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A Unified Framework for Complex 
Networks with Degree Trichotomy 
Based on Markov Chains
David Shui Wing Hui1, Yi-Chao Chen1, Gong Zhang1, Weijie Wu1, Guanrong Chen   2, John C. S. 
Lui3 & Yingtao Li4

This paper establishes a Markov chain model as a unified framework for describing the evolution 
processes in complex networks. The unique feature of the proposed model is its capability in addressing 
the formation mechanism that can reflect the “trichotomy” observed in degree distributions, based 
on which closed-form solutions can be derived. Important special cases of the proposed unified 
framework are those classical models, including Poisson, Exponential, Power-law distributed networks. 
Both simulation and experimental results demonstrate a good match of the proposed model with 
real datasets, showing its superiority over the classical models. Implications of the model to various 
applications including citation analysis, online social networks, and vehicular networks design, are also 
discussed in the paper.

Many complex network models1, 2 have been proposed to provide an essential macroscopic understanding of var-
ious complex real-world networks3–6. One important feature is the node-degree distribution4, 5, 7, which belongs 
to two major classes: one is Poisson or exponential distribution (mainly for homogeneous networks, with rapidly 
decaying tails in the degree distributions); the other is power-law distribution (mainly for heterogeneous net-
works, well known for their scale-free properties, with long tails in the degree distributions). Existing models 
typically account for Poisson8 or exponential distribution9, 10 by the random attachment mechanism11 in net-
work formation process, while power-law distribution comes from the preferential attachment mechanism11–13. 
Although both mechanisms are essential and to a certain extent, can capture many real-world phenomena, typi-
cally each of them works only within a particular range of the broad degree-distribution spectrum. In this work, 
we analyze a number of real datasets are analyzed, all exhibiting a “trichotomy” phenomenon — a power-law 
distribution in the middle range of the distribution with exponential-alike distributions in both the head and the 
tail regions. Thus, the two typical distributions, though fundamental, are not sufficient to individually provide an 
accurate fit to the entire range of degree distributions.

From a theoretical point of view, the study of accurate degree distribution generation mechanisms, including 
the trichotomy phenomenon1, 14, are recognized as an important and developing subject in complex networks 
study, as presented in some recent research monographs1, 2. Driven by application needs, recent network gen-
eration mechanisms include (1) a similarity attachment mechanism15 proposed to capture large-scale evolution 
of technological, social and metabolic networks, (2) exponential network generation mechanism proposed for 
(smart) power grids10, and (3) network cosmology approach to model causality for more realistic citation net-
works16. In particular, the idea of network organization is recently introduced to explain why some network 
(degree) distribution is closer to power law17, while some other networks exhibit a clear “trichotomy” distribution 
as presented in datasets of important real-world networks14, specifically the higher structural level of preferential 
attachment implies the less “trichotomy” the distribution will be. Besides giving better physical interpretation, 
new generation mechanisms also lead to better models for statistic estimation and testing18. Recent examples 
include estimation of degree distribution under fitness model19, and under exponential random graph model20–22 
respectively, and estimation on other metrics, such as link prediction23. It also influences the recent development 
of other theoretical aspects such as controllability of complex networks24. It was found that the number of driver 
nodes to control a network is determined mainly by the degree distribution. Recent works25, 26 claim that node 
dynamics are also part of the determination, which is also strongly related to network formation. More related 
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works have been reviewed in a recent overview article27. However, there is no unified generation method that can 
accurately capture all observed degree distributions, making it difficult to accurately estimate graph parameters 
or to precisely control complex networks.

From an application point of view, degree trichotomy, characterizing degree distribution properties into three 
regions, is a common way of analyzing different parts of citation distribution in both classical literature28 and 
recent literature17, 29. Despite its long history, a systematic and quantitative choice of regime parameters is still 
missing. Furthermore, many phenomena discussed in a complex network independently, could be unified in a 
degree trichotomy framework – small degrees (intial phase), medium degrees (middle phase), and large degrees 
(mature phase). For example, in the citation network, the first citation distribution and the issue of uncitedness30 
of a paper could be viewed as a study on its initial phase. The cumulative advantage property (also called the pref-
erential attachment effect)31, 32 is related to its middle phase. The aging property of a paper16, 32–35 could be related 
to its mature phase. Thus, a unified framework, or better off, a physically interpretable network generation mecha-
nism, on citation network, unifying the above citation practice phenomena could be an important complement to 
recent alternative citation pattern generation models36, 37. Beyond citation analysis, an accurate characterization of 
degree distribution could also be of interest to recent developing networks such as online social networks38, 39 and 
Internet of Things (IoT)40. Specifically, in the network analysis, they utilize various degree distribution-dependent 
graph metrics, such as various centrality measures, clustering coefficients, and network diameters, for community 
detection and information disssemination speed estimation. In this paper, one will see that the proposed Markov 
Chain (MC) model can provide a quantifiable “degree trichotomy” and can serve as a better model on the afore-
mentioned applications compared to existing models.

Besides having a major impact on the degree distribution modeling and consequently on the important 
measures of complex networks, “degree trichotomy” could be regarded as an universal property driven by some 
underlying physical mechanism. In a recent literature17, scale-free property of complex network is explained as 
a universal property, and driven by preferential attachment mechanism in the level of communities, i.e., a new 
node is preferentially attached to a finer grained organization structure (according to its size) instead of simply 
an arbitrary node or a link. This is called structural preferential attachment17. In this paper, we propose another 
attachment scheme that can produce trichotomy as a universal property of the network, with corresponding 
physical interpretations. In particular, the quantified “degree trichotomy” under our model provides an impor-
tant criterion for determining the phase-transition points of complex networks, and this can be meaningful in 
particular applications (e.g., refining h-index in a citation network). Regarding the wide observations of many 
datasets exhibiting trichotomy in degree distributions7, 17, 41, 42, some models choose to focus on the power-law 
middle phase neglecting the other phases, while some models attempt to address the problem from its special fac-
ets. Those special facets are usually scenario-specific and a technical comparison of the proposed framework with 
those existing models are presented in Sec. S1 in the Supplementary Information (SI). The major issue of those 
existing attempts is still the lack of a general forming mechanism that can lead to a closed-form degree distribu-
tion exhibiting all three-phases with clear physical meanings. Such absence hinders further analysis on important 
measures of such networks. Furthermore, there were also two undiscussed practical issues in existing network 
generation models – initial settings and burst occurrence in node dynamics. Though neglected in most literature, 
these issues naturally arise in practical applications, and we will discuss them in the model description subsection.

In this paper, we propose a new framework based on Markov chains, to capture network formation processes, 
derive closed-form degree distributions and design a corresponding statistical test with estimated parameters 
having clear physical meanings. As examples, it will examine several respective complex networks: a classical 
example – citation networks, and two recent examples – online social networks and vehicular networks, to illus-
trate the applications of the proposed framework. In the SI, it will provide expressions of degree distribution (in 
both probability density form (in Sec. S3.6) and cumulative distribution form (in Sec. S6)), network diameter (in 
Sec. S7), and z-transform of degree distribution (in Sec. S5) (useful for deriving various graph metrics43) under 
the proposed network generation mechanism, which could be useful for subsequent network analysis. The pro-
posed new network formation mechanism could also have potential applications in serving for more realistic 
models in new-born areas like econophysics and sociophysics, where the research is mainly based on scale-free 
network models.

Results
In this section, a unified model is proposed based on Markov chains, referred to as the MC model hereafter, for 
representing the evolution process in a complex network.

The proposed model – the MC model.  Model description.  The complex network is modeled as an evolv-
ing network, with nodes as its basic constituting component, and their degrees as the major characteristic of the 
network. The network starts with a few (connected) nodes and then evolves as follows.

New node comes to the network randomly at a certain rate; upon arrival, it creates zero, one or several connec-
tion(s) to existing nodes, and assume its starting degree (s. d.) i has probability mass pi(0).

Existing nodes have different degrees. As the network evolves, the degrees of existing nodes can change. 
The change of degree of a particular existing node is divided into three phases — initializing, fast-evolving, and 
maturing phases.

Phase 1 – Initializing: All nodes with a degree less than or equal to parameter  are called in the initialization 
phase. Such nodes have a uniform, low attractiveness, i.e., their evolution is independent of the structure of the 
current network.

Phase 2 – Fast-evolving: All nodes with a degree larger than parameter  but less than or equal to parameter 
  are called in the fast-evolving phase. Their attractiveness is proportional to their degree, i.e., when a new node 
comes, it prefers connecting to an existing node of a higher degree. In this phase, their evolution depends on the 
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existing network structure. This preferential attachment mechanism enables some nodes to become more and 
more popular as the network evolves.

Phase 3 – Maturing (Saturating): All nodes with a degree larger than parameter   are called in the maturing 
phase. Their attractiveness begins to saturate due to physical, economical or technological constraints. These 
nodes with degrees exceeding a certain threshold are called super nodes. Although new nodes still preferentially 
join the super nodes, they join these super nodes with the same probability. There are two reasons. One is that 
existing super nodes could start to refuse new connections due to physical or economical constraints. The other 
is that although super nodes differ in their degree, new nodes joining the network will not care or cannot distin-
guish the exact degrees of those super nodes. In both cases, a new node will attach to the super nodes with 
(approximately) the same probability. Thus in the maturing phase, the evolution of the information consumption 
pattern is still dependent on the existing network structure, but the dependence becomes weaker as the network 
becomes larger.

Occasionally, instead of independent increment, several nodes simultaneously come to connect to an existing 
node in the network due to certain special characteristic (degree) of the node is attached.

Burst-attractive: A node with a degree equal to kb is called a burst-attractive node. When a node reaches this 
characteristic degree kb of the network, then it can attract multiple new nodes simultaneously.

Physical meanings of parameters: Other than the meaning of kb mentioned above, the general meanings of 
other parameters introduced and some extra parameters are also included as follows:

The parameters  and   represents the thresholds on the strengths (in terms of degree) to trigger the start and 
the end of fast-growing phase. In the mathematical model described later, we also introduce extra parameters λ, 
L and U, and γ, which serves as the parameters related to the mean arrival rate of the node, and the strengths (in 
terms of degree) of the attachment before the start and the end of fast-growing phase, and also the speed of 
fast-growing phase respectively. All these parameters could be viewed as characteristics of the structure of the 
internal organization of the network17.

Two examples are given as follows to illustrate the application of the proposed model.
Example 1: Citation Networks. In citation networks, kb is the number of citations for a paper to be first con-

sidered as important. This number could depend on the convention of the research field, or common authors and 
journals research advertisement practice. One may view kb citations as the time a paper is first recognized as 
“sleeping beaulties” in citation analysis jargon32. pi(0) is the probability that the number of citations is i when a 
paper is being published (i.e., time 0). So most of the probability mass is at p0(0), but some probability could be at 
pi(0) for small i, due to some related works at similar time but published earlier, and cited this paper before it is 
published.  and   could serves as the two separating boundaries of the “degree trichotomy” in citation distribu-
tion mentioned in the introduction. Besides that the model parameters γ, L, ,   are designed to capture several 
important phenomenon discussed in citation analysis literature. Details are presented in Methodology section.

Example 2: Online Social Networks. In online social networks, kb is the number of friends such that a person 
is first considered as celebrity causing sudden burst of attraction, or friend recommendation engine starts to have 
enough data to attract a burst of new comers to add this person as friend simultaneously. pi(0) is the probability 
that the number of initial friends is i when a person just join the online social network, the probability mass could 
also spread over for several i.

It is noted that both examples can be regarded as information consumption processes. For example, in citation 
networks, if paper A is related to a newly written paper B, then the author(s) of paper B has some probability to 
get to know paper A and thus cite it. We call this incident as an information consumption attempt. Once paper 
B cites paper A (or the attempt is successful), then the author(s) of another paper C may note paper B and cite it. 
This shows how this sequence of attempts can connect to each other, which is viewed as the connection of citation 
networks. Similar explanations can be formulated for social networks.

Mathematical formulation (The Markov Chain (MC) Model).  In this section, a network model is formulated 
mathematically. Consider a connected network is initialized with certain number of initial nodes with arbitrary 
initial connections between them (e.g., the simplest possible initial network is a chain with only two nodes con-
nected by one edge). As time evolves, new nodes arrive, and each of them would connect to an existing node with 
certain probability, which depends the on the phase the existing node is in, described as follows.

When the network size (the number of nodes) is n − 1, and a new node arrives, it will connect to the i-th exist-
ing node, i ∈ {1, … n − 1}, with a probability proportional to a constant 
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where N  is the network size at current observation time  , and typically L and U are restricted to ≤L  and 
 ≤ U.

To enable subsequent mathematical analysis, we consider a specific stochastic model as follows. When the 
network size is n − 1 at time t, in a small time interval (t, t + Δt), there is a probability λΔ ˆtki that some new 
node(s) arrive to the network and connect to node i, and the remaining probability λ− Δ ∑ =

− ˆt k(1 ( ))i
n

i1
1  would be 

no node arrival. In most cases, when there are new node(s) to be attached to node i, it would be the case with only 
one single node arrival, but when node i reach certain degree kb, bursty arrivals to it could happen, i.e., several 
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new nodes can simultaneously connect to node i create a burst increase in its degree ki. Specifically the probability 
of increasing from degree kb to degree k within this small time interval Δt would be λΔ →

ˆtk pi k kb . Under this 
model, the network formation process is a Markov Chain with the state variable completely characterized by the 
network size n and the degree ki of each node i, with the following state evolution equation.

Denote the probability mass function of the degree of any specified node * by = =p t K t k( ) Pr{ ( ) }k . 
According to the derivation in the methodology section, its degree dynamics is simplified as:
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where ⋅�( ) is the indicator function.
The state transition rate diagram of the degree of the specified node is shown in Fig. 1 (with kb = 0 as an 

example).
Now, one is ready to analyze the node degree distribution pk. Beside deriving pk(t) from eq. (2), one also needs 

to know how long (i.e., the residential-time, T) the specified node * has been staying in the network. Suppose that 
the network starts at time 0, and node * arrives at time t*. Then, at an observation time  , the residential-time T 
of node * is = −⁎ ⁎T t . Denote the corresponding distribution as fT(t). This distribution depends on the 
differential-difference equation for the marginal distribution of N(t), obtained by summing eq. (4) over k. Then 

=p E p t[ ( )]k T k . Detailed calculations are presented in the Sec. S4 of the SI.

Theoretical Results.  Mathematically, we prove that the proposed MC model is a generalization of several 
existing models such as the Poisson network model, exponential network model, and BA model, by appropriately 
setting the physical constraint-related parameters: lower bound L, lower threshold , upper bound U, and upper 
threshold  ; and generally, the MC model can deduce the trichotomy in degree distribution. The results are stated 
as several theorems as follows with a sketch of proof of the general case in appendix. Details of all proofs are also 
provided in Sections S3 and S4 of SI.

Remark 1 The model can also be extended to directed/undirected cyclic/acyclic networks. When a node joins 
the network, it can be a bursty arrival and associate its multiple edges with existing nodes, Each edge could be 
directed or undirected. With multiple (un)directional edges added, the resultant network could be directed/undi-
rected cyclic/acyclic. By keeping track of the state variables in in- or out-degrees, we can perform similar analysis 
as in the case of degrees for undirected graphs.

In the following, we denote the MC model with no burst structure (i.e., = ∀ ≥→p k0, 1k kb  except 
=→ +p 1k k 1b b ) and the same starting degree ks for nodes (i.e., = ∀ ≥p k(0) 0, 0k  except =p (0) 1k s ) as “the 

default MC model”.

MC generalizes the Poisson network model and exponential network model.  Theorem 1 When L U= = =L U 
in the default MC model, as → ∞ , it reduces to one of the two classical models respectively, for

•	 Case 1 — accounting a fixed set of nodes (starting at the same time and degree): it reduces to the Poisson 
network model;

•	 Case 2 — accounting all nodes: it reduces to the exponential network model.

Proof Proof of theorem 1 is given in Sec. S3.4 of the SI.	 □

MC generalizes the power–law model.  Theorem 2 When = =L 1, = = ∞U   in the default MC model, as 
 → ∞, it reduces to the power-law model.

Proof Proof of theorem 2 is given in Sec. S3.5 of the SI.	 □

Figure 1.  The state transition rate diagram of the MC for each particular arrived node (i.e. dynamic eq. (2) with 
trichotomy model eq. (1)), with its degree k as the state variable (with the burst occurred at kb = 0 as an 
illustration). The blue part represents the usual state transition (or developement) of the degree having 
trichotomy in its transition rate λk̂ according to its phase (wherein the transition is triggered by a single new 
node arrival). The red part represents the burst occurrence, i.e., some new node(s) coming at a rate of λL 
simultaneously, with the rate of making i connections simultaneously with this existing node being λLP0 →i. 
Noted that the initial distribution of the degree of this arrived node is denoted as pi(0) for all degree i, is not 
shown in the figure.
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Remark 2 When the MC model is equipped with non-singleton starting degree or with burst structure, theorem 
1 and theorem 2 can be generalized to give mixture of those classical distribution, such as mixture of exponential 
or power–law (giving power–law with exponent slightly greater than −3). Specifically, with non-singleton starting 
probability, = ∑ =p q p dk i

k
i ki ki0 , where qi = pi(0) is the mixing probability, pki is the probability mass of classical law 

with starting degree i, and dki = 1. More generally, with the burst structure, dki is a discounting factor (<1), and qi 
is a more general mixing probability.

MC explains observed trichotomy in General Case.  In Experimental Results section below and Sec. S8 of SI, 
experimental results in different network datasets are presented. Such examples exhibit three phases in their 
degree distributions, and we conjecture this phenomenon could be general in nature. The proposed MC model 
offers an analytical closed-form expression of the degree distribution and can explain the observed three phases 
in empirical degree distributions in real networks. The results are summarized as follows:

Theorem 3 The degree distribution of the default MC model (with starting degree i) in general parameter settings 
is given by
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and the degree distribution of the general MC model is a mixture of the above distributions over various i with 
mixing probability qi and burst related discount factor dki as = ∑ =p q p dk i

k
i ki ki0 , where L ≤ γ ≤ L + 1. For U N , 

one has γ ≈ L, while for U~N, one has γ ≈ L + 1;
c, c2i, c3i are normalization constant making the total probability to be 1, i.e., ∑ =p 1k k ;
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3 3  are the (normaliza-

tion constant, starting degree) pairs for degrees at phase 2 and phase 3 (It is noted that when s.d. is outside the 
boundary of the phase, the probability mass function is defined as 0 at that phase.); N  is the network size at 
current time  .

With no burst structure, qi = pi(0), i.e. the starting degree distribution, and dki = 1.
With burst structure, qi is greater than pi(0) by a factor proportional to the probability of transfer from kb to i, 

i.e., = →d pki k kb  when kb is in the interval between i and k − 1; and dki = 1 otherwise.

Proof Proof of theorem 3 are sketched in the Appendix and are given in details in Sec. S3.6 of the SI.

Remark 3 The general solution of the degree distribution under the MC model without the trichotomy structure 
(eq. (1)) could also be found as given in Sec. S3.3 of SI. Further analysis, e.g., Z-Transform (in Sec. S5) and the 
cumulative distribution function (cdf) (in Sec. S6) of the network degree distribution, and network diameter 
(in Sec. S7), under the MC model are also derived respectively in the sections S5, S6, and S7 of SI. These results 
not only can show the impact of new system parameters, they can also have profound impact in deriving other 
graph metric43, other fitting method based on cdf, and analytic tractable general diameter formula in contrast to 
simulation-based power-law counterpart result7.

Simulation Results.  The node-degree distribution of the MC model has been simulated, for a network of 
N = 100,000 nodes. The simulation is set up according to the model as follows: there is a certain initial set of nodes 
of degree 0 at the beginning of each time. When a new node comes, it will connect to an existing node according 
to our MC model. When there are 100,000 nodes, the empirical node-degree distribution of the focused group of 
nodes is reported. For generating the Poisson model under the MC model, the focused group is the initial set of 
nodes. In that simulation, we set 50,000 initial nodes which is enough for demonstrating the statistics. For other 
networks, the focused group is all the nodes in the networks. In that simulation, the initial size is 1 (just for the 
sake of matching the literature convention in generating those networks). It is remarked that this setting does 
not lose any generality, because according to our theorem of our proposed framework, same statistics properties 
could be also be generated for different initial sizes. Every simulation is repeated for 100 times, and the average 
result is reported.

First, by setting = = = =L U 1L U  in the MC model, when the focused group is the initial set of nodes, it 
reduces to the Poisson model. The results are shown in Fig. 2(a); when the focused group is the all the nodes, it 
reduces to the exponential network model, with results shown in Fig. 2(b). Second, by setting = =L 1 and 

= =U N , the MC model reduces to the BA model. The results are shown in Fig. 2(c).
Finally, to show a general scenario, by setting = =L 2 and = =U 8, the MC model generates the trichot-

omy distribution shown in Fig. 2(d), i.e., a power-law distribution with exponential head and tail. Several charac-
teristics of the node-degree distribution plot matches with those predicted by theory. The exponent of the 
power-law region, −(γ + 1), depends on L: specifically, γ≤ ≤ +L L 1, particularly for small U as in this case, 
γ ≈ L. In Fig. 2(d), L = 2, it matches with the observed exponent γ + 1 = 3. It is also observed that the head part is 
geometrically distributed with parameter 0.6 and the tail part is geometrically distributed with parameter 0.27. 
Several other simulation results under different system parameters setting on L and U are presented in the 
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Sec. S8.1 of SI and the relationship between the observed variation of the node-degree empirical distribution of 
the simulated data and these system parameters are also further discussed in the Sec. S8.2 of SI.

Experimental Results.  The trichotomy behaviour from real-world networks, including citation network, 
social networks and vehicular networks, are studied in this article, via nine real-world datasets. Citation network 
is the major example of applications of the MC model in the main document, for other networks, the experimen-
tal results are presented in Sec. S10 of SI.

In this section, three datasets from scientific publication citations and patent citations7, 41, 42 are studied, as 
shown the following Table 1. They are used to demonstrate a trichotomy behaviour in the node-degree distribu-
tion of citation networks, where node-degree in this case corresponds to the number of citations for each dataset. 
Those results are given in the Sec. S10 of SI. In each type of real-world network of this section and section S9 of SI, 
the corresponding physical meaning of the Information Consumption Model (ICM) of that network, the param-
eters estimation (i.e., the fitting) of the proposed model for that network from the real-world datasets according 
to our proposed procedure (described in Sec. S9 in SI), and the utility of the ICM of that network are provided in 
the corresponding section.

Empirical Data and Fitting Results.  Figure 3 shows the distributions of citations for DBLP Computer Science 
publications41, American Physical Society (APS) publications42 (also studied previously44 with older dataset), and 
US patents datasets7. Since some recent researches45 show there are significant difference in citations impacts for 
the case within on field of research and the case for interdisciplinary research (IDR), we conduct our analysis 
from degree distribution viewpoint (which is different from the literature45) in a subset of papers on computer 
networks in DBLP datasets as shown in Fig. 3(b), in comparison with the full DBLP database that contain some 
interdisciplinary research. We observe similar “trichotomy” behavior in terms of degree distribution, yet there are 
also some characteristic differences in terms of the estimated parameter as shown in Table 2, leading to a support-
ive result to the literature45, i.e., IDR leads to higher citation impact as discussed below.

We compare our MC model with three other models, power-law = α−p x( )x , power-law with exponential 
cutoff = α β−p x e( )x

x , and shifted power-law with geometric cutoff model46–48 = + Ωα−p x x( ( ) )x
x

0 . We use 
Kolmogorov-Smirnov statistic to quantify the error between the fitting curve and the empirical data. The fitting 
parameters and errors are shown in Table 2. Power-law has one estimated parameter in the model, power-law 
with exponential cutoff model has two, while MC model and shifted power-law with geometric cutoff model both 
have three parameters. One can see that our MC model out-performs these models by 34–97% in DBLP, 
DBLP-Networking, and US Patent datasets. In APS dataset, MC model performs similarly to the shifted 
power-law with geometric cutoff.

With the small fitting error, according to the discussion section, one may try to use the parameters ,   and γ 
to draw some results on comparison citation practice in different areas on research. One can see that there is a 
larger  and   in APS than DBLP (a citation database for Computer Science (CS)) and US patent. It means a 
paper published in physics (in APS) has a longer time in “Sleeping Beaulties”, as well as more sensitive to high-cite 
article, compared to CS (which is also the case when compared the general CS with a restricted area, as one could 
also see a larger   in DBLP in general (with IDR) than the specific Networking area). A larger γ in DBLP than that 
in APS implies a faster increase in publications number, but slower increase in citation count. The smaller γ in 

Figure 2.  Simulation results of node-degree distribution on the MC model with varying L and U. The blue 
circle points represent the empirical probability density function (PDF). The red solid line represents the 
theoretical prediction of the PDF. In (c,d), the empirical PDF was plotted using logarithmic binning to avoid 
over-fitting due to large variations in the tails.

Dataset Date #Nodes

DBLP Citation41 1995–2014 2,146,341 papers

APS Citation42 1893–2013 531,478 papers

US Patent Citation7 1975–1999 3,774,768 patents

Table 1.  Citation Datasets.

http://S8.1
http://SI
http://S8.2
http://S10
http://S10
http://S9
http://S9


www.nature.com/scientificreports/

7SCienTifiC Reports | 7: 3723 | DOI:10.1038/s41598-017-03613-z

APS could also be explained by burst structure (due to more notable awards in physics), causing simultaneous 
citation and leading faster accumulation according to the MC model. The larger γ and large  , could mean CS 
(particularly a small field within CS, e.g., networking) is easier to get aware and more publications and is easier to 
get forgotten compared to physics. US patent has an effect in between CS and physics. It is remarked that in US 
patent, the fitting error is worst than other case. It is possibly due to more different starting degree and burst 
structure parameter could increase the fitting error. A possible cause is that there are more cross-discipline results 
in US patent, and hence more varieties in citation practice on starting degree, as observed in beginning few 
degrees in citation network distribution in Fig. 3(d), the default MC model which is used for result plotting of 
Table 2 is not yet enough to provide a perfect fit. Nevertheless, one could further improve the fitting error with the 
general MC model for introducing mixing probabilities from starting degrees support and burst structure.

Discussions
Since the proposed MC model introduce many extra features compared to existing complex network models 
(elaborated in S1 of the SI), it could help us to infer many new characteristics of the real-world network where 
existing models failed. In this section, the citation network example is discussed to illustrate how the MC model 
can use experimental data in citation network to infer some new characteristics of the network for citation anal-
ysis usage. In the S9 of the SI, social network and vehicular network examples are illustrated. It is remarked that 
examples are mainly for illustration purpose, the MC model, as a unified framework of existing models, with new 
features, could also inspire explorations of new characteristics on other real-world networks, particularly those 
studied in the existing complex network literature1–7.

Modeling the citation network using the MC model.  In citation networks, publications (papers) are 
presented as nodes. When a new publication p1 cites another (existing) paper p2, a link is built between p1 and 
p2, and the node degree of p2 increases by one. In the MC model, the number of citations (i.e., links) that a new 
publication create is a random variable, specifically it creates i citation with probability pi(0). A special feature of 
the MC model compared to existing work, is that in the MC model, among those lowly cited paper (i.e., papers 
with citations ≤ ), a new paper is likely to cite any of them at random (with proportionality factor L). It models 
the effect that several new publications have equal chance of being sleeping beauties, instead of first mover advan-
tage of “cumulative advantage”. When the citation count of a paper grows, citation once it reaches certain (degree) 
citation, kb, researchers in that area will be aware of it (may be via journal website advertisement), once it is rec-
ognized as “Sleeping Beaulty” (i.e., its importance is recognized by fellow researchers), it will attract multiple 
citation simultaneously (noted that this burst arrival point kb could depend on research area citation practice). 
Other than kb, as citation increases, there could be a common practice that when a paper get citation count >  
(i.e., the paper is already got certain level of citations), it will be viewed as part of the state-of-the-art results. New 
papers may choose to cite the paper with a higher probability when it has higher citations among those 
state-of-the-art papers. For those papers that are highly reputable (i.e., papers with citations > ), a new paper 
may cite any of them with equally high probability, which are all treated as “core documents”. A larger  in a 
research area means that a paper needs a larger number of citations before starting to draw significant attention, 

Figure 3.  Citation probability versus the number of citations on a double logarithmic scale using partial 
logarithmic binning57. The inner figures show the values of Kormogorov-Smirnov test vs. Xmin and Xmax.  and 
  are selected from Xmin and Xmax to minimize the KS-test distance value. The detail of the fitting method is 
presented in the Sec. S9 of SI.

Dataset   exponent MC PL PL − C SPL − C

DBLP 20 118 −4.93 0.02 0.81 0.51 0.18

Networking 21 39 −4.05 0.06 0.83 0.59 0.30

APS 43 652 −2.69 0.02 0.62 0.50 0.02

US Patent 22 213 −3.35 0.13 0.82 0.70 0.20

Table 2.  Fitting parameters and errors in citation datasets. MC is the fitting error of our model, PL is the fitting 
error of using power-law, PL − C is the fitting error of using power-law with expoenetial cutoff, and SPL − C is 
the error of shifted power-law with geometric cutoff.
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and a larger   means that the study in the area may have been very popular. The interval between  and   can 
represent the amount of work needed to be done to explore, verify, or extend a work so as to make it become one 
of the most reputed papers in its field. A larger L represents a larger initial attractiveness of a paper before becom-
ing a state-of-the-art result of the field, and a larger U represents a larger saturated attractiveness when the paper 
became reputable.

There is a strong relationship between the parameters of the MC model and citation analysis in the existing 
literature. The MC model treats the citation count from 0 to  as the entry level or low cited regime (for modeling 
“uncitedness”). The regime of citation count from  to   is used to model the intermediate or cumulative advan-
tage regime, and what beyond   is treated as the “highly cited”29, 35 or “citation classic”49 regime. Further corre-
sponding meaning of the parameters in the MC model and their role as quantitative guidelines for subsequent 
citation analysis are given as follows.

Illustration of physical meaning in citation networks.  Meaning of L.  The probability of uncitedness 
is shown to be related to the mean arrival rate of citations to a publication in existing citation models50. This fea-
ture is also captured in our model as both the probability of uncitedness (p0) and the mean arrival rate (λL) are 
related to parameter L.

Meaning of γ.  In citation network statistics, the number of citations increases over year. In comparing the 
exponents of the power-law distributions, we could use the same interpretation provided by Redner28: a smaller 
power-law slope γ means that the database has higher citation count increment, or equivalently less publication 
number grow. In the MC model, n denotes the number of papers, and λL is the mean arrival rate of publication, 
with L is the normalized rate, so according to Redner28, γ is proportional to L, which is now theoretically estab-
lished as a corollary of the trichotomy theorem in our MC model.

Meaning of .  One can gain extra insight of the citation statistics based on our model parameters and network 
generation mechanism. The parameter  could be a simple yet effective new scientometric indicator, which helps 
one to judge whether a paper has already passed the most difficult time of attracting the first few citations. In the 
literature, there is an important concept called “sleeping beauties” (i.e., even an important paper takes time to 
outstand other papers)31, cumulative advantage (i.e., preferential attachment) mechanism has first mover advan-
tage (i.e., favor those papers who publish earlier), so cannot generate “sleeping beauties” (which are important 
papers, but not necessarily published in an earlier time) reasonably. In contrast, our network generation mecha-
nism provides fair chances of generating “sleeping beauties” (by using an equal rate, proportional to L, among 
those potential candidate nodes, i.e., those nodes before reaching degree ). In other words, one does not need to 
look into the details of the degree distribution every time to make this judgment.

Meaning of kb.  In the literature, once a “Sleeping beauty” is recognized, there will be a burst of citations associ-
ated to this “Sleeping beauty” simultaneously. In the MC model, this effect is modeled by each node reaching kb 
has a chance of being “Sleeping beauty”, and attract a burst of citations of different size (to reach citation count k) 
with different probability →pk kb .

Meaning of  .  Similar to , the parameter   is a simple yet effective scientometric indicator to judge whether a 
paper has reached the aging stage, a well-recognized phenomenon in citation analysis literature.

With this improved citation network node attachment model, one could further combine it with the afore-
mentioned recent modeling techniques (e.g. aging-related function and fitness function32) to capture the impact 
of a publication year, as well as “novelty” fitness32, to model the heterogeneity of being “beauties”, and then have a 
more accurate model of evolution of citation dynamics of a paper or a research topic.

Implications to citation analysis.  The purpose of citation analysis is to understand citation behaviors, based 
on which researchers can design better scientometric (or bibliometric) indicators. These indicators may help in 
both managerial tasks (e.g., ranking scientists51, assessing journal importance52) and improving database con-
sistency53) and communication tasks (e.g., researchers can easily obtain important/relevant information from 
others’ publications54). Studying the degree distribution is an important procedure of citation analysis, because 
it captures the important statistics of a research area in a particular database55. One typical example of the sta-
tistics is to design more reasonable scientometric indicators for ranking scientists. For example, a recent work51 
proposea new index, called o-index, used to evaluate an individual researcher, which has several benefits over 
the traditionally known indices like h-index. However, we notice that the o-index only takes the highest paper 
citation count into consideration, but does not include the full observation of the degree distribution of a citation 
network. It may also suffer the same deficiency of non-robustness of h-index as pointed out in the literature56. 
The highest citation may be due to some random factors (e.g., the researcher co-authored a paper with a famous 
scientist, which leads to a single highly-cited paper). Merely relying on this count prohibits the o-index from a 
more accurate interpretation.

Using our model, one can utilize the distribution to construct a more reasonable index. One possibility is to 
replace the o-index (which is mh , where m is the citation count of the researcher’s mostly cited paper, and h is 
his/her h-index, defined by first ordering his/her publications’ citation counts = 

c{ }r r 1,2,  in descending order with 
cr being the r-th one, and h-index is the maximum r with ≥c rr ) by n h , where n  is the number of his/her 
papers in the regions whose citation counts are larger than a threshold (e.g.,  ). Such a modification of o-index 
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using our model parameter   inherits the benefit of o-index over h-index in ranking scientists in the citation 
network context (similar reason was explained51), while it is statistically more robust, as the effects of outliers and 
the highest citation count decrease.

Methods
Methods for Model formulation.  In this section, the method to derive the essential individual degree 
dynamic eq. (2) is elaborated. From the MC model description, consider a specific node (denoted as node * 
hereafter), then its degree k* and the corresponding network size n together would form a two-dimensional (con-
tinuous-time) Markov chain, with its state transition rate diagram depicted by Fig. 4 (for better illustration, the 
burst structure is not shown in this figure).

In Fig. 4, a circle represents a state of the state variable. Suppose that node * in consideration has degree k − 1 
and the current network size is n − 1. Then, according to the modified preferential attachment mechanism, a 
newly arrived node connects to node * at rate λ −k( 1). But, it is also possible for this new node to connect to 
other nodes. Since the new node is likewise preferentially attached to other nodes in proportion to their modified 
degrees, the total state transition rate of connecting to other nodes is given by λ∑ ≠

ˆ
⁎ki i. In the following, consider 

that it connects to node i′.
Denote the number of nodes in the network at time t by N(t) and denote the degree of the specified node * at 

time t by K(t) as two random processes. Then, the joint probability mass (density) function of this node degree 
and the network size at any particular time t is = = =p t Pr K t k N t n( ) { ( ) , ( ) }k n, . Also denote the sum of the 
modified degrees of all nodes in the network by Sn. Then, when the network has size n − 1, one has 
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state transition rate diagram in Fig. 4, the dynamics of the probability mass function satisfy the following 
equation:
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for all n, but the last term of eq. (4) will vanish at the boundary =n N .
Summing eq. (4) over all the possible network size n, from initial network size n0 to N , gives the dynamics of 

node *’s degree k (for ∈ k N{0, , } ) as follows (with detail steps illustrated in Sec. S3.1 in SI):

 
λ λ= − − − − .− −
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For simplicity of analysis, one could remove the small boundary terms λ − −
k p t( 1) ( )k N1, 

 and 


λk̂p t( )k N,  
(which vanishes as  → ∞), it will result in λ λ= − −−


ˆp t k p t kp t( ) ( 1) ( ) ( )d

dt k k k1 , i.e., eq. (2) for the case without 
burst structure kb. Similar aggregation of state could be done for the case of MC model with bursty arrivals, lead-
ing to the eq. (2).

Figure 4.  The state transition rate diagram of a two-dimensionalMarkov chain for a specific node *— where k 
denotes its degree and n denotes the network size that this node * is in, with values n0 and N  respectively at its 
initial time and time  . In the diagram, it is noted that = −

−
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ˆ
⁎k k 1

n( 1)
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Methods for Theoretical Results.  The proofs of Theorem 1 and Theorem 2 are provided in Sec. S3.4 and 
S3.5 of SI respectively, which are similar to this one. This section focuses on Proof of Theorem 3 under the default 
MC model; the proof for the general case under the trichotomy structure (i.e., eq. (1)) is presented in Sec. S3.6 of 
SI. The proof for the most general form of network degree distribution for any form of modified degree (or attach-
ment kernel) k̂ is also given in Theorem 3 in Sec. S3.3 of SI.

Define the  -truncated Laplace transforms of pk(t) and p t( )k N, 
 as ∫ −
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  are small for all i (and asymptotically con-

verge to 0 as  → ∞) in typical settings of system parameters. Specifically, the upper bound   is typically 
non-trivial, i.e., U T N , so î  is upper bounded, and thus this part of error 


λî P s( )i N,  vanishes as → ∞ .

Applying the eq. (6) to the trichotomy model (i.e., eq. (1)), one gets:
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It will be shown in Sec. S4 of SI that the residential-time of the node * has an exponential distribution with 
parameter λγ and a normalization constant 
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which is a power-law with exponent −(γ + 1).

Methods for Experimental Results.  For fitting the default MC model (or generally with fix mixing 
probability), a maximum likelihood procedure, generalizing existing literature19 to the case with “trichotomy” 
is proposed in Sec. S9 of SI. For the fitting with the general MC model with mixing probability, one could use 
expectation-maximization (EM) algorithm, by refering the proposed procedure for the default MC model (with 
fixed mixing probability) as the maximization step in EM, and update the mixing probability using an expectation 
step as in that of exponential random graph model with mixture20, 21. In Sec. S9, another fast heuristic method 
(without the need of this alternating procedure (EM)) is introduced to handle the case with small numbers of 
mixing probabilities.

References
	 1.	 Barabási, A.-L. Network Science (Cambridge University Press, 2016).
	 2.	 Newman, M. Network: An Introduction (Oxford University Press, 2010).
	 3.	 Barabasi, A.-L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).
	 4.	 Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabási, A. L. The large-scale organization of metabolic networks. Nature 407, 

651–654 (2000).
	 5.	 García Martín, H. & Goldenfeld, N. On the origin and robustness of power-law species–area relationships in ecology. Proceedings of 

the National Academy of Sciences 103, 10310–10315 (2006).
	 6.	 Martin, T., Ball, B., Karrer, B. & Newman, M. E. J. Coauthorship and citation patterns in the physical review. Phys. Rev. E 88, 012814 

(2013).
	 7.	 Leskovec, J., Kleinberg, J. & Faloutsos, C. Graphs over time: Densification laws, shrinking diameters and possible explanations. In 

Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ‘05 (2005).
	 8.	 Erdös, P. & Rényi, A. On random graphs i. Publicationes Mathematicae 6, 290–297 (1959).
	 9.	 Callaway, D. S., Hopcroft, J. E., Kleinberg, J. M., Newman, M. E. J. & Strogatz, S. H. Are randomly grown graphs really random. Phys. 

Rev. E 64, 041902 (2001).
	10.	 Deng, W., Li, W., Cai, X. & Wang, Q. A. The exponential degree distribution in complex networks: Non-equilibrium network theory, 

numerical simulation and empirical data. Physica A 390, 1481–1485 (2011).
	11.	 Liu, Z., Lai, Y.-C., Ye, N. & Dasgupta, P. Connectivity distribution and attack tolerance of general networks with both preferential 

and random attachments. Physics Letters A 303, 337–344 (2002).

http://S3.4
http://S3.5
http://S3.6
http://S3.3
http://S4
http://S9
http://S9


www.nature.com/scientificreports/

1 1SCienTifiC Reports | 7: 3723 | DOI:10.1038/s41598-017-03613-z

	12.	 Yule, G. U. A mathematical theory of evolution, based on the conclusions of dr. j. c. willis, f.r.s. Philosophical Transactions of the Royal 
Society of London Series B 213, 21–87 (1925).

	13.	 Simon, H. A. On a class of skew distribution functions. Biometrika 42, 425–440 (1955).
	14.	 Amaral, A., Scala, A., Barthélémy, M. & Stanley, H. Classes of small-world networks. Proceedings of the National Academy of Sciences 

97, 11149–11152 (2000).
	15.	 Papadopoulos, F., Kitsak, M., M. Ángeles Serrano, M. B. & Krioukov, D. Popularity versus similarity in growing networks. Nature 

489, 537–540 (2012).
	16.	 Xie, Z., Ouyang, Z., Zhang, P., Yi, D. & Kong, D. Modeling the citation network by network cosmology. PloS one 10, e0120687 

(2015).
	17.	 Hébert-Dufresne, L., Allard, A., Marceau, V., Noël, P.-A. & Dubé, L. J. Structural preferential attachment: Network organization 

beyond the link. Phys. Rev. Lett. 107, 158702 (2011).
	18.	 Kolaczyk, E. D. & Csárdi, G. Statistical Analysis of Network Data with R (Springer, 2014).
	19.	 Pham, T., Sheridan, P. & Shimodaira, H. Joint estimation of preferential attachment and node fitness in growing complex networks. 

Scientific Reports 6 (2016).
	20.	 Snijders, T. A. B., Pattison, P. E., Robins, G. L. & Handcock, M. S. New specifications for exponential random graph models. 

Sociological methodology 36, 99–153 (2006).
	21.	 Chatterjee, S. & Diaconis, P. Estimating and understanding exponential random graph models. The Annals of Statistics 41, 

2428–2461 (2013).
	22.	 Borgatti, S., Everett, M. & Johnson, J. Analyzing social networks (SAGE Publications Limited, 2013).
	23.	 Lü, L. & Zhou, T. Link prediction in complex networks: A survey. Physica A: Statistical Mechanics and its Applications 390, 

1150–1170 (2011).
	24.	 Liu, Y.-Y., Slotine, J.-J. & Barabási, A.-L. Controllability of complex networks. Nature 473, 167–173 (2011).
	25.	 Sun, J. & Motter, A. E. Controllability transition and nonlocality in network control. Physical review letters 110, 208701 (2013).
	26.	 Gates, A. J. & Rocha, L. M. Control of complex networks requires both structure and dynamics. Scientific Reports 6, 24456 (2016).
	27.	 Chen, G. Pinning control and controllability of complex dynamical networks. International Journal of Automation and Computing 

14, 1–9 (2017).
	28.	 Redner, S. How popular is your paper? An empirical study of the citation distribution. The European Physical Journal B 4, 131–134 

(1998).
	29.	 Bornmann, L. How to analyze percentile citation impact data meaningfully in bibliometrics: The statistical analysis of distributions, 

percentile rank classes, and top-cited papers. Journal of the American Society for Information Science and Technology 64, 587–595 
(2013).

	30.	 Egghe, L., Guns, R. & Rousseau, R. Thoughts on uncitedness: Nobel laureates and fields medalists as case studies. Journal of the 
American Society for Information Science and Technology 62, 1637–1644 (2011).

	31.	 de Solla Price, D. A general theory of bibliometric and other cumulative advantage processes. Journal of the American Society for 
Information Science and Technology 27, 292–306 (1976).

	32.	 Wang, D., Song, C. & Barabási, A.-L. Quantifying long-term scientific impact. Science 342, 127–132 (2013).
	33.	 de Solla Price, D. Networks of scientific papers. Science 149, 510–515 (1965).
	34.	 Hajra, K. B. & Sen, P. Aging in citation networks. Physica A: Statistical Mechanics and its Applications 346, 44–48 (2005).
	35.	 Brzezinski, M. Power laws in citation distributions: Evidence from scopus. Scientometrics 103, 213–228 (2015).
	36.	 Simkin, M. & Roychowdhury, V. A mathematical theory of citing. Journal of the American Society for Information Science and 

Technology 58, 1661–1673 (2007).
	37.	 Burrell, Q. L. The individual author’s publication–citation process: theory and practice. Scientometrics 98, 725–742 (2014).
	38.	 Sekara, V., Stopczynski, A. & Lehmann, S. The fundamental structures of dynamic social networks. Proceedings of the National 

Academy of Sciences of the United States of America 113 (2016).
	39.	 Carrington, P. J., Scott, J. & Wasserman, S. Models and Methods in Social Network, Analysis, vol. 28 (Cambridge University Press, 

2005).
	40.	 Zhang, D.-G., Zhu, Y.-N., Zhao, C.-P. & Dai, W.-B. A new constructing approach for a weighted topology of wireless sensor networks 

based on local-world theory for the internet of things (iot). Computers & Mathematics with Applications 64, 1044–1055 (2012).
	41.	 Tang, J. et al. Arnetminer: Extraction and mining of academic social networks. In Proceedings of the 14th ACM SIGKDD International 

Conference on Knowledge Discovery and Data Mining, KDD ‘08, 990–998 (2008).
	42.	 The American Physical Society data sets for research. http://journals.aps.org/datasets (2014).
	43.	 Newman, M. E., Strogatz, S. H. & Watt, D. J. Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 

64, 026118 (2001).
	44.	 Medo, M., Cimini, G. & Gualdi, S. Temporal effects in the growth of networks. Phys. Rev. Lett. 107, 238701 (2011).
	45.	 Yegros-Yegros, A., Rafols, I. & D’Este, P. Does interdisciplinary research lead to higher citation impact? The different effect of 

proximal and distal interdisciplinarity. PloS one 10, e0135095 (2015).
	46.	 Albert, R. & Barabási, A.-L. Topology of evolving networks: local events and universality. Phys. Rev. Lett. 85, 5234–5237 (2000).
	47.	 Bauke, H., Moore, C., Rouquier, J. & Sherrington, D. Topological phase transition in a network model with preferential attachment 

and node removal. The European Physical Journal B 83, 519–524 (2011).
	48.	 Goshal, G., Chi, L. & Barabási, A.-L. Uncovering the role of elementary processes in network evolution. Scientific Reports 3, 1–8 

(2013).
	49.	 Wallace, M. L., Lariviére, V. & Gingras, Y. Modeling a century of citation distributions. Journal of Informetrics 3, 296–303 (2009).
	50.	 Burrell, Q. L. Stochastic modeling of the first-citation distribution. Scientometrics 52, 3–12 (2001).
	51.	 Dorogovtsev, S. N. & Mendes., J. F. F. Ranking scientists. Nature Physics 11 (2015).
	52.	 West, J. D., Bergstrom, T. C. & Bergstrom, C. T. The eigenfactor metrics: A network approach to assessing scholarly journals. College 

and Research Libraries 71, 236–244 (2010).
	53.	 Subelj, L., Fiala, D. & Bajec, M. Network-based statistical comparison of citation topology of bibliographic databases. Scientific 

Reports 4 (2014).
	54.	 Case, D. O. Looking for Information, A Survey of Research on Information Seeking, Needs, and Behavior (Academic Press, 2002).
	55.	 Lü, L., Zhou, T., Zhang, Q.-M. & Stanley, H. E. The h-index of a network node and its relation to degree and coreness. Nature 

Communications 7 (2016).
	56.	 Burrell, Q. L. Formulae for the h-index: A lack of robustness in lotkaian informetrics? Journal of the American Society for Information 

Science and Technology 64, 1504–1514 (2013).
	57.	 Milojević, S. Power law distributions in information science: Making the case for logarithmic binning. Journal of the American 

Society for Information Science and Technology 61, 2417–2425 (2010).

Acknowledgements
D.S.W.H. and G.R.C. want to thank Prof. Dinghua Shi’s constructive comments on our initial draft.

http://journals.aps.org/datasets


www.nature.com/scientificreports/

1 2SCienTifiC Reports | 7: 3723 | DOI:10.1038/s41598-017-03613-z

Author Contributions
D.S.W.H. designed the model and performed the theoretical analysis. D.S.W.H. and Y.C.C. perform simulation 
and experiment. G.R.C. and J.C.S.L. provided technical guidance on complex networks. D.S.W.H. wrote the 
main document (MD), and supplementary information (SI) with help of Y.C.C. D.S.W.H., Y.C.C., W.J.W., G.R.C. 
and J.C.S.L. revised MD and SI. Y.T.L. and G.Z. conceived the universality of trichotomy phenomenon and the 
direction of this research.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-03613-z
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://dx.doi.org/10.1038/s41598-017-03613-z
http://creativecommons.org/licenses/by/4.0/

	A Unified Framework for Complex Networks with Degree Trichotomy Based on Markov Chains

	Results

	The proposed model – the MC model. 
	Model description. 
	Mathematical formulation (The Markov Chain (MC) Model). 

	Theoretical Results. 
	MC generalizes the Poisson network model and exponential network model. 
	MC generalizes the power–law model. 
	MC explains observed trichotomy in General Case. 

	Simulation Results. 
	Experimental Results. 
	Empirical Data and Fitting Results. 


	Discussions

	Modeling the citation network using the MC model. 
	Illustration of physical meaning in citation networks. 
	Meaning of L. 
	Meaning of γ. 
	Meaning of . 
	Meaning of kb. 
	Meaning of . 
	Implications to citation analysis. 


	Methods

	Methods for Model formulation. 
	Methods for Theoretical Results. 
	Methods for Experimental Results. 

	Acknowledgements

	Figure 1 The state transition rate diagram of the MC for each particular arrived node (i.
	Figure 2 Simulation results of node-degree distribution on the MC model with varying L and U.
	Figure 3 Citation probability versus the number of citations on a double logarithmic scale using partial logarithmic binning57.
	Figure 4 The state transition rate diagram of a two-dimensionalMarkov chain for a specific node *— where k denotes its degree and n denotes the network size that this node * is in, with values n0 and respectively at its initial time and time .
	Table 1 Citation Datasets.
	Table 2 Fitting parameters and errors in citation datasets.


