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Redundant muscles in human-like musculoskeletal robots provide additional dimensions

to the solution space. Consequently, the computation of muscle excitations remains

an open question. Conventional methods like dynamic optimization and reinforcement

learning usually have high computational costs or unstable learning processes when

applied to a complex musculoskeletal system. Inspired by human learning, we propose

a phased target learning framework that provides different targets to learners at varying

levels, to guide their training process and to avoid local optima. By introducing an extra

layer of neurons reflecting a preference, we improve the Q-network method to generate

continuous excitations. In addition, based on information transmission in the human

nervous system, two kinds of biological noise sources are introduced into our framework

to enhance exploration over the solution space. Tracking experiments based on a

simplified musculoskeletal arm model indicate that under guidance of phased targets,

the proposed framework prevents divergence of excitations, thus stabilizing training.

Moreover, the enhanced exploration of solutions results in smaller motion errors. The

phased target learning framework can be expanded for general-purpose reinforcement

learning, and it provides a preliminary interpretation for modeling the mechanisms of

human motion learning.

Keywords: musculoskeletal system, human-inspired motion learning, noise in nervous system, reinforcement

learning, phased target learning

1. INTRODUCTION

Research on human-like musculoskeletal robots has become multidisciplinary in recent years,
as it involves fields such as neuroscience and materials science for modeling and implementing
musculoskeletal motor systems. In fact, this branch of robotics mainly comprises muscle models
(actuators), skeletal systems (supporting structure), and methods for motion control and learning
(control systems). Related work can roughly be divided into two types, namely, muscle dynamics
modeling along with hardware design (Jäntsch et al., 2013; Kurumaya et al., 2016; Asano et al.,
2017) and musculoskeletal robot control (Pennestrì et al., 2007; Jagodnik and van den Bogert, 2010;
Tahara andKino, 2010). Althoughmost studies have been focused on the first type, the development
of neuroscience has gradually increased the research on human-inspired control.
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As a multibody mechanical system (Stoianovici and
Hurmuzlu, 1996; Shi and McPhee, 2000) comprising muscles
and joints, the human musculoskeletal system has several
advantages. For instance, muscle redundancy maintains the
reliable operation of the musculoskeletal system when some
muscles are fatigued or even damaged. Under control of
the central nervous system, the musculoskeletal system can
accomplish accurate and fine manipulation (Rasmussen et al.,
2001; Chen et al., 2018). To unveil the mechanisms that provide
such advantages, Hill studied the contraction properties of
muscles, establishing the Hill model (Hill, 1938). From this
fundamental work, a series of muscle dynamic models have
been proposed (Huxley and Niedergerke, 1954; Eisenberg et al.,
1980; Zahalak and Ma, 1990), but all of them present specific
limitations. For instance, the simple second-order model (Cook
and Stark, 1968; Agarwal et al., 1970) lacks independent nodal
locations for external input signals, which indirectly affect the
output. The Huxley contraction model (Huxley, 1957) is highly
complex and no general-purpose method has been developed to
obtain its parameters (Winters and Stark, 1987). The Hill model
presents difficulties in measuring the fiber length during motion
(Arnold and Delp, 2011).

Research has also been devoted to design hardware for
emulating muscle characteristics. The Anthrob muscle unit
(Jäntsch et al., 2013) and the sensor–driver integrated muscle
module (Asano et al., 2015) try to resemble muscular structures.
However, the weight and size of motors make hardware
models notably diverge from biological muscles. Furthermore,
resembling tiny human muscles through hardware design is
difficult, thus undermining their applicability. In materials
science, the synthesis of ideal materials for artificial muscles is
being pursued to achieve the characteristics of biological muscles
regarding size, weight, stiffness, and dynamic behavior. New
materials for artificial muscles usually share some problems,
including unsafe voltages and low strain. Accessory equipment
can partly adjust the characteristics of materials. For instance,
liquid-vapor transition has been used on a soft composite
material (Miriyev et al., 2017) for implementation as an actuator
in a variety of robotic applications. In addition, a coiled
polymer muscle (Haines et al., 2014) controlled by varying
water temperature prevents dependence on electricity. Hence,
advanced design methods and materials seem promising to
develop artificial muscles that closely reflect the dynamics of their
biological counterparts.

Based on the abovementioned models, control systems
developed for musculoskeletal robotics also face challenges.
Redundant muscles and extremely complex tendon forces
impose several barriers for direct solutions of muscle excitation.
Widely used methods, such as inverse dynamics with static
optimization (Crowninshield and Brand, 1981), computed
muscle control (Thelen et al., 2003), proportional-derivative
control (Jagodnik and van den Bogert, 2010), and PI-type
iterative learning control (Tahara and Kino, 2010), are used to
regulate musculoskeletal systems. Although some conventional
methods, such as computed muscle control, theoretically
compute muscle excitation signals, they also demand intensive
computations for sophisticated processes (Chen et al., 2018).

In addition, these control strategies are hardly supported by
biological evidence showing that they resemble the approach of
human motion learning.

In recent years, reinforcement learning has become a popular
control method in robotics as it provides a natural-like approach
to learn from the environment. In fact, as a method that
fosters interaction with uncertain environments, reinforcement
learning allows a learner to observe the environment and then
execute appropriate actions. The environment provides rewards
for each action, and the learner aims to maximize its rewards
during decision-making. This learning process is similar to that
of humans and animals (Sutton and Barto, 2018). Studies in
neuroscience (Schultz et al., 1997; Law and Gold, 2009) verify
this principle, and hence it is reasonable to consider human-
like learning from the viewpoint of reinforcement learning
(Tesauro, 1995; Diuk et al., 2008; Riedmiller et al., 2009).
Deep neural networks are adopted to implement reinforcement
learning. Specifically, the deep Q-network (Mnih et al., 2015)
uses a deep convolutional neural network to estimate the
action-value function, making deep reinforcement learning a
powerful weapon for a myriad of applications (Van Hasselt
et al., 2016; Wang et al., 2016; Hou et al., 2017). However,
when applied to the musculoskeletal system, the performances of
deep neural networks can be unstable. Given muscle redundancy
in the musculoskeletal system, the additional dimensions
expand the solution space, hindering optimization through
reinforcement learning.

In this study, we focused on the unstable training of
musculoskeletal systems and the expanded solution space of
excitations to provide three contributions. (1) The learning
goal of humans, changes stepwise as learning proceeds over
advancing levels. For example, running requires higher physical
coordination than walking, and one cannot run before learning
to walk. Thereby, the learner target evolves from walking
to running during this process. Based on this principle, we
propose the phased target learning (PTL) framework that
reduces the computational cost for exploration in a high-
dimensional solution space. In addition, phased targets guide
the convergence of excitations to the expected value during
training. (2) As sensory information may be encoded by opposite
tuning neurons (Romo and de Lafuente, 2013), we improve
an MLP-based Q-network by introducing an extra layer of
neurons reflecting preference and using various relative action
probabilities from value functions for obtaining continuous
outputs to control a musculoskeletal arm model. (3) As noise
exists in the nervous system (A Aldo et al., 2008) and
based on information transmission in the human nervous
system (Dhawale et al., 2017), we introduce two noise sources
at the sensor and execution levels into the proposed PTL
framework. These noise sources increase the exploration capacity
in the solution space during training and strengthen the
control robustness.

In this paper, in section 2, we introduce the muscle dynamics,
the structure of the arm model, and detail the musculoskeletal
system considered in this study. Moreover, optimization of the
proposed PTL framework is outlined. Then, the PTL framework
with the biological noise sources is introduced in section 3.
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FIGURE 1 | Structure of a Hill-type muscle model. FCE and FPE are the active

and passive forces, respectively, and FT is the tendon force (Hill, 1938; Thelen,

2003).

Experimental results and conclusions are presented in sections
4 and 5, respectively.

2. MUSCULOTENDON MODEL AND
MUSCULOSKELETAL ARM MODEL

Modeling muscles is difficult because most parameters cannot
be measured precisely in real time (Arnold and Delp, 2011).
According to the Hill model (Hill, 1938), which defines that
a muscle is made up of separate elements, such as contractile
elements (CE), passive elements (PE), and series elastic elements
(SEE) (Zajac, 1989; Thelen et al., 2003), we design a control
framework for musculoskeletal systems.

2.1. Musculotendon Model
To determine the way a human can control complex muscle
systems, a muscle dynamic model is necessary. Let u ∈ [0, 1]
denote an idealized muscle excitation signal. According to a
nonlinear first-order differential Equation (1), muscle activation
signal a can be computed (Thelen, 2003):

da

dt
= u− â

τ (u, a)
, (1)

where τ varies according to idealized muscle excitation signal
u and activation signal a (Winters, 1995), â is the activation
signal after normalization, and a is transmitted to the muscle
contraction dynamic model as a final control signal.

Before introducing the muscle contraction dynamics, the
structure of a Hill-type muscle model is shown in Figure 1,
where lT and lM are the lengths of the tendon and muscle
fiber, respectively, and α is the muscle pennation angle (Garner
and Pandy, 2003). When the activation signal a is transmitted
to the muscle, the corresponding muscle force is generated
by contraction. Then, the muscle force pulls the skeletons to
generate motion or to maintain the balance of forces.

Suppose that signal u is known. To calculate tendon force FT ,
some assumptions are required. First, FT , FCE, FPE > 0 because
muscles move the skeleton by tension instead of thrusting.
Second, the change ofmuscle width can be ignored duringmuscle

contraction (Matthew et al., 2013). Third, muscle mass can
be ignored. Using these assumptions, the dynamics of muscles
can be described. Specifically, a pennation angle α can be
obtained from

lMs sin(α0) = lM(t) sin(α(t)) , (2)

where lMs and α0 are the slack length of a muscle fiber and
initial pennation angle, respectively, which also define the initial
muscle width, lM(t) and α(t) are the length of the muscle
fiber and pennation angle at time t, respectively. From α(t),
tendon force FT can be computed by a piecewise nonlinear
equation (Proske and Morgan, 1987; Thelen, 2003). In addition,
the contraction velocity of a muscle fiber is necessary for the
model. To determine this velocity, active force FCE produced
by the contractile element should be obtained first. According
to the geometric relationship between tendon and muscle fiber
(Figure 1), FCE can be calculated indirectly as follows:

FCE = FT

cos(α)
− FPE , (3)

where FPE is the passive force of the muscle fiber. During
simulations, the muscle length sometimes causes numerical
problems that result in FCE < 0, which clearly violate the first
assumption about muscles. Therefore, a constraint should be
added to avoid exceptional cases:

FCE = max{FCE, 0} . (4)

Then, contraction velocity vM can be computed by another
piecewise non-linear equation (Matthew et al., 2013):

vM = f−1
v

(

FCE

afl(lM)

)

, (5)

where fv is the force–velocity function, f−1
v is its inverse function,

and fl is a Gaussian function with variable lM (Winters, 1990).
As a key variable in the muscle dynamics model, vM(t) affects
lM(t+1) at every timestep. Variable lM is the fiber length and lMT

is the muscle length, which comprises fiber and tendon. Length
lM can be calculated directly using vM and FT , whereas lMT can be
measured. Consequently, if signal u(t) is known, the contraction
states of the muscle and tendon force FT(t) can be computed.

2.2. Musculoskeletal Arm Model
In the remainder of this section, we first establish a simplified
arm model to connect muscles and bones. Then, we analyze
the kinematic relationship between the arm model and muscle
model. Finally, a control framework is outlined using this
relationship.

According to the Newton–Euler equation (Zixing, 2000;
Hahn, 2013), we establish a two degree-of-freedom model
(Figure 2) that consists of two segments and four muscles. Then,
expected torque τn at the joints can be calculated as

τn = ∂W

∂θ
= M(θ)θ̈ + C(θ , θ̇)θ̇ + G(θ) , (6)
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FIGURE 2 | (A) Human arm model with four main muscles. (B) Simplified arm model with four muscles.

where W is the work from external forces, θ̇ is the vector of
rotational velocity, θ̈ is the vector of rotational acceleration,
M(θ) ∈ R

n×n and C(θ , θ̇)θ̇ ∈ R
n is the inertia matrix and

the centripetal and Coriolis force, respectively, and G(θ) ∈ R
n

is the gravitational force vector of our model. During forward
calculation, Equation (6) provides a way to compute expected
torques for known motion states. During inverse calculation, it
can be used to compute actual angular acceleration.

2.3. Musculotendon Model Into Arm Model
In this section, we obtain the relationship between torques and
motion states and define the adopted learning approach.

Unlike conventional robots that use a single joint motor to
generate torque, each joint in a musculoskeletal system is usually
affected by more than one muscle. Let τi be the muscle torque
generated by muscle i:

τi = FTi li2 sin γi, i = 1, 2, ..., n , (7)

where FTi is the tendon force of muscle i and γi is the
angle between the muscle and related bone. Figure 3 provides
geometric details of the muscles and bones. We set m1 = 2
and d1 = 0.3 as the mass and length of the upper arm,
respectively, whereas m2 = 1.8 and d2 = 0.3 are the mass and
length of the forearm, respectively. For the given geometry of the
musculoskeletal model, the muscle torque can be written as

{

τ ′n1 = τ1 − τ2 = FT1 l12 sin γ1 − FT2 l22 sin γ2

τ ′n2 = τ3 − τ4 = FT3 l32 sin γ3 − FT4 l42 sin γ4
. (8)

FIGURE 3 | Geometry and parameters of musculoskeletal arm model.

Muscles 1 and 2 are defined by straight lines, whereas muscles 3 and 4 are

defined by polylines.

In addition, the geometric parameters can be used to compute
sin γi:











































sin γ1 = l11 cos θ1√
l211+l212−2l11l12 sin θ1

sin γ2 = l21 sin θ1√
l221+l222−2l21l22 cos θ1

sin γ3 =
d33 cos

θ2
2

√

l232+d233−2l32d33 sin
θ2
2

sin γ4 =
d43 cos

θ2
2

√

l242+d243+2l42d43 sin
θ2
2

. (9)

In muscles 3 and 4 (Figure 2), we introduce two turning points
at the angular bisector of the elbow to design polyline muscles,
where d33 and d43 are the distances from the elbow to the
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turning points of muscles 3 and 4, respectively. From Equation
(9), it is clear that sin γi is a nonlinear function of θi. By
substituting Equation (9) into Equation (8), we obtain muscle
torque functions τ ′n1(F

T
1 , F

T
2 , θ1) and τ ′n2(F

T
3 , F

T
4 , θ2).

For the muscle description in our arm model, it is difficult
to determine its inverse function, because FT and Equation (5)
are piecewise functions with complicated expressions. Therefore,
we usually cannot calculate ui by directly using muscle force, but
instead we adopt an indirect method.

We assume that expected states θi, θ̇i and θ̈i are given.
Expected torque τn can be calculated by Equation (6) as a
learning target. On the other hand, actual tendon force FT is
known when corresponding excitation signals u are generated,
and hence actual torque τ ′n is calculable. To obtain actual angular
accelerations θ̈i, Equation (6) can be computed reversely. In
general, θ̈ can be rewritten as θ̈(τn, θ , θ̇). Considering θ̇ = dθ

dt

and θ̈ = dθ̇
dt
, joint angle θ at time (t + 1) can be obtained as

θt+1(τn, θt(θ̈t−1), θ̇t(θ̈t−1), θ̈t) . (10)

If tendon force vector FT satisfies

τn(θ , θ̇ , θ̈) = τ ′n(F
T , θ) , (11)

we can rewrite Equation (11) as

θt+1(τ
′
n(F

T
t , θt), θt(θ̈t−1), θ̇t(θ̈t−1), θ̈t) . (12)

The purpose of our framework is to find appropriate excitation
signals u to generate tendon forces that satisfy Equation (11). As a
result, the expectedmotions will be generated during exploration.
Based on Equation (12), we establish a training framework for
the musculoskeletal arm model. When excitation signal u is
given, corresponding activation signal a and tendon force FT

can be calculated by muscle dynamics. Then, new motion states
can be solved using the arm model. If excitation signal u is
unknown, we should explore candidate solutions to generate
FT satisfying (Equation 11).

3. HUMAN-INSPIRED PHASED TARGET
LEARNING FRAMEWORK

We design a learning framework to solve signal ui. Conventional
learning frameworks use expected states as the learning target.
However, these targets can cause unforeseen problems during
the solving process, and solutions can fall into local optima. In
contrast, the proposed PTL framework can avoid local optima
by guiding the learning process. Specifically, different learning
targets are designed according to the learner’s level, additionally
providing high efficiency during training. We consider the
musculoskeletal system, optimization model, and expected target
state as the most essential aspects in our framework (Figure 4)
and detail the last two parts in the sequel.

3.1. Phased Target Learning
3.1.1. Simplified Target Setup
Consider a beginner who starts to learn dancing or practicing
a sport. It is difficult for him to acquire all the professional

postures and skills at once. Instead of trying to enhance memory
or learning skills, the simplest solution is reducing the quality
requirements and perform intensive practice through gradual
improvement. This way, the beginner will easily improve by
establishing simple learning targets that are gradually set at
different levels as learning proceeds. In this study, we calculated
precise motion states to be expected targets. Then, we designed
different simplified states as easier targets for learning. Formally,
let s ∈ S be the expected states of the arm model, and sT ∈ ST be
the simplified states. sT can be calculated by simplifying s:

sT(t) = s(ceil(
t

d
) · d) · δ(0) , t = 1, 2, ...,T , (13)

where δ(t) is an impulse function, and d ∈ N+ satisfying d
T ∈

[ 1T , 1] is a forgetting factor. When d = T, sT only reflects the
endpoint state of expected state s, and when d = 1, sT = s,
indicating that sT reflects all the states of S .

Obviously, simplification induces errors with respect to
expected states. Suppose that θ ∈ S is the expected joint angle of
the arm model, and θT ∈ ST is the simplified joint angle. Then,
we define the average allowed error between s and sT as

eT = 1

T

T
∑

t=1

|θ(t)− θT(t)| . (14)

According to Equations (13) and (14), average allowed error eT
depends only on the forgetting factor d. Geometrically, eT can be
considered as the width of the equivalent error region. Figure 5
shows the width and effect of d on simplified joint angle curve θT .

PTL provides different simplified targets for learning at
varying training phases. When the motion accuracy achieves
the average allowed error range, eT , a new and smaller average
allowed error range is given to guide training. Then, we define
actual average error eR of motion as

eR = 1

T

T
∑

t=1

|θT(t)− θR(t)| . (15)

Unlike Equation (14), Equation (15) uses the actual joint angle,
θR. In addition, eT is updated after each training iteration. A new
average allowed error is computed only when

eT − eR > 0 . (16)

d =











D(d), eT − eR > 0,D(d) > 1;
1, eT − eR > 0,D(d) < 1;
d, eT − eR 6 0;

(17)

Equation (17) is the update rule of forgetting factor d, whereD(d)
is a function that satisfies D(d) < d. It is convenient to maintain
the value of |d − D(d)| small, because a large difference between
adjacent simplified states vanishes the gradual learning effect.
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FIGURE 4 | Schematic of proposed PTL framework for motion control of musculoskeletal robots. A vision sensor collects motion information. Then, visual stimuli are

transmitted to the optimization model and performance evaluation module. During optimization, state information is processed by a multi-layer perceptron. Then,

perceptual decisions (excitation signals) are transmitted to the arm model as optimization results. During performance evaluation, different phased targets are

designed to guide arm motion states. Finally, the evaluation results are transmitted to the optimization model for improved decision-making. In addition, two biological

noise sources are considered during learning for improved exploration ability.

FIGURE 5 | Effect of forgetting factor d on equivalent error region. The thin blue line represents expected angles θ , and the dotted orange line represents simplified

state θT . The equivalent error region is depicted with light orange and obtained as
∑T

t=1 |θ (t)− θT (t)|.

3.1.2. Performance Evaluation Function
Conventional temporal-difference learning methods are highly
suitable for model-free learning. Considering Equation (11), the
inverse function of τ ′n should be determined and can be set
as a model-free problem. In this study, we aimed to improve
the Q-network to estimate the continuous excitation signal u
for musculoskeletal systems. Then, we combined it with PTL to
calculate appropriate control signals.

Let T be the number of finite timesteps and ui be the
excitation signal for muscle i. Each signal ui(t) at time t has two
possible actions; either increase [ai,1(t)] or decrease [ai,2(t)]. The

adjustment of ui affects the muscle and musculoskeletal model at
time (t + 1).

However, the two actions only determine the increment sign,
and additional parameters are required to calculate the step
sizes. Furthermore, the difference between adjacent states can
hinder perceptron learning from input states during training.
Moreover, incorrect adjustments can lead to signal oscillation in
the redundant musculoskeletal model.

In human cortical circuits, sensory information is encoded
by neurons via opposite tuning (Romo and de Lafuente, 2013).
Based on this mechanism, we redefine action-value functionQui ,j
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as a probability of signal ui executing action ai,j. Equation (18)
defines ui as

ui =
1

∑2
j=1 Qui ,j

(Qui ,1umax + Qui ,2umin), i = 1, 2, ..., n (18)

and action-value function Qui ,j is redefined as

Qui ,j(st , ai,j,t) = E
[

Eui (st+1, ai,j,t+1)+ γQui ,j(st+1, ai,j,t+1)
]

,

i = 1, 2, ..., n; j = 1, 2, (19)

where Eui is an evaluation function related to arm motion.
According to Equations (18) and (19), a specific action value
of a function is not enough to obtain the excitation signal
in our method. Instead, relative values of different functions
determine an excitation signal, and thus Qui ,1 and Qui ,2 should
be maintained balanced. In addition, note that Eui is used in
Equation (19) instead of conventional reward function Rui . This
is because the Rui is a decreasing function of the action error, and
during training, reducing action errors increases Rui and Qui ,j.
In this case, the balance of action-value functions is affected by
increasing Qui ,j. Therefore, we employ evaluation function Eui ,
which is an increasing function of the action error. Reducing
errors therefore imply smaller Eui and a weaker effect than Rui on
the balance of action-value functions. Furthermore, (Eui )min > 0
promotes stability, as detailed in section 3.1.3.

We obtain the performance evaluation function as follows:

Eui (eR) = p · exp
[

m · g2(eR)
]

+ k (20)

g(eR) = min [|eR|, e0] , (21)

where p,m, k > 0 are parameters of Eui and function g(eR)
prevents exploding gradients under large errors.

3.1.3. Learning by Gradient Descent
We define the loss function by summing the squared errors
between expected action value Q′

ui ,j
and actual action value

Eui ,j + γ Q′
ui ,j

:

L(θ) = 1

2
E





n
∑

i=1

2
∑

j=1

(

Eui ,j + γQ′
ui ,j(s

′, a′; θ ′)− Qui ,j(s, a; θ)
)2



 ,

(22)

where γ is a factor to discount the future action value. The
gradient of the loss function is given by

▽L(θ) = E





n
∑

i=1

2
∑

j=1

γ

(

Eui ,j + γQ′
ui ,j(s

′, a′; θ ′)− Qui ,j(s, a; θ)
)

▽Q′
ui ,j(s

′, a′; θ ′)
]

. (23)

During backpropagation, the outputs of multi- layer perceptron
in our model can be easily obtained. We suppose that Q′

ui ,j

represents the result of the output layer and can be expressed as

Q′
ui ,j = f

(

nh
∑

h=1

ωhkyh

)

, (24)

where f (x) is the sigmoid activation function, ωhk is the weight
of the edge from the h-th node in the hidden layer to the k-th
node in the output layer. Consider ωhk as an example, the weight
increment is given by

△ωhk = −η
∂L

∂ωhk
(25)

= −η

n
∑

i=1

2
∑

j=1

γ (Eui ,j + γQ′
ui ,j − Qui ,j)

∂Q′
ui ,j

∂ωhk
(26)

= −η

n
∑

i=1

2
∑

j=1

γ (Eui ,j + γQ′
ui ,j − Qui ,j)f

′
(

nh
∑

h=1

ωhkyh

)

nh
∑

h=1

yh ,

(27)

where yh is the output of the h-th node in the hidden layer.
When the excitations become stable, the expected increment is
1ωhk → 0 such that1Qui ,j → 0, and hence Eui ,j+γQ′

ui ,j
= Qui ,j

at this time. Factor γ is known as a decimal, and we can infer
γQ′

ui ,j
< Qui ,j, which explains why the performance evaluation

function should satisfy (Eui ,j)min > 0.

3.2. Noise in Nervous System
Noise is ubiquitous in real-world systems, especially during
information transmission. As motion learning consists of
information transmission, noise is present. Recent research
roughly identified noise sources in the nervous system at the
sensor and action levels (A Aldo et al., 2008). We considered
these noise sources in the proposed PTL framework.

3.2.1. Noise at Sensor Level
During the collection of visual information, photoreceptors
receive photons reflected by objects under the influence of
Poisson noise, which reduces the accuracy of optical information
(Bialek, 1987). Although sensory noise is inevitable (Bialek and
Setayeshgar, 2005), it also mitigates sensitivity of the redundant
musculoskeletal system.

When motion tracking is performed on the redundant
musculoskeletal arm model, the Q-network method can exhibit
unstable training, because joint angles are affected by the action
of many muscles, likely falling into local optima. Then, any
small fluctuation of excitation signals can be amplified and cause
divergent signals. However, when target motion is considered
as a region, fluctuations are tolerated. We use Poisson noise to
conform tolerance regions and prevent rapid fluctuations:

sRN = sR + N1 , (28)

N1 ∼ Pois(λ) , (29)

where sR is the actual arm state, sRN is the observed arm state
observed by the vision sensor, and N1 is Poisson noise in the
visual information. In our algorithm, let sR = sRN represents the
inputs of the improved Q-network.

3.2.2. Noise at Execution Level
Noise at the sensor level is also called planning noise, as it
affects decision-making. In addition, execution noise exists and is
superimposed on the original decision signals. In fact, execution
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noise describes an uncontrollable noise whose standard deviation
is linearly related to the meanmuscle force (Hamilton et al., 2004;
Dhawale et al., 2017) and can be expressed as

uNi = min[max[ui + N2, 0], 1] , (30)

where N2 ∼ N(0, (vFT)2) simulates noise in the motor system
periphery, ui and uNi are undisturbed and noisy signals from
perceptron, respectively, and v is a scale coefficient of tendon
force FT . Note that the square of vFT defines the variance of
execution noise, and like noise in sensor level, let ui = uNi
represent the final outputs of the proposed network.

4. SIMULATION EXPERIMENTS

We conducted simulation experiments on the musculoskeletal
system model to verify the performance of different algorithms.
Moreover, the equilibria of action values are analyzed to explain
the learning process of the proposed PTL framework.

4.1. Experimental Setup
As mentioned above, we designed a simplified musculoskeletal
arm model to verify and evaluate the proposed learning method.
After analyzing its dynamics (Equation 12), a basic control
framework is devised. To validate the formulation and analyze
performance, optimization should be performed.

In this study, the proposed PTL is applied to a point-to-
point motion task with constant angular velocity as temporal-
difference learning approach. For a final state of target motion,
we calculated midpoints and required constraints using inverse
kinematics. Then, we used joint angles as motion states to design
the simplified target states. Assuming a constant angular velocity,
four types of control strategies were evaluated: (1) Q-network,
(2) Q-network with noises, (3) PTL, and (4) PTL with noises. The
implemented method including PTL is detailed in Algorithm 1.

We set maximum number of iterations K = 500 and number
of timesteps T = 10, 000 to simulate 10 s. All the errors and
control signals were recorded at each timestep.

4.2. Results and Analysis
We considered average error e = 1

T

∑T
t=1 |θ(t) − θR(t)| as a

key performance indicator, where θ(t) is the precise expected
joint angle at time t. As e reflects the average error, motion
performance can be evaluated from this measure.

Figure 6 shows the average error e according to iteration k.
Clearly, the Q-network method, Q-network with noises, and PTL
are trapped at local optima and unstable during training. Still,
phased targets improve learning by increasing the randomness of
exploration, and noises during training enhance fault tolerance
and the exploration ability during control.

Assume that the ratio of action-value functions is convergent
to local optimum bi, which is defined as

bi =
Qui ,1

Qui ,2
. (31)

Algorithm 1: PTL with Noises for Motion Learning in
Musculoskeletal System.

Require: Given precise motion states s(t) ∈ S . Initialize
parameters: interval d, maximum number of iterations K,
excitation signal ui. Obtain simplified motion state sT(t) ∈
ST using Equation 13.

1: for k=1 to K do

2: Compute average allowed error eT = 1
T

∑T
t=1 |s(t)− sT(t)|

3: if eR < eT and k 6= 1 then
4: Reduce d gradually (d ∈ N+, dmax < T)
5: Set new target states ST by simplifying S
6: end if

7: for t=0 to T do

8: Calculate activation signal ai(ui(t)) and tendon force FTi
9: Performmotion corresponding to sR(t+1) caused by FTi
10: Obtain actual motion error eR(t) = |sT(t)− sR(t)|
11: Introduce noise at sensor level into motion states via

Equation 28. Let sR(t) = sRN(t) be the inputs of improved
Q-network

12: Estimate Q′
ui ,j

by improved Q-network method

13: Update weights ω to obtain new action values Qui ,j via
Equation 23

14: Obtain signal ui(t) using Equation 18
15: Introduce noise at execution level into excitation signals

via Equation 30. Let ui(t) = uNi(t) be the outputs of
improved Q-network

16: end for

17: end for

Then, ui can be rewritten as

ui =
1

∑2
j=1 Qui ,j

(Qui ,1umax + Qui ,2umin) (32)

= 1

bi + 1
(biumax + umin) , (33)

and hence the equilibrium point bi is the only parameter
that affects excitation signal ui. We prescribe that the control
method adjusts Qui ,1 and Qui ,2 in an opposite way. In addition,
increment 1Qui ,j satisfies 1Qui ,j > 0 and 1Qui ,j ≪ Qui ,j at
simulation onset. The next equilibrium point at time (t + 1)
is b′i = (Qui ,1 ∓ 1Qui ,1)/(Qui ,2 ± 1Qui ,2), whose increment is
given by

bi − b′i =
Qui ,1

Qui ,2
− Qui ,1 ∓ 1Qui ,1

Qui ,2 ± 1Qui ,2
, (34)

= ±(Qui ,11Qui ,2 + 1Qui ,1Qui ,2)

Qui ,2(Qui ,2 ± 1Qui ,2)
. (35)

For (−1Qui ,1,+1Qui ,2), we obtain bi − b′i > 0, and excitation
signal ui becomes smaller. For (+1Qui ,1,−1Qui ,2), as Qui ,2 −
1Qui ,2 > 0, we obtain bi − b′i < 0, and excitation signal ui
becomes larger.

However, with reducing motion error, the increment of
function Qui ,j is smaller for Qui ,j ≈ 1Qui ,j. From Equation
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FIGURE 6 | Average error for different methods to control musculoskeletal arm model for motion tracking. Curves correspond to average errors over 10 trials.

(35), when (+1Qui ,1,−1Qui ,2), the sign of (bi − b′i) depends
on the sign of (Qui ,2 − 1Qui ,2). Nevertheless, it is difficult
to guarantee either (Qui ,2 6 1Qui ,2) or (Qui ,2 > 1Qui ,2).
The uncertain sign causes chattering on the excitation signal
(Equation 33), which can cause signal divergence at the
final state.

In addition, random factors like ǫ and noise can give rise to
fluctuations of1Qui ,j, which may increase the adjustment extent.
For example, if (+1Qui ,1,+1Qui ,2) or (−1Qui ,1,−1Qui ,2), the
increment of bi is given by

bi − b′i =
Qui ,1

Qui ,2
− Qui ,1 ± 1Qui ,1

Qui ,2 ± 1Qui ,2
(36)

= ±(Qui ,11Qui ,2 − 1Qui ,1Qui ,2)

Qui ,2(Qui ,2 ± 1Qui ,2)
, (37)

where (Qui ,11Qui ,2 − 1Qui ,1Qui ,2) with an uncertain sign can
seriously undermine performance, as it is directly related to
the sign of (bi − b′i). Furthermore, performance may decay
even without condition Qui ,j ≈ 1Qui ,j, and the method will
be unreliable under its influence. Fortunately, with appropriate
training, performance degradation by random effects can almost
be eliminated.

Another problem is early convergence during learning.
Figure 7 shows the evolution of the average allowed error.
The four evaluated methods terminate searching when reaching
different local optima. Generally, premature convergence occurs
through the insufficient exploration of solutions. Given its
exploration ability, the proposed PTL with noises was guided by
simplified targets to avoid premature convergence. This method
achieved the lowest error (average e < 0.746cm) and the most

advanced learning level throughout repeated experiments.

bi =
Qui ,1

Qui ,2
+ 1bi (38)

We define 1bi in Equation (38) as a small increment of
the equilibrium point caused by the allowed error eT . As
Qui ,1

Qui ,2
is not at the expected equilibrium point bi, Qui ,j cannot

easily generate large fluctuations. According to the analyses

above,
Qui ,1

Qui ,2
will converge to the final equilibrium point bi

when t = T.
Figure 8 shows signal ui learned using PTL with noises and

the corresponding tendon force, FTi . Figure 9 shows the final
position of the arm and joint angles. These results show that
the most substantial errors occur at motion onset, and only
slight fluctuations remain afterwards. At motion onset, it is
reasonable to believe that unexpected muscle forces, especially
passive forces of muscles 1 and 3, disturb the force balance. As
the simulation proceeds, the arm model returns to a balance
state by adjusting ui. Therefore, PTL extends learning and
guides toward the next expected solutions. In addition, the
noises foster an extensive exploration of the solution space
during training.

To further evaluate PTL framework, we consider point-
to-point motion through two scenarios. First, motion
begins from a stable position (θi = 0) and finishes at
another position (Figure 10).

When motion starts from a stable position, the next state
st+1 does not considerably change if FT = 0. Therefore, the
algorithm should not deal with large and rapid fluctuations, and
the PTL performance is high. In contrast, in the second scenario,
motion starts from an unstable position, and st+1 exhibits a
large difference when compared with st in the initial period
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FIGURE 7 | Average allowed error during training. Most algorithms stop learning before processing all the simplified targets.

FIGURE 8 | Execution signals trained using PTL with noises after 500 iterations. All excitation signals are filtered with a Butterworth lowpass filter to separate signals

from execution noise.

FIGURE 9 | Tracking performance of PTL with noises. Point P is the terminal point for arm motion.
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FIGURE 10 | Scenario 1: Motion with constant angular velocity begins from a stable position and reaches another position in the motion space. (A–E) are five different

trajectories selected randomly from operation space. Especially, all the initial states are the same (θ1 = 0, θ2 = 0). In each situation, Left: actual motion trajectory of

endpoint achieved by PTL. Right: (Top) corresponding tendon forces caused by signal µ. (Middle) Actual joint angles during the motion. Remember that each

trajectory task is required a constant angular velocity. (Bottom) Allowed error during training, which can be considered as phased target of motion learning.

even if FT = 0, as the gravitational torque contributes
to a large angular acceleration. Consequently, learning
is unstable.

The performance in the second scenario (Figure 11) confirms
our prediction of large initial fluctuations. In fact, inappropriate
initial parameters in musculotendon model will also degrade the
performance. As inappropriate parameters lead to inappropriate
muscle force, and some timesteps are necessary to adjust those
parameters. In addition, the trajectory length is notably shorter

than that in the first scenario, leading to a shorter trajectory
for adjustment and learning. Consequently, errors increase in
this scenario.

5. CONCLUSIONS

In this paper, we propose a human-inspired motion learning
framework for a musculoskeletal system, called PTL. We
analyze the learning process and equilibrium point of Qui ,j,
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FIGURE 11 | Scenario 2: Motion with constant angular velocity begins from an unstable position and reaches another position in the motion space. (A–D) are five

different trajectories selected randomly from operation space. In each situation, Left: actual motion trajectory of endpoint achieved by PTL. Right: (Top) corresponding

tendon forces caused by signal µ. (Middle) Actual joint angles during the motion. Remember that each trajectory task is required a constant angular velocity. (Bottom)

Allowed error during training, which can be considered as phased target of motion learning. To evaluate performance, situation (E) is designed particularly to move

from a unstable state to the stable position (θ1 = 0 and θ2 = 0).

determining that phased targets guide excitation signals toward
expected values during learning. Two types of biological
noise sources are considered in the PTL framework to
increase the exploration ability in an expanded solution
space, making the algorithm suitably follow the guidance
of phased targets. Theoretically, as PTL is based on a
human learning process, it can be expanded as a general-
purpose learning framework if we find appropriate ways to

simplify different kinds of tasks, such as capture and pattern
recognition tasks.

In future work, we will apply advanced methods in PTL
to improve performance, especially when motion starts from
an unstable position. Furthermore, better approaches for
simplifying tasks and more biological mechanisms of motion
control should be investigated to expand the application scope
of the PTL framework.
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