatial pattern of the RBC traces. In

their study, it was shown that a coordinate-transform method is

superior in terms of noise tolerance for the extraction of RBC

slope from line-scanned vascular images, as compared to the

original approach with a singular value decomposition (SVD)

method [8]. The 2D FFT approach presented here directly

utilized raw line-scanned images, which contained vascular and

non-vascular signals. The method was then applied to determine

the mean RBC speed in the cerebral cortex in rats receiving

prenatal X-ray irradiation (1.5 Gy) according to our previous study

[2]. These results were further compared with the conventional

method for determining the microvascular perfusion based on the

arteriovenous transit time (AVTT) [15-17] in both X-ray exposed

and non-exposed rats. Using this new analytical approach to

determine the microvascular RBC speed and conventional AVTT

measurements, we consistently found approximately 40% lower

microvascular perfusion in the cerebral cortex of prenatally

exposed rats as compared to non-exposed rats.

Results

RBC speed in single microvessels
Figure 1A shows a representative raw image of an RBC trace

using the two-photon line-scanning method at a single location in

the parenchyma microvessel. Dark streaks in the image represent

the unlabelled RBC moving through the vessel in a longitudinal

direction. Figure 1B shows a power spectrum image calculated

from the 512 by 512 pixel image in Fig. 1A. The oblique shape in

the FFT image is elongated in the direction perpendicular to the

dark streaks in the original image. Changing to polar coordinates

in the frequency space, the power spectrum was summed along

lines of h (Fig. 1C, and see Eq. 2). The angle corresponding to the

peak of the radial spectrum was then used to calculate the mean

RBC speed with Eq.1. The mean RBC speed in this representative

image was calculated to be 1.1 mm/sec. Under our experimental

protocol, the time required to compute the mean RBC speed was

0.60 sec per image with the proposed method, which was faster

than a method employing SVD (4.74 sec per image), and almost

equivalent to a method using the Radon transform (0.75 sec per

image). The population data (121 vessels from four exposed rats)

showed that the obtained mean RBC speed ranged from 0.2 to

4.4 mm/sec, and the mean of all measurements was

0.960.6 mm/sec (Fig. 2).

Cortical AVTT measurements
Figure 3A shows an image of the appearance time measured on

the cortical surface of a representative non-exposed animal. Based

on the spatial continuity of the appearance over time, arterial and

venous segments were determined (37,638 and 97,272 pixels in

this representative image, which accounted for 14% and 37% of

Figure 1. Representative image and measurement of RBC speed in single microvessels of the exposed animals. (A) A raw image of RBC
moving through a microvessel was obtained using a line-scan mode with two-photon microscopy. The representative image showed 512 lines
captured at the center of the target microvessel in parallel to the longitudinal direction. The x-axis represents Dt of 1 msec/pixel (time domain), and
the y-axis is Dx of 0.20 mm/pixel (spatial domain). The green color represents the measured intensity of the fluorescent signal that originated from the
injected plasma marker. Dark streaks observed around the center of the image were mainly caused by unlabelled RBC motions, and their slopes
reflect a speed of the RBC motions that were parallel to the vessel length (a scan direction). (B) Power spectrum image. The image represents a FFT
image constructed from the original 512 by 512 pixel image (A). The power spectrum was used to characterize a periodic pattern of the pixel intensity
distribution represented in the raw image (A). A slanted line reflects a direction preference, perpendicular to the RBC traces (i.e., a slope of dark
streaks), which appeared in the original image. The angle between this slanted line and the temporal axis was used to calculate the mean RBC speed
(see text). (C) The spatial pattern of the pixel intensity distribution converted by the FFT analysis. Summation of the power spectrum at each angle
was calculated for all directions (-0.5 to 0.5 p), and the angle that had the maximum power (arrow head) was used to calculate mean RBC speed
(1.1 mm/sec in this representative image) (see Eq. 1).
doi:10.1371/journal.pone.0024056.g001

RBC Speed Analysis in Spatial Frequency Domain
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total pixel numbers, respectively, Fig. 3B). In this rat, the mean

appearance time was 0.2960.28 and 1.4360.48 sec in the arterial

and venous segments, respectively (see Fig. 3C). Consequently, the

AVTT was calculated as 1.14 sec. In addition, the median of the

appearance time (0.21 and 1.33 sec in arterial and venous

segments, respectively) was used to compare transit times. The

AVTT was 1.12 sec, which was similar to the results obtained

from the mean value. Therefore, the AVTT was calculated using

the mean values.

A clear separation in the appearance time between the arterial

and venous segments was consistently observed in all four exposed

animals (Fig. 4A). The mean area of the observed vascular

segments was 15,789610,909 and 34,355611,539 pixels in the

arterial and venous segments, respectively, corresponding to

664% and 1364% of the total number of pixels (262,144) in

the image, respectively. In contrast, the results for the non-exposed

animals were 1264% and 3069% of the pixels occupied by the

arterial and venous segments, respectively. Interestingly, the mean

ratio of the areas covered by the arterial and venous segments was

similar for the exposed (1:2.2) and non-exposed (1:2.4) animals.

The mean of the AVTT was 1.960.6 sec in exposed animals,

which was significantly longer than that of non-exposed animals

(1.260.3 sec, Fig. 4B). To further compare the baseline capillary

blood velocities in the exposed and non-exposed animals, the

inverse of the mean AVTT was plotted in Figure 5B. Assuming

that the tissue blood volume (i.e., a total vessel length) was the

same for the two groups, the observed inverse transit times may

reflect the mean of capillary blood speed through the parenchyma

tissue. Comparison of the inverse transit times for the non-exposed

and exposed groups found a ratio of 66%. A comparison for the

mean capillary RBC speed measured in the present (exposed) and

previous (non-exposed) studies found a similar ratio of 60%

(Fig. 5A).

Discussion

Technical issues of frequency-based image analysis
Using the spatiotemporal frequency-based approach, the

automated image analysis method was developed to measure the

mean RBC speed from the population of RBCs moving in single

microvessels of the cerebral cortex (Figs. 1, 2). The advantages of

the present approach are the following: i) the mean RBC speed

can be determined from images that contain a population of RBCs

without distinguishing individual cells, such as for low signal-to-

noise images, ii) the computation time required for the calculation

is significantly improved relative to the previously-reported

method with SVD, and iii) the algorithm is simple and no prior

information is required, which makes it easy to implement. Based

on a space-time image obtained by a line-scanning of RBC

motions along the vessel, early studies have established a method

that enabled RBC speed to be determined from the slope of the

Figure 2. Mean RBC speed in single microvessels. The histogram
shows the frequency distribution of the mean RBC speed obtained from
all 121 vessels in the exposed rats (N = 4). The mean RBC speed ranged
from 0.2 to 4.4 mm/sec (minimum to maximum), and the mean of all
measurements was 0.960.6 mm/sec.
doi:10.1371/journal.pone.0024056.g002

Figure 3. Representative image and measurement of AVTT. (A) A representative image of the appearance time obtained from one animal.
Time-lapse imaging was performed at the cortical surface with a frame-capture rate of 14.2 frame/sec. The field of view was 512 by 512 pixels, and in-
plane resolution was 3.6 mm/pixel. The pixel-basis analysis of appearance time was performed (see text). The image showed a continuity of
appearance time in each vascular segment. An early appearance time (red) mostly represented an arterial flow, whereas a late appearance time
(yellow to blue) resulted from venous flow. The color bar indicates the image acquisition time. Scale bar: 0.5 mm. (B) Segmentation of arterial and
venous compartments. The arterial (red) and venous (blue) blood vessel areas were determined based on the spatial continuity of the appearance
time observed along a longitudinal direction of the vessels (see text). Scale bar: 0.5 mm. (C) AVTT. The histogram represents the frequency
distribution of appearance time observed in respective arterial (red) and venous (blue) areas. A total of 37,638 and 97,272 pixels were counted for
arterial and venous segments, respectively, in this representative animal. Mean appearance time was observed as 0.2960.28 and 1.4360.48 sec in the
arterial and venous segments, respectively, and thus, AVTT was 1.14 sec (a width between dashed vertical lines).
doi:10.1371/journal.pone.0024056.g003
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RBC displacement per certain time intervals (i.e., scanning

intervals) [4,17]. Later studies have presented a variety of image-

based approaches, using SVD [8,18], two-dimensional image

autocorrelation [19], Hough transform [20], and Radon transform

[14,21], to extract the average slope. In particular, the SVD and

Radon transform methods have been widely used to automatically

determine dynamic changes in brain capillary RBC speeds [22-

24]. For dynamic imaging, computation time is a key issue for

achieving real time monitoring. We compared the computation

time required for the method proposed in this paper and these

alternative methods, and found that under our experimental

conditions the proposed method is about 8 times faster than the

SVD and equivalent to or slightly faster (1.25 times) than the

Radon transform methods. With a Radon transform approach

and simulated data degraded with various levels of noise, Drew et

al. [14] showed that the coordinate-transform method has some

advantages over the SVD. The 2D FFT presented here utilized the

periodic pattern of the pixel intensity distribution (i.e., RBC

streaks), and thus is relatively insensitive to signal arising from the

non-vascular areas. This means that there is no need to crop the

vascular areas from the raw image to detect RBC streaks. This is

demonstrated in our supplementary results where it is shown that

when the image covered relatively large non-vascular areas, the

present method found a single unique peak, whereas the Radon

Figure 4. A comparison of mean AVTT. (A) The normalized histogram of the appearance time in all exposed rats (N = 4). The consistent
distribution pattern of the appearance time was observed for both the arterial (red) and venous (blue) segments. (B) Population data on mean AVTT.
Mean of AVTT was 1.260.3 and 1.960.6 sec in non-exposed (N = 9) and radiation exposed animals (N = 4), respectively. There were statistically
significant differences between the two groups (p,0.05).
doi:10.1371/journal.pone.0024056.g004

Figure 5. A comparison of capillary blood speeds. (A) Mean capillary RBC speed. The mean capillary RBC speed measured in the present study
for the exposed animals (N = 4) was 40% lower than that for the non-exposed animals measured in a previous study (modified from [30]). (B) Inverse
of the mean AVTT. The inverse of the mean AVTT of the exposed animals was 34% lower than that of the non-exposed animals. The ratio of exposed
to non-exposed animal results was similar for both data sets.
doi:10.1371/journal.pone.0024056.g005
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transform method did not (Fig. S1). An algorithm that reliably

provides a unique peak is important for running the automated

analysis, and no requirement to crop the images would be

beneficial in reducing user bias and the number of steps in image

processing. Further, specificity of the present method to the RBC

streaks in the image could be used to reduce non-vascular signals

by applying a bandpass filter in the frequency domain. This

approach would be also useful as a pre-processing step (denoising)

prior to identifying individual RBCs for counting [25], fitting [26],

and tracking [27-29].

In contrast, one limitation of the frequency-based approach is

that the method is only applicable to an image that contains a

single pattern of RBC traces. If the images contain multiple

patterns of RBC traces, such as due to temporal fluctuations and

spatial variations of RBC movements through a single microvessel,

it is necessary to assign an appropriate region of interest and time

window (see also Fig. S2). The spatiotemporal dynamics of the

RBC behaviors, such as during spontaneous fluctuations and

response to neural functions in both prenatal exposed and non-

exposed subjects, must be investigated in future studies.

Radiation effects on cerebral microcirculation
We observed that the mean RBC speed was 0.960.6 mm/sec

in the exposed rats (Fig. 2), which was approximately 40% lower

than that in isoflurane-anesthetized normal rats (Fig. S3 modified

from [30]). Other studies have shown that the mean RBC speed in

the microvessel on the cortical surface and parenchyma tissue

ranged from 0.4 to 1.5 mm/sec as measured in anesthetized rats

[3-8,22,31]. This large variation could be due to animal

physiology from various labs and/or methods used to determine

the RBC speed. In our previous study, we found that anesthesia

significantly impacted the mean RBC speed in cortical microves-

sels; 0.460.4 mm/s and 1.560.4 mm/s under alpha-chloralose

and isoflurane, respectively [30]. These findings are consistent

with other reports that examined the anesthesia-dependence of

CBF in rats [32,33]. The CBF in the somatosensory cortex of rats

under isoflurane was shown to be equivalent to the non-

anesthetized awake rats (130-150 ml/ 100g/ min) [34], indicating

that isoflurane anesthesia is the preferred anesthetic to preserve

normal CBF characteristics [35]. Using a high-speed confocal laser

scanning microscope, it has been shown that the high-frame rate

measurements (500 frame/s) recorded a 2.2 mm/s average for

RBC speed (ranged from 0.8 to 6.6 mm/sec) in rats and mice

[36,37]. Therefore, our RBC measurements were further com-

pared with the conventional method for microvascular perfusion

measurements [15,16]. In the present study, a fluorescent dye was

injected into the femoral vein to measure the cortical AVTT.

During its passage to the measurement site in the cortex the

concentration of the dye will be diluted with blood, and this might

complicate the separation of artery and venous segments. To avoid

this possibility, we used the earliest image where the fluorescent

signal appeared in a particular vessel for artery-vein segmentation

(Fig. 3). Other studies have injected dye directly into the internal

carotid artery [38,39], which allows the arrival of the dye at the

imaging area of the cortex to be approximated by an impulse

function (Dirac’s delta). From preliminary tests with dye injection

into the internal carotid artery, we found the mean AVTT to be

1.360.6 sec for the normal rats (N = 3), which was in good

agreement with the present results (1.260.3 sec) obtained with dye

injection into the femoral vein of the non-exposed rats. The

intravenous injection is less-invasive than arterial injection

methods, and thus has the advantage of permitting repeated

long-term measurements of cerebral microvascular perfusion [40].

As a non-invasive technique, laser-Doppler flowmetry (LDF) might

be considered as a good alternative to repeated long-term CBF

measurements with a dye. However, LDF measures only relative

changes with respect to the baseline CBF condition and thus may

not be suitable for subject comparisons of stationary CBF between

normal and disease states.

For the group comparisons, we assumed that blood volume per

unit tissue was equivalent for the exposed and non-exposed

animals. However, if the total vessel length is longer in the exposed

rats, this might explain the longer mean AVTT that was observed.

However, since our MR data showed that the cortical thickness in

the exposed animals was only 36% of that of age-matched non-

exposed animals (data not shown), this possibility can be ruled out.

Measurements of the RBC speed and inverse of mean AVTT

consistently showed an approximately 40% decline in cortical

microvascular perfusion in the exposed rats in comparison to the

non-exposed rats (Figs. 4, 5). These findings are also in good

agreement with our previous measurements of CBF using magnetic

resonance imaging (MRI) that showed that exposed newborn rats

(postnatal 2 weeks) had approximately 50% of the CBF of the

age-matched non-exposed rats [2].

The cerebral hypo-perfusion observed in the prenatal exposed

rats could be due to the immature development of vascular systems

and/or secondary effects of a lower energy demand in parenchy-

ma tissue. In a previous study, with MR angiography, we found

that the diameter of the middle cerebral artery was 63% smaller in

the prenatally-exposed rats (0.2460.02 mm) in comparison to the

non-exposed age-matched animals (0.3860.02 mm) [2]. In

agreement with this finding, the present study showed that the

area covered by arterial vessels on the cortical surface was almost

half in the exposed animals relative to the non-exposed ones. Since

the general physiology (MABP and heart rate) was not significantly

different between the two groups, the possibility that the effects of

radiation exposure on the CBF are due to general ill-health or

lower cardiac output in the animals can be ruled out. Previous and

present findings indicate that shrinkage of the major cerebral

arteries could increase vessel resistance and result in parenchymal

hypo-perfusion. Further technical improvement of cerebro-micro-

vascular angiography would help highlight the main source of

increased resistance at a microscopic scale.

In addition, no leakage of the fluorescent marker into the

extravascular space was observed (data not shown), which

indicates an intact blood-brain barrier (BBB) for the exposed as

well as non-exposed animals. In a previous study, albumin-staining

histology was performed to check the permeability of the BBB for

prenatally-exposed rats [2]. The results showed that the number of

albumin-positive cells in the cortex drastically decreased 2 weeks

after birth for both exposed and non-exposed animals [2]. The

findings also indicate that the function of the vascular endothelium

(i.e., BBB permeability) developed normally for the prenatally

exposed animal brains. In contrast, other studies have shown that

X-ray exposure (60 Gy) of adult rats provoked disruption of BBB

functions [41]. The discrepancy between the present and previous

studies could be due to different dosage (1.5 Gy vs. 60 Gy) and/or

age of exposure (prenatal vs. adult). In our studies, we also found

that the mean density of laminin-positive cells (i.e., vascular

endothelium cells) was significantly lower for the exposed (3,300

cells/mm2) relative to the non-exposed (5,200 cells/mm2) 2-week-

old rat cortex [2]. The findings are consistent with results for adult

rats and mice showing that loss of endothelial cells depends on X-

ray irradiation dose and time after exposure [42,43]. Because the

vascular endothelial cells belong to a category of high radiosen-

sitivity cells [44], these observations suggest that prenatal exposure

to X-ray irradiation damaged the development of vascular

endothelial cells. A lack of endothelium development may further

RBC Speed Analysis in Spatial Frequency Domain
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disrupt the organization of CNS cells and networks. In this vein,

an improvement or enhancement of endothelial cell growth

potentially improves CNS cell development and neural connec-

tions, which may be a possible therapeutic target to prevent

development defects in the prenatal exposed subjects. On the

other hand, it has been shown that a density of cortical neurons

and astroglia was preserved in the postnatal rats following X-ray

irradiation (1.0 Gy) despite a decrease in cortical thickness [45,46].

These findings suggest that the local energy demand per unit

volume was similar to that of non-exposed subjects. However, the

total number of CNS cells decreased [45], and thus, the total

energy level may be suppressed in exposed-animals. In this case,

hypo-perfusion could result from a low metabolic demand in

parenchyma tissue, which may be coupled to a total vascular

length. Overall, these results strongly suggest that immature

development of the brain vascular system and the related cerebral

hypo-perfusion is of etiological importance in the delayed CNS

development in subjects following prenatal exposure to X-ray

irradiation. Future studies must address the molecular mechanism

of CNS hypo-perfusion and its role in developing brains.

Conclusion
In conclusion, the present study developed a novel analytical

method to determine the mean RBC speed from a large number of

traces from a population of RBC images based on the 2D FFT

approach. The method is simple and robust and enables auto-

mated quantification with minimum computation time. Further,

the present study showed the significant decline in microvascular

perfusion in the cerebral cortex of prenatal-exposed rats. These

findings are consistent with our previous report [2]. Thus, the

present method is valuable to further our understanding of the

causal relationship between the decline of cerebral microvascular

perfusion and delayed CNS development in the subjects following

prenatal exposure to X-ray irradiation.

Materials and Methods

Animal preparation
The study was carried out in accordance with the recommen-

dations in the Guide for the Care and Humane Use of Laboratory

Animals of the National Institutes of Health. All experimental

protocols were approved by the Institutional Animal Welfare

Committee (Permit Number: 09-1008-4). In accordance with a

previous study [2], two pregnant female Sprague-Dawley rats

(15th day of pregnancy, Japan SLC, Hamamatsu, Japan) were

irradiated with a single whole-body X-ray at a dose of 1.5 Gy (200

kVp, 20 mA, 0.5 mm Cu plus 0.5 mm Al filter). At eight to nine

weeks after birth, a total of four male rats (230 to 300 g) from each

breed were used for the experiments. Nine age-matched male

Sprague-Dawley rats (210 to 320 g, Japan SLC, Hamamatsu,

Japan) were also used as the non-exposed control group for

microvascular AVTT measurements in the cerebral cortex.

The animals were anesthetized with isoflurane, and endo-

tracheal intubation was performed to allow for mechanical

ventilation. Catheters were placed into the femoral vein and

artery for drug administration and for arterial blood sampling and

monitoring systemic arterial blood pressure, respectively. The

animal head was then fixed with stereotaxic frame (SG-3N,

Narishige, Tokyo, Japan) by holding the animal nose and ears.

Three needles were placed into the both sides of underarm and

back for electrocardiogram (ECG) recording, and rectal temper-

ature was maintained at 37uC. The left side of the skull over the

somatosensory cortex (3 mm by 5 mm) was thinned with a dental

drill. After the surgery was completed, the inspired gas was

switched to a mixture of air and O2 (30 to 35% total O2), and the

end-tidal isoflurane concentration was adjusted to 1.4%. The

respiratory parameter was adjusted based on the arterial blood

gas conditions: pH = 7.55460.041, PaCO2 = 32.361.0 mmHg,

PaO2 = 16167 mmHg, hematocrit = 38.562.5%, and glucose

concentration = 174611 mg/dl in exposed group (N = 4), and

pH = 7.47160.024, PaCO2 = 34.662.8 mmHg, PaO2 = 1366

23 mmHg, hematocrit = 38.762.2%, and glucose concentration

= 208631 mg/dl in non-exposed group (N = 9). There were

significant differences in the conditions of blood pH, PaO2, and

glucose concentrations between the exposed and non-exposed

groups (p,0.05). Arterial blood pressure, measured with a blood

pressure transducer (TSD104A, Biopac Systems, Inc., Goleta, CA),

and heart rate, measured with an EEG amplifier (EEG100C,

Biopac Systems, Inc.), were recorded throughout the experiments

with a data acquisition system (MP150, Biopac Systems, Inc.)

at a sampling rate of 100 Hz: mean arterial blood pressure (MABP)

= 106611 and 9967 mmHg, and heart rate = 335647 and

333624 beats/min in exposed and non-exposed groups, respectively.

Measurement of microvascular RBC speed
The cortical microvasculature was imaged through a thinned

skull using a two-photon laser scanning fluorescent microscope

(TCS SP5MP, Leica Microsystems GmbH, Wetzlar, Germany) at

900-nm excitation (Mai Tai HP, Spectra-Physics, Santa Clara, CA)

with an emission band-pass filter of 655/50 nm. Qdot 655 (1 mM in

saline, Invitrogen, San Diego, CA) was intravenously injected into

the animal to fluorescently label blood plasma [30]. RBC speed was

measured in microvessels that had a diameter of less than 6 mm (i.e.,

capillaries) and a straight section at least 50 mm long, located

between a depth of 50 and 300 mm from the cortical surface. For

each target vessel, line scanning was repeatedly performed along the

length of the vessel at a rate of 1-4 lines/ms, and a total of 512 lines

were used to make a single image (i.e., 512 by 512 pixels, see also

Fig. 1A). The image consists of an x-axis as the time domain (0.25-

1 ms/pixel, Dt) and y-axis as the spatial domain (0.06-0.20 mm/

pixel, Dx). The field of view and line-scan average were manually

adjusted (i.e., 2-8 scan averages were typically performed with a

scan speed of 0.125 ms/line). By setting 512 pixels along the

horizontal axis (Dt), the temporal window was accordingly 128-

512 ms, which allowed accurate calculation of the RBC speed

under our experimental conditions. However, the window size is not

limited. Depending on the line-scan average, an even shorter time-

window (e.g., 32 pixels) is also possible (Fig. S2).

Mean RBC speed (v) was determined with the following

equations:

v~ vj j~ Dx

Dt
cot h

����
����, ð1Þ

where h is the angle between the temporal frequency axis and a line

perpendicular to the streaks (see Fig. 1B), and Dx and Dt are the

spatial and temporal sampling intervals (i.e., a pixel width),

respectively. Since Dx and Dt in Eq. (1) are given by the image

acquisition parameters, h is the only quantity that directly reflects the

RBC speed. The angle h was automatically calculated by detecting

the angle having the maximum summation (g) of the power spectrum

across all directions (from -0.5p to +0.5p) with a resolution of p/180

around a center of the frequency space (see Fig. 1C):

g hð Þ~ max
h[ {0:5p,0:5pð Þ

ðR

0

F r,hð Þdr, ð2Þ
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where F(r, h) is the transformation of a power spectrum image from

Cartesian to polar coordinates. Two-dimensional linear interpola-

tion was applied in the coordinate transformation. R was half of the

pixel number, 255 in this study.

Measurement of the AVTT
Time-lapse imaging of the cortical surface vasculature was

performed at a rate of 7.1, 9.5, or 14.2 frame/sec using a single-

photon excitation mode (488-nm Argon laser). The image was 512

by 512 pixels, and the in-plane resolution was 3.6 mm/pixel.

Immediately after the initiation of time-lapse imaging (within

10 sec), a bolus injection of Qdot 655 (1 ml/kg body weight) was

administered in the femoral vein. AVTT was determined by

imaging plasma markers but not RBC. Because negligible

differences in the AVTT were observed between the plasma and

RBC markers (data not shown), the equivalent flow characteristics

of the plasma and RBC were assumed in the experimental

conditions in the comparison of the measured RBC speed using

conventional microvascular perfusion measurements. A median

filter was first applied to reduce the shot noise of the detector

(photomultiplier). AVTT was then calculated by subtracting the

appearance time of the fluorescent signals determined at venous

segments by those of arterial segments. The appearance time is the

earliest time point that both target pixel intensity and the

subsequent five time-point intensities surpassed a threshold level

(i.e., mean + 2 S.D. of pre-injection baseline intensity). The

baseline intensity was calculated by averaging all intensities

measured during the pre-injection periods on a single pixel basis.

If there were no time-points that surpass the threshold, that pixel

was excluded from further analysis. Finally, arterial and venous

segments were manually extracted based on a spatial continuity of

the measured appearance time along a longitudinal direction of

the vessels, and the appearance time of each segment was reported

by averaging all pixel data of the respective segments. Data were

presented as mean6S.D. across the animals unless otherwise

specified, and a Student’s t-test was performed for statistical

analysis to compare the radiation-exposed and non-radiation

group data.

Supporting Information

Figure S1 Comparison of with and without cropping for
RBC speed estimation. (A) Raw image (512 by 512 pixels)

captured by line scanning along a single vessel. The regions of

interest in blue (cropped,128 by 128 pixels) and pink (non cropped,

512 by 128 pixels) were compared. (B) FFT. A single peak was

consistently seen for both the cropped (blue) and non-cropped

(pink) images. (C) Radon transform. Identical peak location was

observed for the cropped (blue) and non-cropped (pink) images,

but in the latter case the peak height was hidden by the

components originating from non-vascular areas of the non-

cropped image.

(PDF)

Figure S2 Temporal window and estimated RBC
speeds. The dependence of RBC speed estimation on temporal

window size was compared for the FFT and Radon transform

methods. For less than 32 pixels (x-axis), both methods produced

large variations away from the expected velocities (1 mm/s). Thus,

a minimum of 32 pixels was needed to achieve accurate

estimation. Note that the time window dependencies were similar

for both the FFT and Radon transform methods.

(PDF)

Figure S3 RBC speed histogram for the non-exposed
animals (modified from [30]). The RBC speed was directly

measured by tracking the displacement of individual RBCs in the

non-exposed rats [30] under similar experimental conditions to the

present study. A mean speed of 1.560.4 mm/s was observed.

(PDF)
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